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Living systems rely on coordinated molecular interactions, especially those related to gene expression 
and protein activity. The Unfolded Protein Response is a crucial mechanism in eukaryotic cells, 
activated when unfolded proteins exceed a critical threshold. It maintains cell homeostasis by 
enhancing protein folding, initiating quality control, and activating degradation pathways when 
damage is irreversible. This response functions as a dynamic signaling network, with proteins as nodes 
and their interactions as edges. We analyze these protein-protein networks across different organisms 
to understand their intricate intra-cellular interactions and behaviors. In this work, analyzing twelve 
organisms, we assess how fundamental measures in network theory can individuate seed proteins 
and specific pathways across organisms. We employ network robustness to evaluate and compare the 
strength of the investigated protein-protein interaction networks, and the structural controllability 
of complex networks to find and compare the sets of driver nodes necessary to control the overall 
networks. We find that network measures are related to phylogenetics, and advanced network 
methods can identify main pathways of significance in the complete Unfolded Protein Response 
mechanism.
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The Unfolded Protein Response (UPR)1 is a mechanism adopted by cells to maintain homeostasis within the 
endoplasmic reticulum (ER) compartment in response to an accumulation of unfolded or improperly folded 
proteins (Fig. 1)2–4. When protein concentration exceeds physiological levels, pro-survival mechanisms are 
activated to restore the balance between folded and unfolded proteins5–7. The heat shock protein family A 
member 5 (HSPA5), also known as binding immunoglobulin protein (BiP)8, is a key promotor of the UPR, 
activating three stress sensors in the ER: the activating transcription factor 6 (ATF6), the endoplasmic reticulum 
to nucleus signaling 1 (ERN1), and the eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3), 
respectively9–11. If the adaptive UPR response fails, other pathways are activated, leading to apoptosis and 
autophagy6,12. This mechanism is essential for cell survival in mammals1,13,14and is strongly preserved across 
various organisms, from vertebrates to yeasts and worms15–17, as well as in fungi18and plants19,20.

The advancement of network theory has significantly contributed to studying biological networks, particularly 
protein-protein interaction (PPI) networks21–24. Indeed, by conducting network modeling and topological 
analysis, researchers can gain insights into genes and proteins involved in various biological functions and 
disease mechanisms25–27The UPR pathway can be described as a PPI network28–30and analyzed using complex 
network tools31–36. Protein interaction information is stored in public databases37–40, and obtained via direct 
and indirect information (i.e., from experimental Y2H test and homology). Classic measures in network theory, 
whose definition is briefly reported in Table 1, provide valuable insights into network structure and function. 
Still, they do not adequately address the dynamic aspects of network behavior and vulnerability to disruptions. 
Therefore, structural controllability41,42and network robustness43–45 can be used to identify driver nodes and 
exploit whether the network withstands failures or attacks.

1Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome 00128, Italy. 
2Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, Rome 00161, Italy. 
3Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, United 
Kingdom. 4Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 
Rome 00128, Italy. 5National Institute of Optics, National Research Council, Largo Enrico Fermi 6, Florence 50125, 
Italy. 6International Center for Relativistic Astrophysics Network, Piazza della Repubblica 10, Pescara 65122, Italy. 
email: n.luchetti@unicampus.it; s.filippi@unicampus.it

OPEN

Scientific Reports |        (2024) 14:27658 1| https://doi.org/10.1038/s41598-024-79086-8

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-79086-8&domain=pdf&date_stamp=2024-11-12


Here we study the properties of the ER stress response in twelve different organisms, to determine if network 
analysis methods can provide insight into characteristics of PPI networks. Specifically, we want to identify 
and analyze the factors that impact the “strength” of various UPR networks and their resistance to potential 
alterations. This includes looking at random-based and various metric-based attack strategies and identifying 
similarities between different organism models. Our findings indicate that the several adopted methods can 
uncover different network characteristics, such as phylogenetic similarities1, distinguishing mammals and their 
animal models, and identifying relevant molecular pathways within the UPR mechanism across organisms. 
Thus, we hypothesize that these network methods can be widely applied to characterize unknown PPI networks 
in silico.

Term/metric Definition

Barycenter The node with the lowest value of eccentricity (for us, the absolute center of the networks)

Betweenness centrality46 Measure of how often a node occurs on the shortest paths between other nodes

Closeness centrality C(x) = (
∑

y d(x, y))
−1 is a measure of how close a node is to all other nodes in the network

Clustering coefficient Proportion of edges between the nodes within the ith neighborhood divided by the number of links that could exist between them

Average clustering coefficient CC = (
∑

i CCi/n) is the arithmetic mean of the clustering coefficient of all the nodes

Density47 D = 2M/[N · (N − 1)], where M is the total number of connections in an N nodes network

Degree Number of edges of one node

Average Degree Arithmetic mean of degrees of all network nodes

Diameter It is defined as the eccentricity of a node with the maximum distance to the other nodes

Edges Physical or functional connections between pairs of proteins

Modules or Communities Sub networks that include a high number of inside-sub network edges and a low number of between-sub network edges

Modularity A measure of network tendencies to divide in communities

Nodes Proteins composing the network

Shortest path length Number of edges needed to connect every pair of nodes through their shortest path

Table 1. Definition of quantities used to describe PPI networks.

 

Fig. 1. Visual representation of main UPR signaling pathways during ER stress in vertebrates. The cellular 
process of post-translational modification and protein folding becomes strained, leading to the buildup of 
non-properly folded proteins. This accumulation can eventually trigger cell death. The cell initiates a cascade 
of signaling pathways to counteract ER stress and regain homeostasis. These pathways enhance the production 
of proteins involved in proper protein folding or facilitate the removal of misfolded proteins through 
Endoplasmic-reticulum-associated protein degradation (ERAD). (Reproduction under the Creative Commons 
Attribution License).
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Results
The results are presented in three subsections, each elucidating the potential descriptive and predictive power of 
the methods employed. These methods allow the association of network properties with phylogenetic analogies 
and assist in identifying biological weaknesses through advanced network descriptors. These subsections 
correspond to the methods tested in this study: i) standard network descriptors48, as well as topological analysis49, 
ii) robustness43–45, and iii) structural controllability41,42. The methodological pipeline starts by establishing a 
native UPR model network for each organism, as detailed in Table 2, utilizing PPI data sourced from public 
databases. We then create configuration models by randomizing connections while preserving the same number 
of connections per protein. Well-established network theory measures and advanced network methods are then 
applied to evaluate the networks for each organism and model. In Table 2 we also report the average value of 
network features for each native model.

