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Abstract
In this study, we consider two finite mixture models (FMMs) with location-scale family
distributed components, in which ordering results are established in various stochastic senses.
For heterogeneity in one parameter, the comparisons are obtained with respect to usual
stochastic order, hazard rate order, reversed hazard rate order and likelihood ratio order.
Further, for heterogeneity in two parameters, we derive sufficient conditions for the stochastic
comparison of FMMs with respect to usual stochastic order and hazard rate order. Various
examples and counterexamples are presented to illustrate the proposed results.

Keywords Finite mixture models · Location-scale family · Stochastic orders ·
Majorization · T -transform matrix

Mathematics Subject Classification (2010) 60E15

1 Introduction

In different fields of research, such as biology, reliability and survival analysis, finite mixture
models (FMMs) have been widely employed, and thus have received a considerable interest
from both theorists and practitioners. Mixture models (MM) allow to model heterogeneous
data, whose pattern can not be designed by a single parametric distribution. To model such
heterogeneity, a number of homogeneous subpopulations aremixed via some latent, unknown
parameter, which is considered as a random variable. Throughout this paper, we call the
corresponding distribution themixing proportions. There are various situations, where FMMs
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appear naturally.Below,wepresent fewof them.Onemay refer toLindsay (1995);McLachlan
and Peel (2000) and Finkelstein (2008) for various applications of FMMs.

• In biological science, assume that a biological population made of a single species
has reached equilibrium. The random variations between individuals are completely
attributed to cumulative effect of many minor factors. Then, according to the classical
central limit theorem, the resulting uncertainty can be well approximated by normal dis-
tribution. However, if the data sets show non-normality, a FMM can be considered as a
natural alternative.

• In reliability theory,MMsare also useful in analyzing failure rate data. There are situations
where some components of a product are produced over a period of time by collecting
items from different vendors, using different raw materials, machines, and manpower. In
such situations, mixtures of distributions provide a useful and effective tool for modeling
reliability data that come from these mixed populations.

• Furthermore, population failure rate can exhibit different from subpopulations failure
rates monotonicity properties. It is well known, e.g., that the mixture of supbopulations
with constant failure rates is decreasing, whereas the mixture of subpopulations with
increasing power (Wibull) failure rates first increases and then decreasing. See more
details in Finkelstein (2008).

In this paper, we have considered two FMMs for location-scale family of distributions.
Let X = (X1, . . . , Xn) be a random vector with n number of components assuming that
the i th component is from i th subpopulation. Denote the survival function (sf), cumulative
distribution function (cdf) and probability density function (pdf) of the i th random variable
(RV) Xi , i = 1, . . . , n by F̄Xi (.), FXi (.), and fXi (.), respectively. Then, the sf and the pdf
of a mixture random variable (MRV) for (X1, . . . , Xn) are

F̄M (x) =
n∑

i=1

ri F̄Xi (x) and fM (x) =
n∑

i=1

ri fXi (x), (1)

respectively, where ri ’s are known as the mixing proportions such that
∑n

i=1 ri = 1. We
consider the location-scale family of distributions as baseline for our study. A RV X belongs
to the location-scale family of distributions if its cdf is given by

K (x) = F

(
x − σ

λ

)
, x > σ, (2)

where σ ∈ R is known as the location parameter and λ is known as the scale parameter.
Here, F(.) is the baseline cdf of X . In this paper, we have considered nonnegative RVs, thus
σ must be greater than or equal to 0. It is worth mentioning that introduction of location
parameter in a family of distributions has various interpretations. For example, in reliability
and life testing studies, failure of an aging item practically becomes non-negligible only after
a certain time t = σ > 0. In the area of supply chain management, we have a non-zero
threshold value, from which the lead time of a product starts. Further, in insurance, for a
particular medical insurance policy, the claim by an individual may not be started just after
its activation. The claim is usually initiated after a certain time, for example one year.

Stochastic comparisons between two RVs described by the relevant mixture distributions
were discussed in quite a number of publications. For convenience, in this paper, we will call
it comparisons between the corresponding FMMS. For example, two FMMs for different
semiparametric families of distributions have been compared in various stochastic senses by
Hazra and Finkelstein (2018). Nadeb and Torabi (2022) compared two FMMs using usual
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stochastic order when the subpopulations follow a general class of distributions. Barmalzan
et al. (2021) considered two finite α-MMs and proposed sufficient conditions for the com-
parison of two α-MRVs. We recall that the α MM is a generalization of the classical FMM.
For some properties of the α-MM, please refer to Asadi et al. (2018). Sattari et al. (2021)
considered MMs with generalized Lehmann distributed components and proposed various
ordering results. Two FMMs with location-scale family distributed components have been
considered by Barmalzan et al. (2022) and some stochastic comparison results between them
have been established with respect to usual stochastic order and reversed hazard rate order.
Kayal et al. (2023) considered two finite mixture models with general distributed compo-
nents and obtained various ordering results. Panja et al. (2022) established several ordering
results between two finite MRVs, where the mixing components follow proportional odds,
proportional hazards, and proportional reversed hazards models.

Along this line of research, our paper focuses on further development of ordering proper-
ties for the FMMs with location-scale family distributed components. Various new ordering
results between two FMMs have been obtained for heterogeneity in one and two parameters.
We note that, some of the established ordering results (for two parameters) are in the same
vein as in Barmalzan et al. (2022). However, our sufficient conditions for these results are dif-
ferent (assumptions on the baseline distribution and the corresponding majorization), which
obviously requires different proofs and analysis. Moreover, we had discussed also relevant
orderings between the corresponding MRVs in the sense of the likelihood ratio, which was
not studied in this paper.

The rest of the paper is rolled out as follows. The next section recalls basic definitions
of stochastic orders and preliminary lemmas. Section 3 presents the main results of this
paper. It is divided into two subsections. In Section 3.1, we have established usual stochastic
order, hazard rate order, reversed hazard rate order, and likelihood ratio order. In Section 3.2,
ordering results have been established by considering heterogeneity in two parameters with
respect to usual stochastic order and hazard rate order. Finally, in Section 4, some concluding
remarks are added.

2 Preliminaries

Throughout the paper, the terms “increasing” is used for “nondecreasing” and “decreasing”

is used for “nonincreasing”. Also, we use “
sign= ” to denote that both sides of the equality have

the same sign. For any differentiable function ξ(·), we write ξ ′(x) to represent the first order
derivative of ξ(x) with respect to x . Let X and Y be two nonnegative absolutely continuous
RVs with (i) cdfs FX (·) andGY (·), (i i) pdfs fX (·) and gY (·), (i i i) sfs F̄X (·) ≡ 1−FX (·) and
ḠY (·) ≡ 1 − GY (·), (iv) right continuous inverses (quantile functions) F−1

X (·) and G−1
Y (·),

(v) hazard rate functions hX (·) ≡ fX (·)/F̄X (·) and hY (·) ≡ gY (·)/ḠY (·), and (vi) reversed
hazard rate functions h̃ X (·) ≡ fX (·)/FX (·) and h̃Y (·) ≡ gY (·)/GY (·), respectively. Below,
we introduce some notations which will be used throughout the rest of this paper.

Notation 1 • R = (−∞,+∞), R+ = [0,+∞);
• R

n = {x = (x1, . . . , xn) : xi ∈ R,∀ i} = n-dimensional Euclidean space, R
n+ =

[0,+∞)n ;
• Dn = {x = (x1, . . . , xn) ∈ R

n : x1 ≥ . . . ≥ xn};
• D+

n = {x = (x1, . . . , xn) ∈ R
n : x1 ≥ . . . ≥ xn > 0};

• En = {x = (x1, . . . , xn) ∈ R
n : x1 ≤ . . . ≤ xn};

• E+
n = {x = (x1, . . . , xn) ∈ R

n : 0 < x1 ≤ . . . ≤ xn}.
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Next, we present definitions of various stochastic orders.

Definition 1 A RV X is said to be smaller than another RV Y in the sense of

• usual stochastic order (denoted by X ≤st Y ) if FX (x) ≥ GY (x) for all x ∈ R+; or
equivalently, X ≤st Y if F̄X (x) ≤ ḠY (x) for all x ∈ R+;

• hazard rate order (denoted by X ≤hr Y ) if ḠY (x)/F̄X (x) is increasing in x ∈ R+; or
equivalently, X ≤hr Y if rX (x) ≥ rY (x) for all x ∈ R+;

• reversed hazard rate order (denoted by X ≤rh Y ) if GY (x)/FX (x) is increasing in
x ∈ R+; or equivalently, X ≤rh Y if r̃X (x) ≤ r̃Y (x) for all x ∈ R+;

• likelihood ratio order (denoted by X ≤lr Y ) if gY (x)/ fX (x) is increasing in x ∈ R+;

It is important to note that the following chains of implications hold:

X ≤st Y ⇐ X ≤hr Y ⇐ X ≤lr Y ⇒ X ≤rh Y ⇒ X ≤st Y .

For various stochastic orders and their applications, one may refer to Shaked and Shan-
thikumar (2007). Next, we describe the concept of majorization and related orders. For any
two real-valued vectors u = (u1, . . . , un) ∈ R

n and v = (v1, . . . , vn) ∈ R
n , assume that

u(1) ≤ . . . ≤ u(n) and v(1) ≤ . . . ≤ v(n) are the respective increasing arrangements of the
components.