Network topology analysis
Standard network characteristics
Barycenter

We find that the barycenter of all network models corresponds to the Binding Immunoglobulin Protein 
(KAR2 and BIP2/BIP3 proteins in Saccharomyces cerevisiae and Arabidopsis thaliana are homologous to 
vertebrates HSPA5), apart from Caenorhabditis elegans, for which the Heat shock protein 90 (hsp-90) results as 
the key protein (Table 2). Indeed, literature shows that in Caenorhabditis elegans, hsp-90 plays a crucial role in 
the chemotaxis to non-volatile and volatile attractants detected by AWC sensory neurons76,77.

Density
Arabidopsis thaliana and Drosophila melanogaster are the most densely connected networks, with values of 

0.314 and 0.238, respectively (Table 2). The less densely connected network is found for the invertebrates, except 
for Homo sapiens, with values < 0.100.

Average degree
The highest average degree value of the native models is observed for Homo sapiens (25) followed by Mus 

musculus (21), Arabidopsis thaliana, and Saccharomyces cerevisiae with a value of an average degree of 19. The 
lowest average degree value is found for Gallus gallus and Caenorhabditis elegans, with a numeric value of 11, 
followed by Macaca fascicularis with a value of 13.

Closeness centrality
Arabidopsis thaliana has the highest closeness, with a value of 9.2·10-3, followed by Drosophila melanogaster 

(8.9·10-3). Vertebrates show similar values, in the range [1.8·10-3, 2.3·10-3]. Betweenness centrality. Vertebrates 
show larger values of betweenness centrality, with the lower end for Homo sapiens (145.5) and the upper one for 
Danio rerio (181.3), compared to the remaining organisms.

Clustering coefficient
The highest clustering coefficient value is observed for Arabidopsis thaliana (0.680) followed by Saccharomyces 

cerevisiae (0.607). All the remaining organisms show a clustering coefficient < 0.600 suggesting that, in the 
smaller networks, proteins are directly connected with their neighbors.

Modularity and communities
The modularity and number of communities provide a different description of alteration in a network since it 

is an evaluation based on its configuration models. In Table 2 we report the number of communities and values 
of modularity calculated with the Louvain algorithm. Drosophila melanogaster and Arabidopsis thaliana provide 
the same lowest number of communities (3), probably because the sizes of the networks are quite small and 
comparable among them, concerning the other organisms (57 and 62 nodes). This is also reflected in the smallest 
diameter of the graph (5 for both). Rattus norvegicus, Bos taurus, and Danio rerio provide the same number of 
communities (6) and modularity value (0.374/0.374/0.375). A graph representation of the main communities of 
native models is shown in Fig. 2.

Correlation analysis

Organism Barycenter #nodes #edges Density Diameter Degree Closeness Betweenness Cust. coeff. Modularity Communities

Homo sapiens2,50 HSPA5 216 5286 0.114 7 25 0.0020 145.5 0.522 0.311 5

Rattus norvegicus51,52 Hspa5 210 3862 0.088 6 18 0.0020 161.2 0.496 0.374 6

Mus musculus53,54 Hspa5 231 4900 0.092 6 21 0.0018 170.7 0.538 0.354 6

Macaca fascicularis55 HSPA5 186 2468 0.072 6 13 0.0020 160.5 0.437 0.422 7

Bos taurus56 HSPA5 205 3292 0.079 8 16 0.0019 172.6 0.447 0.374 6

Oryctologus cuniculis57,58 HSPA5 174 2598 0.086 6 15 0.0023 134.7 0.464 0.367 5

Gallus gallus59,60 HSPA5 179 2048 0.064 8 11 0.0020 173.5 0.395 0.385 7

Danio rerio61–63 hspa5 214 3240 0.071 8 15 0.0018 181.3 0.413 0.375 6

Drosophila melanogaster64–66 Hsc70-3 57 760 0.238 5 14 0.0089 29.9 0.560 0.324 3

Caenorhabditis elegans67–69 hsp-90 109 1212 0.103 7 11 0.0034 98.9 0.594 0.450 6

Saccharomyces cerevisiae16,70,71 KAR2 150 2834 0.127 6 19 0.0028 108.0 0.607 0.352 6

Arabidopsis thaliana72–75 BIP2; BIP3 62 1188 0.314 5 19 0.0092 25.6 0.680 0.245 3

Table 2. Average values of common network features for all native models.
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Pairwise comparisons for degree, closeness, and betweenness are evaluated via the Pearson correlation 
coefficient. This analysis is performed only across these quantities because they are the more common centrality 
measures. Degree and closeness centrality show a little negative non-significant correlation (r = −0.04, p = 0.91), 
while degree and betweenness centrality show a little positive non-significant correlation (r = 0.006, p = 0.98). 
Finally, the two centrality measures show a strong significant negative correlation (r = −0.94, p = 4·10-6).

Fig. 2. Graph representation of native UPR models across species. Distinct colors identify communities, and 
the size of the nodes is related to their degree.
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Normalized metrics characteristics
The native UPR models for the different organisms are characterized by different sizes that may affect the 
standard measures reported in the previous paragraph. Thus, when analyzing normalized metrics (based on the 
network size), analogies and differences between organisms become clearer (Table 3).