Definition 2 The vector u is said to be

• majorized by the vector v (denoted by u
m
� v) if

j∑
i=1

u(i) ≥
j∑

i=1
v(i), for all j = 1, . . . , n−

1, and
n∑

i=1
u(i) =

n∑
i=1

v(i);

• weakly supermajorized by the vector v (denoted by u
w
� v) if

j∑
i=1

u(i) ≥
j∑

i=1
v(i), for all

j = 1, . . . , n;

• weakly submajorized by the vector v (denoted by u �w v) if
n∑

i= j
u(i) ≤

n∑
i= j

v(i), for all

j = 1, . . . , n;

• p-larger than the vector v (denoted by u
p
� v) if

j∏
i=1

u(i) ≤
j∏

i=1
v(i), for all j = 1, . . . , n;

• reciprocally majorized by the vector v (denoted by u
rm
� v) if

j∑
i=1

1
u(i)

≤
j∑

i=1

1
v(i)

, for all

j = 1, . . . , n.

It is well known that

u �w v ⇐ u
m
� v ⇒ u

w
� v ⇒ u

p
� v ⇒ u

rm
� v.

For more details on majorization, related orders, and their applications, one may refer
to Marshall et al. (2011). Next, we present a definition, which shows that the Schur-convex
function preserves the ordering of majorization.

Definition 3 A real-valued function ϕ, defined on a set A ⊆ R
n , is said to be Schur-convex

(Schur-concave) on A if and only if u
m
� v implies ϕ(u) ≤ (≥) ϕ(v), for all u, v ∈ A.

123



Methodology and Computing in Applied Probability            (2024) 26:52 Page 5 of 33    52 

Next, we present a lemma which will be used in proving the main results of this paper.

Lemma 1 (Theorem 3.A.8, Marshall et al. 2011) A real valued function � on R
n, satisfies

u
w
� v ⇒ �(u) ≤ (≥) �(v),

if and only if� is decreasing and Schur-convex (Schur-concave) onR
n. Similarly,� satisfies

u �w v ⇒ �(u) ≤ (≥) �(v),

if and only if � is increasing and Schur-convex (Schur-concave) on R
n.

The following lemma will be used in order to established some results of this paper.

Lemma 2 (Hazra et al. 2017) Let T ⊆ R
n+. Further, let φ : T → R be a function. Then, for

u, v ∈ T , u
rm
� v ⇒ φ(u) ≥ (≤) φ(v) if and only if the following two conditions hold:

(i) φ(1/a1, . . . , 1/an) is Schur-convex (Schur-concave) in (a1, . . . , an);
(ii) φ(1/a1, . . . , 1/an) is increasing (decreasing) in ai for each i ∈ {1, . . . , n},
where a1 = 1/u1, . . . , an = 1/un .

The following lemma is useful in proving few results of this paper.

Lemma 3 (Lemma 2, Hazra et al. 2017) Let A ⊆ R
n. For u = (u1, . . . , un) ∈ A and

v = (u, . . . , u) ∈ A, the following results hold true:

(i) u
m
� v if and only if u =∑n

i=1 ui/n;

(ii) u
w
� v if and only if u ≥∑n

i=1 ui/n;
(iii) u �w v if and only if u ≤∑n

i=1 ui/n;

(iv) u
p
� v if and only if u ≥ (

∏n
i=1 ui )

1
n ;

(v) u
rm
� v if and only if u ≥ n/

∑n
i=1 1/ui .

The following lemma is useful in proving few results in this paper.

Lemma 4 (Lemma 2, Hazra et al. 2017) Let η : Dn → R be a function, continuously
differentiable on the interior of Dn. Then, for u, v ∈ Dn,

u
m
� v ⇒ η(u) ≥ (≤) η(v),

if and only if, η(k)(z) is decreasing (increasing) in k ∈ {1, . . . , n}, where z = (z1, . . . , zn)
and η(k)(z) = ∂η(z)/∂zk denotes the partial derivative of η with respect to its kth argument.

Next, we state a lemma which is useful to obtain some results of this paper.

Lemma 5 (Lemma 3, Hazra et al. 2017) Let � : En → R be a function, continuously
differentiable on the interior of En. Then, for u, v ∈ En,

u
m
� v ⇒ �(u) ≥ (≤) �(v),

if and only if, �(k)(z) is increasing (decreasing) in k ∈ {1, . . . , n}, where z = (z1, . . . , zn)
and�(k)(z) = ∂�(z)/∂zk denotes the partial derivative of�with respect to its kth argument.

The next lemma gives necessary and sufficient conditions for determining Schur-convex
and Schur-concave functions on the spaces Dn and En .
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Lemma 6 (Lemma 1, Haidari et al. 2019)

(i) Suppose the function ξ : Dn → R is continuous on Dn and continuously differentiable
on the interior of Dn. Then, ξ is Schur-convex (Schur-concave) on Dn if and only if
ξ(k)(u) is decreasing (increasing) in k ∈ {1, . . . , n}, for all u in the interior ofDn, where
ξ(k)(u) = ∂ξ(u)/∂uk.

(ii) Suppose the function ζ : En → R is continuous on En and continuously differentiable on
the interior of En. Then, ζ is Schur-convex (Schur-concave) on En if and only if ζ(k)(u)

is increasing (decreasing) in k ∈ {1, . . . , n}, for all u in the interior of En.

Remark 1 If the spaces Dn and En are replaced by the spaces D+
n and E+

n , then the stated
conclusions in Lemma 6 hold true.

Definition 4 Let P = {pi j } and Q = {qi j } be two m × n matrices. Further, let pR1 , . . . , pRm
and qR

1 , . . . , qR
m be the rows of P and Q respectively in such away that each of these quantities

is a row vector of length n. Then, P is said to be

• chain majorized by Q (denoted by P 
 Q) if there exists a finite number of n × n
T -transform matrices Tω1 , . . . , Tωk such that Q = PTω1 . . . Tωk .

A T -transform matrix has the form T = ρ I + (1 − ρ)�, where 0 ≤ ρ ≤ 1, I is an identity
matrix, and� is a permutation matrix that just interchanges two coordinates, that is, row and
column.

Set

Mn =
{
(u, v) =

(
u1 . . . un
v1 . . . vn

)
: ui , v j > 0 and (ui − u j )(vi − v j ) ≤ 0, i, j = 1, . . . , n

}
.

Lemma 7 (Marshall et al. 2011, Chapter 15)Adifferentiable functionϕ : R
+
4 → R

+ satisfies

ϕ(P) ≥ (≤) ϕ(Q) f or all P, Q such that P ∈ M2, and P 
 Q, (3)

if and only if

(i) ϕ(P) = ϕ(P�) for all permutation matrices �, and for all P ∈ M2 and;
(ii)

∑2
i=1(pik − pi j )[ϕik(P) − ϕi j (P)] ≥ (≤) 0 for all j, k = 1, 2 and for all P ∈ M2,

where ϕi j (P) = ∂ϕ(P)
∂ pi j

.

Proof The proof is similar to the proof of Theorem 2 of Balakrishnan et al. (2015), and thus
it is omitted. ��

3 Main Results

In this section, we present the main results of the paper. The aim of this section is two-fold:
establishing results when there is heterogeneity in one parameter and in two parameters. Note
that some comments on the three-parameters case will be given in Section 4.

3.1 Heterogeneity in One Parameter

In this subsection, we present various stochastic ordering results between two MRVs in
the sense of usual stochastic, hazard rate, reversed hazard rate, and likelihood ratio orders.
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Assume that the sub-populations are modelled by location-scale family of distributions. In
the following theorem, we establish weakly supermajorization order-based sufficient con-
ditions to show usual stochastic order between the MRVs Un(r;λ) and Vn(r; θ), where
r = (r1, . . . , rn), λ = (λ1, . . . , λn) and θ = (θ1, . . . , θn). Here, different scale parameters,
same mixing proportions and fixed location parameters are considered.

Theorem 1 Let F̄Un(r;λ)(x) = ∑n
i=1 ri F̄( x−σ

λi
) and F̄Vn(r;θ)(x) = ∑n

i=1 ri F̄( x−σ
θi

) be the
sfs of two MRVs Un(r;λ) and Vn(r; θ), respectively, where x ≥ σ . Further, suppose t f (t)
is decreasing in t > 0. Then, for r, λ ∈ E+

n (or D+
n ), and fixed σ > 0, we have

1
λ

w
� 1

θ
⇒ Un(r;λ) ≤st Vn(r; θ),

where 1
λ

=
(

1
λ1

, . . . , 1
λn

)
and 1

θ
=
(

1
θ1

, . . . , 1
θn

)
.

Proof The desired result will be established, if the conditions of Lemma 1 are satisfied. Under
the setting, the sf of Un(r;λ) is given by

F̄Un(r;λ)(x) =
n∑

i=1

ri F̄

(
x − σ

λi

)
= �

(
1
α

)
, (say), (4)

where αi = 1
λi
, i = 1, . . . , n and 1

α
=
(

1
α1

, . . . , 1
αn

)
. Now, differentiating (4) partially with

respect to αi , we obtain

∂�
(
1
α

)

∂αi
= −(x − σ)ri f ((x − σ)αi ) ≤ 0, (5)

since x ≥ σ. Now, Eq. 5 implies that �
(
1
α

)
is decreasing with respect to αi , i = 1, . . . , n.