Degree
Except for Homo sapiens, the other vertebrates share comparable values of normalized average degree (all 

with < 0.100). Drosophila melanogaster and Arabidopsis thaliana have the highest values (> 0.200).
Closeness centrality
Homo sapiens, Rattus norvegicus, Mus musculus, and Saccharomyces cerevisiae share similar values of 

normalized average closeness centrality (between 0.404 and 0.440). Macaca fascicularis, Bos taurus, Danio rerio, 
and Caenorhabditis elegans models also provide similar values (between 0.368 and 0.386). Arabidopsis thaliana 
and Drosophila melanogaster have the highest closeness values (0.563 and 0.501).

Betweenness centrality
Except for Arabidopsis thaliana and Saccharomyces cerevisiae, which also provide the highest values (0.135 

and 0.092), all the other organisms have comparable values of normalized average betweenness centrality, 
especially the two murine organisms (0.042 and 0.040), and Macaca fascicularis, Gallus gallus, Danio rerio and 
Drosophila melanogaster (0.074/0.073/0.072/0.070)

Configuration models and z-score distributions
We use the configuration models to assess concrete differences between organism models. For each real-

world UPR model, we reconstruct 10 configuration models, to compute the z-scores of closeness centrality, 
betweenness centrality, and clustering coefficient, reported in Table 3. Rattus norvegicus and Mus musculus 
show comparable values of z-scores for all three quantities ([-3.1, -3.1], [-1.8, -1.0], [3.1, 3.1] respectively). 
The Drosophila melanogaster model shows a significant difference from all the other organisms regarding 
the closeness centrality (the only model with a z-score of -2.0). Overall, z-scores of closeness and clustering 
coefficient are included in small variation ranges ([-3.0, -2.0] and [3.0, 3.1] respectively). Moreover, the z-score 
for betweenness centrality shows significant differences among organisms (from -2.7 for Caenorhabditis elegans 
to 1.9 for Homo sapiens), suggesting that betweenness centrality provides a potentially useful tool for identifying 
similarity or differences between organisms regarding this specific mechanism.

Configuration models and statistical analysis
Table 3 also shows the nonparametric signed-rank test results for closeness and betweenness centralities. 

Regarding closeness centrality, we obtain that the native and the configuration models are significantly different 
for all organisms. All the p-values for closeness are smaller (or much less) than 0.05, so the test rejects the 
null hypothesis of zero medians at the 5% significance level. On the other hand, for the betweenness centrality 
distribution, the test provides a non-significant difference for Drosophila melanogaster and Arabidopsis thaliana. 
Overall, the configuration models alter the network features regarding closeness and only partially regarding the 
betweenness centrality.

Highest metrics nodes
To more precisely relate the evaluated network metrics with the biological content, we also analyze the role of 

protein within the UPR pathways. Few specific genes or their homologues appear in all the sets across organisms, 
associated with high degree, closeness, and betweenness centralities. In Fig. 3 we show the nodes with the highest 
values of the three principal metrics, with the values in the round brackets.

A percentage varying between 5% and 30% of the total number of proteins in each native network is 
represented by heat shock cognate proteins (HSC), which are members of the heat shock protein family (HSP), 
one of the most ubiquitous and conserved protein families across organisms78–81. They are fundamental in the 

Organism

Degree Closeness Closeness Closeness Betweenness Betweenness Betweenness Clust. Coeff.

Norm. value Norm. value z-score p-value Norm. value z-score p-value z-score

Homo sapiens 0.113 0.440 -3.1 ≪0.05 0.063 1.9 < 0.05 3.1

Rattus norvegicus 0.088 0.408 -3.1 ≪0.05 0.042 -1.0 ≪0.05 3.1

Mus musculus 0.092 0.417 -3.0 ≪0.05 0.040 -1.8 ≪0.05 3.1

Macaca fascicularis 0.071 0.377 -3.1 ≪0.05 0.074 -0.3 ≪0.05 3.1

Bos taurus 0.078 0.386 -3.1 ≪0.05 0.053 0.1 ≪0.05 3.1

Oryctologus cuniculis 0.086 0.404 -3.0 ≪0.05 0.065 1.1 ≪0.05 3.0

Gallus gallus 0.064 0.353 -3.1 ≪0.05 0.073 0.6 ≪0.05 3.1

Danio rerio 0.071 0.383 -3.1 ≪0.05 0.072 1.5 ≪0.05 3.0

Drosophila 
melanogaster 0.234 0.501 -2.0 < 0.05 0.070 -1.6 > 0.50 3.0

Caenorhabditis elegans 0.102 0.368 -3.1 ≪0.05 0.048 -2.7 < 0.05 3.1

Saccharomyces 
cerevisiae 0.126 0.422 -3.1 ≪0.05 0.092 -1.3 < 0.05 3.1

Arabidopsis thaliana 0.309 0.563 -3.1 ≪0.05 0.135 0.7 > 0.50 3.0

Table 3. Normalized values and statistical analyses of common network features for native models. p-values 
are from the non-parametric signed-rank test applied to paired normalized distributions of native and 
configuration model metrics.
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correct functioning of cells, maintaining cellular proteostasis, and protecting cells from induced stresses82. Their 
genes are associated with the highest values of the main three network features, across all the twelve species. 
They result in relevant nodes and hubs in various diseases, like cancers and strokes83–85. HSP/HSC proteins for 
each organism belong to the same module, associated with the largest node size (Fig. 2). Other proteins related 
to the highest values of the three metrics for the various networks are i) X-box binding protein 1 (XBP1), which 
is an important initiator and modulator factor of ER stress response86,87, ii) ATF6 and iii) ERN1, both of which 
are ER membrane receptors (together with EIF2AK3)9,88–90, in charge of initiating and regulating the stress 
response after the activation promoted by HSPA5/BiP91–93. The most relevant pathway in the UPR mechanism 
for Saccharomyces cerevisiae and Arabidopsis thalianais related to the IRE1/ERN1 signaling cascade94–99, also 
notable from the fact that we cannot find homologs for the other two ER stress sensors. Finally, a recurrent protein 
among vertebrates is the Valosin-containing protein (VCP) which is one of the most abundant cytoplasmic 
proteins in eukaryotic cells100; its main function is to mediate protein quality control processes to maintain cell 
homeostasis, like ERAD101.