Thus, to complete the remaining part of the proof, it is sufficient to show that �
(
1
α

)
is

Schur-convex with respect to α. In this process, we consider

�11 =
∂�
(
1
α

)

∂αi
−

∂�
(
1
α

)

∂α j
= r j

α j
(x − σ)α j f

(
(x − σ)α j

)− ri
αi

(x − σ)αi f ((x − σ)αi ) . (6)

Let 1 ≤ i ≤ j ≤ n and consider r ∈ E+
n i.e., ri ≤ r j and λ ∈ E+

n , implies α ∈ D+
n i.e.,

αi ≥ α j . Thus, clearly (x − σ)αi ≥ (x − σ)α j . Using this and from the assumptions made,
it can be shown that

(x − σ)αi f ((x − σ)αi ) ≤ (x − σ)α j f
(
(x − σ)α j

)
. (7)

Combining Eq. 7with ri ≤ r j , fromEq. 6, one can easily establish that�11 is nonnegative,

giving that
∂�( 1

α )

∂αk
is decreasing in k ∈ {1, . . . , n}. Thus, from the result in Lemma 4, �( 1

α
)

is Schur-convex with respect to α ∈ D+
n . Further, when r ∈ D+

n and λ ∈ D+
n , i.e., α ∈

E+
n , employing similar arguments, it can be shown that, �11 also takes nonpositive values,

implying that
∂�( 1

α )

∂αk
is increasing in k ∈ {1, . . . , n}. Thus, from Lemma 5, �( 1

α
) is Schur-

convex with respect to α ∈ E+
n . Hence the theorem is proved. ��

To illustrate the result in Theorem 1, we consider the following numerical example.
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Example 1 Consider the baseline distribution as Pareto distribution with pdf f (t) = 1
t2
, 1 ≤

t < ∞. Clearly, t f (t) is decreasing with respect to t in its domain. Take λ = (λ1, λ2, λ3) =
(0.1, 0.4, 0.8) ∈ E+

3 and θ = (θ1, θ2, θ3) = (0.2, 0.5, 0.8) ∈ E+
3 . Here, it can be shown that

1
λ

w
� 1

θ
. Further, assume r = (r1, r2, r3) = (0.2, 0.3, 0.5) ∈ E+

3 and σ = 0.1. The sfs of
U3(r;λ) and V3(r; θ) can be obtained using the concept of distribution theory, hence are
omitted for brevity. The difference between the sfs ofU3(r;λ) and V3(r; θ) has been plotted
in Fig. 1(a), from which, we can easily observe that U3(r;λ) ≤st V3(r; θ), confirming the
result in Theorem 1.

The following implication between various stochastic orders is well known.

x
m
� y ⇒ x

w
� y.

Thus, under the same setting, with decreasing t f (t) in t > 0, the result in Theorem 1 also
holds if we replace the weakly supermajorization order between 1

λ
and 1

θ
by majorization

order. From Lemma 3, we have

(x1, . . . , xn)
w
� (x, . . . , x), if x ≤ 1

n

n∑

i=1

xi .

Using this fact, the following corollary immediately follows from Theorem 1.

Corollary 1 In Theorem 1, consider (θ1, . . . , θn) = (θ, . . . , θ). Suppose t f (t) is decreasing
in t > 0. Then, for r, λ ∈ E+

n (or D+
n ) and fixed σ > 0, we have F̄Un(r;λ)(x) ≤ F̄

( x−σ
θ

)
,

if θ ≥ n/
∑n

i=1
1
λi
.

Next, we present sufficient conditions, under which the usual stochastic order holds
between two MRVs. Note that the conditions are different from that of Theorem 1.

Theorem 2 Consider F̄Un(r;λ)(x) and F̄Vn(r;θ)(x) as in Theorem 1. Let t2 f (t) be increasing
in t > 0. Then, for r ∈ E+

n (or D+
n ) and λ ∈ D+

n (or E+
n ), and fixed σ > 0, we have

λ �w θ ⇒ Un(r;λ) ≥st Vn(r; θ).

Proof In order to establish the result, we need to show that F̄Un(r;λ)(x) = ∑n
i=1 ri F̄( x−σ

λi
)

is increasing and Schur-concave with respect to λ. The increasing property can be checked
easily. The Schur-concavity of F̄Un(r;λ)(x) can be shown using Lemmas 4 and 5. ��

Fig. 1 (a) Plots of the sfs of MRVsU3(r;λ) and V3(r; θ) as in Example 1 for σ = 0.1. The blue-colour graph
represents the sf of U3(r;λ) and the red colour graph represents the sf of V3(r; θ). (b) Plot of the difference
between the sfs of the MRVs U2(r;λ) and V2(s; θ) as in Example 7 for σ = 0.1 and β = 2
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Remark 2 There are various lifetime distributions such as inverted exponential with pdf

f (t) = λ
t2
e− λ

t , t > 0, λ > 0 and Burr type-III with pdf f (t) = 1
(t+1)2

, t > 0, which

satisfy the condition “t2 f (t) is increasing in t” as considered in Theorem 2.