Multi-comparison test In Fig. 4 we report the correlation matrices related to multiple comparison tests 
with the Bonferroni correction applied to normalized metrics distributions (degree, closeness centrality, 
and betweenness centrality) cross-species. The representation of metrics distributions is shown in Fig. S5 of 
Supplementary material.

Degree − We observe that normalized degree strong similarities among vertebrates (big yellow square 
between 2−Mus musculus and 8−Danio rerio). Interestingly, Homo sapiens distribution is similar, besides the 

Fig. 4. Correlation matrices (p-value) of normalized metrics distributions. Matrix indices represent the 
organisms as listed in the text. The color scale is the same for all the matrices (color bar on the right). NaN 
elements identify the diagonal of the matrices (same organism).

 

Fig. 3. Protein sets with highest values of network metrics, for native models. Values are reported in round 
brackets after the protein name.
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two murine models and the rabbit, to Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces 
cerevisiae. Nicely, Caenorhabditis elegans distribution is similar to 7 out of 12 organism models.

Closeness centrality − This feature distributions show a strong overlap between Rattus norvegicus and Mus 
musculus. Interestingly, these two models together with the human and the rabbit produce a similarity with 
Drosophila melanogaster and Saccharomyces cerevisiae, while Macaca fascicularis, Bos taurus Gallus gallus and 
Danio rerio models produce a similarity with Caenorhabditis elegans.

Betweenness centrality − On the contrary, the correlation matrix of betweenness centrality shows that most 
organisms have identical normalized distributions (most matrix elements are closer to 1), so this metric does not 
discriminate among all organisms.

We can conclude that statistical and correlation analyses show that degree and closeness centrality result 
in better network features to discriminate across organisms. Fig. S6 of Supplementary material shows the 
dendrograms of hierarchical analysis of normalized average degree and centralities. The degree and closeness 
trees identify similarities among vertebrates, and nicely with Caenorhabditis elegans and Saccharomyces cerevisiae 
(animal models). In all cases, the two murine models are among the most similar. Fig. S7 of Supplementary material 
shows the dendrograms of hierarchical analysis of normalized median of degree and centralities distributions 
(Fig. S5). The situation slightly changes from the analysis on average values. Again, Rattus norvegicus and Mus 
musculus are grouped as similar. Nevertheless, closeness centrality confirms the phylogenetic hierarchy obtained 
with average values; the degree groups the murine models with fruit fly and worm models, while Arabidopsis 
thaliana is grouped with the rest of the invertebrates. Betweenness centrality now provides a situation analog to 
the hierarchical organization of the degree for average values.

Topological analysis
A different type of information comes from the topological analysis of adjacency matrices, evaluated with the 

Generalized Hamming Distance (GHD, Table 4). It provides a degree of difference between two N ×N  matrices, 
by comparing paired matrix elements49. In Table 4 we report the average value of GHD calculated for the 
native network concerning all the 10 associated configuration models. The most different models are provided 
by Drosophila melanogaster (0.219), Arabidopsis thaliana (0.198), and Caenorhabditis elegans (0.135); this 
can be rationalized because the size of the network is small compared to the other organisms, and we have 
poor biological information about the nodes, so the null models generate quite different related networks. All 
vertebrate models provide small and comparable GHD values (< 0.100), especially Mus musculus (0.051), Homo 
sapiens (0.057), Danio rerio (0.059), and Rattus norvegicus (0.060).

To sum up, degree and closeness centrality are convenient network features since they discriminate across 
different organisms and identify native or null networks within the same organism. Summarizing the results for 
all the above quantities, the vertebrates (Homo sapiens, Rattus norvegicus, Mus musculus, and Bos taurus) and 
their biological models (Danio rerio, Caenorhabditis elegans, and Saccharomyces cerevisiae) share similar values, 
in particular of closeness, and have similar connections, as shown by the correlation matrices and the GHD 
values. Overall, the description of UPR networks via standard network quantities and GHD allows us to identify 
phylogenetic similarities and characterize the networks of vertebrates concerning other phyla.

Network robustness
The network robustness (Fig. 5) has been tested with random- and metrics-based target attacks on the native 
networks. Table 5 reports normalized average path length and efficiency values for all investigated models. The 
average shortest path length values are comparable across organisms (from the lowest value for Drosophila 
melanogaster (2.068) to the largest value for Gallus gallus (2.949)). Murine models have the highest efficiency 
values (> 0.600), which also share comparable values of average path length.

The evolution of the largest connected component (LCC) in each network is evaluated by removing at each 
step one node from the network based on ascending index (random)102, degree103, and centralities104 attacks, i.e. 
the least “important” nodes are removed first. The LCC identifies a connected component of a given graph that 
contains a significant fraction of the entire graph’s vertices. The removal based on random node choice provides 
a linear trend for all organisms (Fig. 5). A random attack strategy (based on random node removal) requires the 
removal of many nodes to decrease the potency significantly, so targeted attacks are more efficient in degrading 
the network105,106. In most cases, the betweenness-based attack strongly affects the behavior of the network, 
except for Caenorhabditis elegans, for which the opposite is observed. In general, degree-based and closeness-
based attacks show the same behavior of LCC degradation. This finding is also supported by sets of nodes with 
the highest values of metrics (see Fig. 3), where it is shown that sets for degree and closeness are more similar 
compared to sets obtained for betweenness centrality, as also confirmed by the computed correlation coefficients 
between network metrics (see above). Furthermore, vertebrate models show similar behaviors to all attacks.

By removing nodes with increasing metrics values, we expect a slower degradation of the network integrity; 
the results could be explained by considering a larger number of “external” and less important nodes within the 
networks (low values of network metrics). Attacking the networks based on decreasing metrics values provides 
a random-like trend in network robustness. The sudden jumps in the robustness can be associated not only 
with a precise role of a specific protein removal, because their removal at the beginning of the process could 
not produce the same results, as in a purely star network. Instead, it can also be the result of a cumulative effect, 

H. sapiens R. norvegicus M. musculus M. fascicularis B. taurus O. cuniculis G. gallus D. rerio D. melanogaster C. elegans S. cerevisiae A. thaliana

0.057 0.060 0.051 0.076 0.064 0.076 0.071 0.059 0.219 0.135 0.095 0.198

Table 4. Average Generalized Hamming Distance between native and configuration models.
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because the overall removal of all the previous proteins builds a star-like network, that collapses upon removal 
of a specific protein.

However, going through the principal functions and pathways that are involved in the UPR and arising 
from the network robustness, across all, or most of, the organisms, we highlight that those proteins with the 
role of chaperones, i.e. initiating the signaling pathways and quality control of protein folding, are present in all 
considered organisms (except Homo sapiens) as the ones that induce a sudden collapse of metrics robustness. 
Also, proteins involved in pro-apoptosis or ERAD mechanisms emerge from the robustness analysis as present 
in most organisms. Other mechanisms, with corresponding proteins obtained from robustness stress analysis, 
are listed in Table 6.

We report the network robustness analysis applied to the configuration models in Fig. S8 of Supplementary 
material. We choose the nearest and the farthest models from the native models based on the network topology 
(lowest and biggest dGHD values) to investigate the behavior concerning the randomized networks. The nearest 
topology network of Homo sapiens, Rattus norvegicus, Mus musculus, Gallus gallus, and Saccharomyces cerevisiae 
shows a stronger resistance to fails than the farthest topology network (similar to the native models − Fig. 5). In 
addition, there is a (nearly) complete overlap of the three targeted attack trends for all organisms.

Fig. 5. Network robustness evaluated using random attack and target attacks on native models. Different 
colors identify attack strategy trends.
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Structural controllability
The structural controllability allows for determining the number and identifying the minimum driver nodes 
(Table 7). For all organisms, the study of the native model may produce different driver node sets; however, some 
proteins recur in sets across organisms, suggesting their importance within the networks and in the mechanism. 
Unfortunately, the algorithm cannot find any driver node set for the bull model, as it is.

The algorithm finds a unique set only for Homo sapiens and Drosophila melanogastermodels. RPAP2 is 
associated with transcription and RNA processing, connects to RUBVL2, and has minimal network metrics107. 
In metrics terms, this node is characterized by 1 degree (connected to RUBVL2), 1.48·10-3closeness centrality, 
and 0 betweenness centrality (we can define it as an “external node”). In fruit flies, Hsp70Ab, which belongs to the 
Hsp70 family, stabilizes non-native protein conformations108,109. The L(2)efl protein110 induces phosphorylation 
of Eif2α, playing a role in aging111–113.

The FIC domain protein adenylyltransferase (Ficd) is found in Mus musculus and Oryctologus cuniculis. Ficd 
is associated with various cellular pathways, particularly the ATF6 and EIF2AK3 branches of the UPR pathway, 
which regulate ER homeostasis. In humans, FICD is typically present at low basal levels in most cell types, and 
its expression is tightly regulated114,115.

Nicely, the Ufm1-specific ligase 1 (Ufl1)116,117 is found in Rattus norvegicus, Macaca fascicularis, and Gallus 
gallus. The Ufl1 protein is essential for activating the stress sensor EIF2AK3 and helps protect cardiomyocytes 
from cell death triggered by ER stress.

Kinesins (Krt4, Krt14, and Krt16) are found in Rattus norvegicus and Gallus gallus118,119.

Organism Chaperone MP,R,&T Kinase R&M ERAD/Autoph./Pro-survival Apopt.
I&T 
factors Protein folding

Homo sapiens − − MAPK8 MAPK8 TMBIM6, THBS4 MAPK8 − −

Rattus norvegicus CCt5, Dnajb2 Ep300, Dnajb2 − Dnajb2 Dnajb2 − − CCt5

Mus musculus Bag3 − − − Bag3, Creb3, Manf − Creb3 −

Macaca fascicularis HSPA9 − − DDIT3 − HSPA9, 
DDIT3,BCL2L11 DDIT3 HSPA9

Bos taurus DNAJA1, HSPA4L − − HSF1 − DNAJA1, HSF1 HSF1 −

Oryctologus cuniculis DNAJC10 VAPB, ERO1B − − DNAJC10, VAPB DNAJC10 − ERO1B

Gallus gallus HSPD1, HSPA4, PDIA6 − − HSPA4 PDIA6 − − HSPD1, ERP44, 
HSPA4, PDIA6

Danio rerio bag6, hyou1, cryaa − − hyou1 bag6, hyou1, cryaa bag6 − hyou1, cryaa

Drosophila 
melanogaster

Gp93, DnaJ-1, Calr, 
Grp170 Calr − Dad1 Dad1, Der-2 − − Gp93, DnaJ-1, 

Calr, Grp170

Caenorhabditis elegans enpl-1 col-109, abu-6, 
F38B6.6, abu-12 − − col-109, abu-6, enpl-1, abu-12 F38B6.6 pqn-90, 

enpl-1 −

Saccharomyces 
cerevisiae CCT3, HSP10 BUD27 − − EDE1 − − BUD27, CCT3, 

HSP10

Arabidopsis thaliana HSP90-3, HSP90-3, BIP3, 
HSP70-7, HSP70-10 − − − HSP70-7, HSP70-10, BIP3 − − HSP70-7, 

HSP70-10, BIP3

Table 6. Proteins and functions related to jumps in the robustness trends. MP,R,&T = membrane proteins, 
receptors, and transfers; R&M = regulators and messengers; I&T factor = initiation and transcription factors. 
Autoph./Aptopt. = autophagy/apoptosis. Jump-related proteins are considered when the LCC dimension 
decreases by at least 10%.