In the following result, we provide sufficient condition based on reciprocally majorization
order for the existence of the usual stochastic order between two MRVs. Here, we have
considered that the baseline pdf f (t) is increasing with respect to t > 0. It is important
to mention that this condition is satisfied only by the distributions with bounded support.
Sometimes, the continuous models with finite support are useful in reliability theory to
describe lifetime data. This is often motivated by considering physical reasons such as the
finite lifetime of a component or the bounded signals occurring in industrial systems (for
details see Jiang 2013 and Dedecius and Ettler 2013). Besides this, when the reliability is
computed as percentage or ratio, it is important to have models defined on the unit interval
in order to have some reasonable results.

Theorem 3 Consider F̄Un(r;λ)(x) and F̄Vn(r;θ)(x) as in Theorem 1. Further, suppose f (t) is
increasing in t > 0. Then, for r ∈ D+

n (or E+
n ), λ ∈ E+

n (or D+
n ), and fixed σ > 0, we have

λ
rm
� θ ⇒ Un(r;λ) ≤st Vn(r; θ).

Proof Making use of Lemma 2, the proof of this theorem follows from Lemmas 4 and 5.
Hence, it is omitted. ��
Remark 3 We note that the condition “ f (t) is increasing in t > 0” is satisfied by the power

distribution ( f (t) = pt p−1, p > 1) and beta distribution ( f (t) = tν−1(1−t)ω−1

B(ν,ω)
, 0 < t <

1, ν > 1, ω < 1, B(ν, ω) is the complete beta function).

In Theorem 1, we have proposed sufficient conditions for the usual stochastic order
between two FMMs. In this sequel, it is a natural query “can we strengthen the usual stochas-
tic order to other stronger stochastic order?” The next result establishes that it is possible, but
under different sufficient conditions and different settings. Next, we investigate hazard rate
order between MRVs. Denote s = (s1, . . . , sn).

Theorem 4 Let F̄Un(r;λ)(x) = ∑n
i=1 ri F̄( x−σ

λi
) and F̄Vn(s;λ)(x) = ∑n

i=1 si F̄( x−σ
λi

) be the
sfs of two MRVs Un(r;λ) and Vn(s;λ), respectively. Suppose f (t) is increasing in t > 0.
Then, for r ∈ D+

n (or E+
n ), λ ∈ E+

n (or D+
n ), and for fixed σ > 0, we have

r
m
� s ⇒ Un(r;λ) ≥hr Vn(s;λ).

Proof Under the given setting, the hazard rate function of Un(r;λ) is given by

hUn(r;λ)(x) = ρ1(x; r,λ)

ρ2(x; r,λ)
, (8)

where ρ1(x; r,λ) =∑n
i=1 ri

1
λi

f ( x−σ
λi

) ≥ 0 and ρ2(x; r,λ) =∑n
i=1 ri F̄( x−σ

λi
) ≥ 0. To get

the desired result by using Definition 3, it suffices to show that hUn(r;λ)(x) is Schur-convex
with respect to r . Differentiating hUn(r;λ)(x) with respect to ri partially, we obtain as

∂hUn(r;λ)(x)

∂ri

sign= ρ2(x; r,λ)
1

λi
f

(
x − σ

λi

)
− ρ1(x; r,λ)F̄

(
x − σ

λi

)
. (9)
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Further, consider

�12 = ∂hUn(r;λ)(x)

∂ri
− ∂hUn(r;λ)(x)

∂r j

sign= ρ1(x; r,λ)τ1 + ρ2(x; r,λ)τ2, (10)

where τ1 = F( x−σ
λi

)− F( x−σ
λ j

) and τ2 = 1
λi

f ( x−σ
λi

)− 1
λ j

f ( x−σ
λ j

). Consider 1 ≤ i ≤ j ≤ n.

Let r ∈ D+
n (or E+

n ) and λ ∈ E+
n (or D+

n ). That is, ri ≥ (or ≤) r j and λi ≤ (or ≥) λ j . We
present the proof when ri ≥ r j and λi ≤ λ j , since the other case is quite similar. For λi ≤ λ j ,
we obtain 1

λi
≥ 1

λ j
and x−σ

λi
≥ x−σ

λ j
implies F( x−σ

λi
) ≥ F( x−σ

λ j
), that is, τ1 ≥ 0. Further,

f (t) is increasing with respect to t > 0, implies f ( x−σ
λi

) ≥ f ( x−σ
λ j

), that is, τ2 ≥ 0. Thus,

from Eq. 10, we see that �12 ≥ 0, giving that
∂hUn (r;λ)(x)

∂rk
is decreasing in k ∈ {1, . . . , n}.