 

Organism Average path length Efficiency

Homo sapiens 2.354 0.488

Rattus norvegicus 2.543 0.638

Mus musculus 2.485 0.681

Macaca fascicularis 2.735 0.446

Bos taurus 2.693 0.586

Oryctologus cuniculis 2.557 0.593

Gallus gallus 2.949 0.504

Danio rerio 2.702 0.551

Drosophila melanogaster 2.068 0.571

Caenorhabditis elegans 2.832 0.429

Saccharomyces cerevisiae 2.450 0.478

Table 5. Values of average path length and efficiency of all native models.
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The gene family activated in blocked UPR (abu) in Caenorhabditis elegansis implicated in the UPR regulation 
in response to the ER stress. They help maintain protein-folding homeostasis and manage the accumulation of 
misfolded proteins in the ER69. This class is a subset of the pqn family, prion-like Q/N proteins120.

Interestingly, many resulting proteins are chaperones, such as heat shock proteins (HSP) and DnaJ homologues 
(i.e., all Arabidopsis thaliana proteins). Their chaperone and protein-folding regulation activity is well known.

Discussion
Unfolded Protein Response is one of the most conserved fundamental biological mechanisms through 
organisms15,16,75,121, occurring primarily in the endoplasmic reticulum (ER). Its main function is to restore cell 
homeostasis after a pathological accumulation of non-properly folded proteins6,7,10,11,122,123. Any inefficiency in 
the adaptive response to ER stress can lead to unfolded or misfolded protein accumulation at different levels. 
These proteins tend to aggregate, posing a threat to cellular and tissue integrity and serving as a primary driver 
for the onset of amyloidosis and neurodegenerative diseases25–27,124.

A key signaling pathway governing the UPR, originally discovered in Saccharomyces cerevisiaeduring the 
1970s16,50,125,126, is characterized by a single transmembrane protein, ERN1, responsible for the detection of 
ER stress provoked by over-accumulation of unfolded/misfolded proteins94–96. The major ER chaperone BiP 
triggers the dimerization of ERN1, which leads to its subsequent autophosphorylation and the activation of 
its signaling cascade9. This pathway reinforces the ER function and is conserved across eukaryotes127. Indeed, 
the basic features of the UPR mechanism result in being highly preserved throughout metazoans; most species 
have homologues of the three main stress sensors, ERN1, ATF6, and EIF2AK3. Signaling pathways of the stress 
sensors cooperate to restore and/or bolster ER function, primarily through the upregulation of many components 
of the protein folding machinery (as the action of XBP1 on the regulation of BiP chaperone86,87within the ERN1 
pathway) and the quality control machinery within the ER. Additionally, these signaling pathways limit ER 
stress by dampening the translation attenuation and potentially engaging the regulated ERN1-dependent decay 
(known as RIDD)128–130. A network-based description of cell mechanisms, using protein-protein interactions 
(PPI) networks, offers a valuable tool for comprehending the behavior of complex systems. Some points must 
be considered before discussing the analysis results. PPI network models are built utilizing biological data from 
publicly available PPI databases. These databases collect various types of data, from thousands of experimental 
works. Despite their large size, the databases are not exhaustive, because only part of the molecular pathways 
have been completely understood and characterized. The absence or bias in information stored in interaction 
databases must be considered when creating and analyzing biological networks. PPI databases must contain 
sufficient information for a specific pathway to yield qualitative accurate results from network analysis techniques.

With these premises, we apply a classical network metrics investigation to assess the similarities and differences 
among UPR models from twelve different organisms, considering the existing phylogenetic pathway in all the 
analyzed models. As model organisms, we choose for our investigation Homo sapiens, Rattus norvegicus, and 
Mus musculusdue to the quite complete genomic accordance with human131–136 and other model organisms, as 
Macaca fascicularis55, Bos taurus56, Oryctologus cuniculis57,58, Gallus gallus59–63, Drosophila melanogaster64–66, 
Caenorhabditis elegans67–69, Saccharomyces cerevisiae16,70,71, and Arabidopsis thaliana72–75.

Comparisons made for common metrics provide that network measures are sensitive to the network features 
(Table 2, and Figs. S2, S3, S4 from Supplementary material); however, from a biological point of view, the network 
analysis shows that there are strong similarities among the model organisms (Table 3), in particular among 
vertebrates. Moreover, highly conserved genes and pathways across species arise (Fig. 3). Chaperones belonging 
to the heat shock protein (HSP) family are among the most central proteins regarding network metrics, as the 
densest connected, and they also play a fundamental role in the correct functioning of cells78–82. This result can 
be interpreted as support for the significance of these proteins, as it implies a correlation between the structure 
and the biological properties of protein networks. In summary, network theory and statistical mechanics confirm 
that it is possible to identify similarities among organisms phylogenetically related via their PPI networks. In 

Organism Driver nodes # possible sets

Homo sapiens 1 (RPAP2) 1

Rattus norvegicus 3 (Ufl1, Rhbdd2, Krt14/Krt16) 2

Mus musculus 4 (Ficd, Parp8, Crebzf/Crebrf, Il24/Igtp) 4

Macaca fascicularis 4 (TOR1B, SIAH2, HSP1/HSPA4L, UFL1/DDRGK1) 4

Bos taurus − −

Oryctologus cuniculis 3 (FAP/LOXL2, FICD/SERPINH1, PTPN2/TNIK) 8

Gallus gallus 3 (KRT6A, KRT4/KRT14, CDKSRAP3/UFL1) 4

Danio rerio 2 (tnika, parp6b/parp8) 2

Drosophila melanogaster 2 (Hsp70Ab, L(2)efl) 1

Caenorhabditis elegant 3 (abu-12, abu-5/pqn-79, pqn-70/pqn-90) 3

Saccharomyces cerevisiae 4 (TSR4/SYO1, NUP42/ASM4, NUP1/NUP60, NUP145/NUP159) 16

Arabidopsis thaliana 9 (DJA6, GFA2, T14C9.70/T13C7.14/T17F15.190/F14N23.23/F23H11.4/T10O8.100/T16O11.15/DJA5) 8

Table 7. Structural controllability results for all species models (DNs (set dimension) and number of possible 
node sets). Identified proteins for each model are listed in the round brackets.
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addition, we find that some network metrics are better at discriminating among organisms; they are useful for 
identifying similarities and differences, such as closeness centrality and node degree.

Additionally, in this study, we employ a network scientific methodology to investigate the tolerance levels 
of multiple systems when subjected to external perturbations. We achieve this by adopting a measure of 
network robustness137–140, to characterize the potential resilience of several PPI networks. The robustness of 
the twelve organism models is evaluated by removing nodes, and consequently altering the network integrity, 
adopting different network-based metrics target strategies (Fig. 5). Obviously, in these cases, network robustness 
is influenced by network features and the degree of accuracy of biological information accessible online, but 
similarities in resilience behavior arise for organisms that are phylogenetically closer, for example, Homo 
sapiensand murine species, despite the difference between network features. This result can be supported by the 
closeness between these organisms in terms of phylogeny since 99% of the genome is conserved between human 
and murine species131–136. A detailed analysis of genes related to jumps in the network robustness highlights that, 
despite different proteins being involved in the organisms, there is a recurrence of pathways across most species. 
In particular, the sensing role of the chaperones is fundamental, together with the apoptosis and endoplasmic-
reticulum-associated protein degradation (ERAD) functions (Table 6). Lastly, the minimum drive nodes 
methodology, based on the structural controllability analysis41,42and employing Kalman’s rank condition141, 
yields significant biological insights into the proteins involved in specific mechanisms. It becomes feasible 
to pinpoint the key nodes that exert control over the entire network142. We apply structural controllability to 
all organism models investigated in this work. Driver node sets are related to the topological structure of the 
network; as for the other network methods applied, results are sensitive to the biological information available 
online (also in the high variability of the possible DNs sets − several sets for the same organism in Table 7). 
Attributing a biological significance to the set of driver nodes is not straightforward. When analyzing networks 
with numerous nodes and edges, the possibility of losing biological information in the models is due to the 
consequent increase of missing information stored in the databases. However, some specific mechanisms and 
genes, already identified via robustness and network statistics, also arise through structural controllability.

This study represents a comprehensive and innovative analysis of the biological behavior and characteristics 
of a fundamental cellular control mechanism, the Unfolded Protein Response (UPR). By modeling the UPR as 
a protein-protein interaction (PPI) network, it uses standard and advanced techniques to extract meaningful 
information from the network. The study establishes a direct correlation between specific network features and 
biological components. It finds that the three methods employed − standard network metrics and topology, 
network robustness, and network control theory − offer complementary and non-conflicting characterizations 
of the systems studied.

The first class of methods offers a comprehensive portrayal of the PPI networks and discerns phylogenetic 
similarities, distinguishing vertebrates from organisms of other phyla. Additionally, it identifies key genes 
(network nodes) that significantly influence the overall UPR mechanism. Network robustness utilizes metrics to 
assess the network’s ability to withstand node removal, identify pivotal proteins and sub-pathways, and simulate 
disease onset. This robustness analysis also highlights phylogenetic similarities among organisms.

Among the various UPR sub-mechanisms, chaperone activity, apoptosis, and ERAD are identified as relevant. 
Though less distinctly, control theory also pinpoints proteins with central roles, particularly chaperones, 
transcription factors, and ERAD proteins. Using network models for molecular and cellular pathways is a 
powerful yet underutilized approach. This study’s combination of diverse network descriptors and methods 
provides profound insights into complex mechanisms. It emphasizes revising and enriching PPI databases to 
create increasingly accurate biological models.

Materials and methods
Here we present a study of the unfolded protein response mechanism among twelve organisms. Below we report 
general information of the network models investigated in this study and the description of the performed 
analyses. We perform calculations of i) network descriptors, ii) modularity and communities, iii) topological 
distance, iv) network robustness, and v) structural controllability. We perform comparisons among native models, 
with the help of the configuration models (degree-based reconstruction). Native models are built using Python 
v. 3.11 programming language and NetworkX Python library143, based on information on the paired connection 
between couples of nodes, and configuration models are built using MATLAB v. R2023a programming language. 
Modularity, community detection, and robustness analyses are performed using the NetworkX library, while 
network descriptors analysis and structural controllability144,145 have been implemented in MATLAB.

Unfolded protein response network models
Here we present the UPR network models proposed in this work. Investigated organisms are Homo sapiens, 
Rattus norvegicus, Mus musculus, Macaca fascicularis, Bos taurus, Oryctologus cuniculis, Gallus gallus, Danio 
rerio, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, and Arabidopsis thaliana. 
We combine information stored in the UniProt database146–148and the String protein-protein interaction 
database149,150 to identify proteins involved in the mechanism and build undirected network models. Since the 
available information in the UniProt database is poor for the vertebrates (old network features of organisms 
models are reported in Table S1 of Supplementary material), we start from the proteins found for Homo sapiens, 
which results as the most characterized organism, to reconstruct the PPI networks for Rattus norvegicus, Mus 
musculus, Macaca fascicularis, Bos taurus, Oryctologus cuniculis, Gallus gallus, and Danio rerio. We therefore 
combine the proteins listed in the UniProt database for the specific organism with the human list. In addition, 
we manually curate the literature to include the proteins (chaperone BiP and three stress sensors with their 
pathways) from previous work151 in the vertebrate models. We impose a minimum required interaction score 
of medium confidence (0.400, i.e., useful interactions to build the networks must have scores ≥ 0.400), and 
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we construct the set of connections among nodes considering experimental evidence, curated databases, text 
mining, and co-expression associations. To analyze the networks, we download the lists of paired interactions as 
Tab Separated Values (TSV) extension files from the STRING website. In this framework, original models, also 
named native, are built directly from biological information obtained from the databases, and connections in 
configuration models are semi-randomly built based on the total degree of each node in the original models. The 
matrix representation of native UPR models is shown in Fig. S1 of Supplementary material.