Thus, from Lemma 4, hUn(r;λ)(x) is Schur-convex with respect to r ∈ D+
n . Thus, the proof

is finished. ��
The following counterexample describes that the result stated in Theorem 4 is not neces-

sarily true if r /∈ D+
3 (or /∈ E+

3 ), λ /∈ E+
3 (or /∈ D+

3 ) and r
m
� s.

Counterexample 1 Consider power distribution with pdf f (t) = 2t , 0 < t ≤ 1 and sf
F̄(t) = 1− t2, 0 < t ≤ 1 as the baseline distribution for the MMs of location-scale family of
distributions. The pdf f (t) is increasing with respect to t in its domain. Now, we assume that
r = (r1, r2, r3) = (0.2, 0.5, 0.3) /∈ D+

3 (or /∈ E+
3 ) and λ = (λ1, λ2, λ3) = (0.4, 0.5, 0.1) /∈

E+
3 (or /∈ D+

3 ). Further, take s = (s1, s2, s3) = (0.1, 0.6, 0.3) /∈ D+
3 (or /∈ E+

3 ) and σ = 0.1.

Clearly, we obtain r
m
� s. Writing K1(t) = hU3(r;λ)(t) − hV3(s;λ)(t), where hU3(r;λ)(t) and

hV3(s;λ)(t) are not presented here to maintain brevity. Now, if we choose t = 0.52, then the
function K1(t) gives the value−5.32907×10−15 (< 0), giving that hU3(r;λ)(t) < hV3(s;λ)(t).
Again, if we choose t = 0.55, then K1(t) gives the value 2.84217 × 10−14 (> 0), giving
that hU3(r;λ)(t) > hV3(s;λ)(t). Hence, it is easy to say that K1(t) changes in sign. Thus,
U3(r;λ) �hr V3(s;λ).

The following counterexample illustrates that the result in Theorem 4 does not hold if

r ∈ E+
3 , λ ∈ D+

3 and r
m�� s.

Counterexample 2 Considering the same distribution as in the above Counterexample 1, we
have f (t) is increasing with respect to t in its domain. Assume that r = (r1, r2, r3) =
(0.1, 0.2, 0.7) ∈ E+

3 and λ = (λ1, λ2, λ3) = (0.9, 0.8, 0.6) ∈ D+
3 . Furthermore, take

s = (s1, s2, s3) = (0.2, 0.2, 0.6) ∈ E+
3 and σ = 0.1. Clearly, we obtain r

m�� s. Also, let the
difference between two hazard rate functions of the MRVsU3(r;λ) and V3(s;λ) be K2(t) as
in the above Counterexample 1. If we take t = 0.903, then K2(0.903) = 2.66454×10−14 (>

0) and if we choose t = 0.990, then K2(0.990) = −2.50111× 10−12 (< 0), which together
imply that K2(t) changes in sign. Thus, U3(r;λ) �hr V3(s;λ).

One may rise a question whether the result stated in Theorem 4 could hold if “ f (t) is
decreasing with respect to t in its domain”? The answer is given in the following counterex-

ample whenever r /∈ D+
3 (or /∈ E+

3 ), λ /∈ E+
3 (or /∈ D+

3 ) and r
m
� s.

Counterexample 3 Consider Pareto distribution with pdf f (t) = t−2, 1 ≤ t < ∞ and
sf F̄(t) = t−1, 1 ≤ t < ∞ as the baseline distribution. Here, f (t) is decreasing with
respect to t in t ≥ 1. Assume that r = (r1, r2, r3) = (0.2, 0.5, 0.3) /∈ D+

3 (or /∈ E+
3 )
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and λ = (λ1, λ2, λ3) = (0.6, 0.2, 0.3) /∈ E+
3 (or /∈ D+

3 ). Further, take s = (s1, s2, s3) =
(0.1, 0.6, 0.3) /∈ D+

3 (or /∈ E+
3 ) and σ = 0.1. It is clear that r

m
� s. Writing K3(t) =

hU3(r;λ)(t)−hV3(s;λ)(t). Now, if we choose t = 0.80, then the function K3(t) gives the value
2.22045 × 10−16 (> 0), giving that hU3(r;λ)(t) > hV3(s;λ)(t). Again, if we take t = 0.77,
then K3(t) gives −2.22045 × 10−16 (< 0), giving that hU3(r;λ)(t) < hV3(s;λ)(t). Hence, it
is easy to conclude that K3(t) changes in sign. Thus, U3(r;λ) �hr V3(s;λ).

Below, we propose different sufficient conditions under which the hazard rate order
between two MRVs holds.