Analysis of network models using network metrics
We first characterize the models using the usual metrics of network descriptors, (i) to highlight differences and 
similarities between models related to different organisms and (ii) to evaluate the influence of constructing a 
network with random connections starting from the degree of nodes of original models. For each model, we 
calculate (i) the total degree of the nodes, (ii) the betweenness and closeness centralities, which are measures of 
how often each graph node appears on the shortest path between two nodes in the graph, (iii) local clustering 
coefficient, and (iv) the modularity and number of communities, as measures of the structure of networks to 
evaluate the strength of division into different modules, calculated using the Louvain community detection 
Algorithm. As a definition, networks with high modularity have dense connections within communities. In 
addition, we also include normalized values of degree (norm(deg) = 2M/N , where 2M is the total degree of a 
node in a Nnodes network)152, betweenness (norm(bet) = (bet−min(bet)/(max(bet)−min(bet))) and closeness 
centrality (norm(clos) = (N − 1) ·clos)153 (Table 3). All measures are normalized by removing the dependence 
from the network dimensionality (normalized distributions shown in Figs. S2, S3, S4 of Supplementary material). 
We compute z-scores of averaged normalized metrics distributions, defined as (x− µ)/σ, where x is the variable 
value, µ and σ are the population’s mean value and standard deviation, respectively. Highest metrics (degree and 
centralities) proteins are extracted directly from metrics distributions.

Topological differences between native and configuration models
As well explained in our previous work151, we use the algorithm relies on the Generalized Hamming Distance 
(GHD)49, which can be used for assigning a “weight” to the topological difference between networks and 
evaluating its statistical significance, based on comparison between matrix elements. We apply this theory to 
assess the difference between the original models (built from the databases) and the configuration models (re-
created from the original models). If we consider two distinct networks, labeled X and Y, with the same number 
of nodes (N), we can calculate the distance dGHD between the two networks as follows:

 
dGHD(X, Y ) =

1

N · (N − 1)

∑
i̸=j

(x′ij − y′ij) (1)

where x′ij  and y′ij  are mean-centered edge-weights, and depend on the network topology, providing a measure of 
connectivity between every pair of ith and jth nodes in X and Y, respectively.

Statistical analysis of network models
The graph analysis and network robustness are performed using Python 3.11154. The statistical analysis, the 
implementation of structural controllability, and the GHD algorithm are performed using MATLAB R2023a155. 
We apply non-parametric tests because our variables are not normally distributed. For paired comparisons 
between the centralities distributions of native and null models considering one specific organism we use 
the Wilcoxon signed-rank test, and for non-paired comparisons across different organisms we use a multi-
comparison test computing values with the Bonferroni method156,157, on the results of a one-way Kruskal Wallis 
analysis of variance (shown in Fig. S5 of Supplementary material). If p < 0.05, the results are considered as 
statistically significant.

Network robustness exploitation
Considering a network X, composed of N nodes set denoted as V = {v1, v2, . . . , vN}, interconnected by M links 
represented by E = {(vi, vj) : vi, vj ∈ V }, the robustness R of the Xnetwork is defined by the ratio43,158

 
R =

1

N

N∑
i=1

Gi (2)

where Gi = ni/N  is the size of the large connected component after the ith node removal; normalization factor 
N−1 is useful for comparing networks of different sizes. Some metrics can be used to quantify a network’s 
robustness. The average path length lcan provide a quantification of network robustness since large values mean 
that nodes are farther apart from each other, and the removal of a node can significantly increase the average 
paths between nodes, decreasing the robustness of the network159:

 
l =

1

N · (N − 1)

∑
i̸=j

dij  (3)

where the sum of all possible paired-node distances is normalized over all the possible couples of N nodes. 
Another useful metric to quantify network robustness is the variation of the efficiency ∆Edepending on an 
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increasing number of removed nodes43. A robust network would have a small drop in network efficiency with 
node removal.

 
∆Ei =

E − Ei

E
 (4)

where the efficiency is defined as E = (N · (N − 1))−1
∑

i̸=j d
−1
ij . In the investigation presented here, the theory 

of network robustness is employed to assess the capability of networks to deliver and maintain an acceptable level 
of service in the presence of faults, as outlined by our models. Our analysis involves subjecting each network to 
random and targeted attacks, following specific strategies (degree-, closeness-, and betweenness-based).

Structural controllability and minimum driver node identification
Lastly, we employ the structural controllability theory to assess the nodes’ ranking using Kalman’s rank condition 
for continuous linear time-invariant systems141. In addition, we also implement the Minimum Driver Nodes 
(MDN) algorithm144,145, proposed by Liu et al., which is based on the minimal set of input signals required to 
control the network, and the MDN selection algorithm used by Zhang et al142., which can be used to identify 
the driver nodes − the nodes on which an input signal must be injected to obtain full control of the network. 
Generally, the time-evolution of a network system consisting of N nodes and M input signals, with M ≤ N , can 
be described with the following linear differential equation

 
dx(t)
dt

= Ax(t) + Bu(t) (5)

where x = (x1, x2, x3, . . . , xN)
T is the state vector for the N nodes system and u = (u1, u2, u3, . . . , uM)T is the 

control vector. A is the N ×N  state matrix, in which each element aij  identifies the connection between the 
ith and jth nodes. B is the M ×N  control matrix, whose dimension M depends on the number of input signals:

 B = (eT
1 eT

2 eT
3 . . . eT

M) (6)

where {e1, e2, e3, ..., eM} are the vectors of the canonical base. Given A and B, it is possible to assemble the 
controllability matrix C:

 C = (B, AB, A2B, A3B, . . . , AN−1B) (7)

The network is fully controllable if the controllability matrix has a full rank, i.e., rank(C) = N . Theory and 
algorithms are well-explained in Ref151.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding au-
thor upon reasonable request. Source code (Python and MATLAB scripts) used during the current study are 
available at https://github.com/NLuchetti/StatMech_of_UPR.git.
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