Theorem 5 Let F̄Un(r;λ)(x) = ∑n
i=1 ri F̄( x−σ

λi
) and F̄Vn(s;λ)(x) = ∑n

i=1 si F̄( x−σ
λi

) be the

sfs of twoMRVsUn(r;λ) and Vn(s;λ), respectively. Suppose h(t) = f (t)/F̄(t) is increasing
in t > 0. Then, for λ ∈ D+

n (E+
n ), and for fixed σ > 0, we have

Un(r;λ) ≤hr (≥hr ) Vn(s;λ).

Proof In order to obtain the required result, it suffices to show that
F̄Vn (s;λ)(x)
F̄Un (r;λ)(x)

is increasing

(decreasing) in x > 0, where

F̄Vn(s;λ)(x)

F̄Un(r;λ)(x)
=
∑n

i=1 si F̄( x−σ
λi

)
∑n

j=1 r j F̄( x−σ
λ j

)
= ξ(x), (say). (11)

Now, differentiating ξ(x) in Eq. 11 with respect to x , and after some simplifications, we
obtain

ξ ′(x) sign=
n∑

i=1

n∑

j=1

si r j
λ j

F̄

(
x − σ

λi

)
f

(
x − σ

λ j

)
−

n∑

j=1

n∑

i=1

r j si
λi

F̄

(
x − σ

λ j

)
f

(
x − σ

λi

)

sign=
n∑

i=1

n∑

j=1

si r j F̄

(
x − σ

λi

)
F̄

(
x − σ

λ j

)[
1

λ j
h

(
x − σ

λ j

)
− 1

λi
h

(
x − σ

λi

)]
. (12)

Consider 1 ≤ i ≤ j ≤ n. Let λ ∈ D+
n (E+

n ). That is, λi ≥ (≤) λ j . Then, clearly, we
obtain 1

λi
≤ (≥) 1

λ j
and x−σ

λi
≤ (≥) x−σ

λ j
. Under the assumption made, we have

h

(
x − σ

λi

)
≤ (≥) h

(
x − σ

λ j

)
. (13)

Thus, from Eq. 12, we obtain ξ ′(x) ≥ (≤) 0, which implies that ξ(x) is increasing
(decreasing) with respect to x > 0. Hence the result follows. ��
Remark 4 There are many lifetime distributions which have increasing hazard rate function.
For example, the Weibull distribution with pdf f (t) = ktk−1e−tk , 0 < t < ∞, k > 1 has
increasing hazard rate.

Next,weprove reversedhazard rate order between twoMRVs.Here, the locationparameter
vectors are considered to be common, mixing proportions are different and scale parameters
are fixed.

Theorem 6 Let Un(r; σ ) and Vn(s; σ ) be two MRVs with respective mixing proportion
vectors r and s, constructed from the set of nonnegative RVs {X1, . . . , Xn}, where Xi ∼

F
( x−σi

λ

)
, i = 1, . . . , n. Further, let f (t) be decreasing with respect to t > 0. Then, for fixed

λ > 0, if

123



   52 Page 12 of 33 Methodology and Computing in Applied Probability            (2024) 26:52 

(i) r ∈ D+
n and σ ∈ D+

n , then r
m
� s ⇒ Un(r; σ ) ≤rh Vn(s; σ );

(ii) r ∈ E+
n and σ ∈ D+

n , then r
m
� s ⇒ Un(r; σ ) ≥rh Vn(s; σ ).

Proof Here, we present the proof of the first part. The proof of the second part can be
established using similar arguments. The reversed hazard rate function of the MRVUn(r; σ )

is given by

h̃Un(r;σ )(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn
1
λ
f
( x−σn

λ

)

rn F
( x−σn

λ

) ; if σn < x ≤ σn−1

rn
1
λ
f
( x−σn

λ

)+rn−1
1
λ
f
(
x−σn−1

λ

)

rn F
( x−σn

λ

)+rn−1F
(
x−σn−1

λ

) ; if σn−1 < x ≤ σn−2

...
...

rn
1
λ
f
( x−σn

λ

)+...+r2
1
λ
f
(
x−σ2

λ

)

rn F
( x−σn

λ

)+...+r2F
(
x−σ2

λ

) ; if σ2 < x ≤ σ1

rn
1
λ
f
( x−σn

λ

)+...+r1
1
λ
f
(
x−σ1

λ

)

rn F
( x−σn

λ

)+...+r1F
(
x−σ1

λ

) ; if σ1 < x < ∞.

(14)

To prove the desired result in Part (i) of the theorem by using Definition 3, it is sufficient
to show that h̃Un(r;σ )(x) given in Eq. 14 is Schur-concave with respect to r . Consider σ1 <

x < ∞. Differentiating h̃Un(r;σ )(x) with respect to ri partially, we obtain

∂ h̃Un(r;σ )(x)

∂ri

sign= ξ2(x; r, σ ) f

(
x − σi

λ

)
− ξ1(x; r, σ )F

(
x − σi

λ

)
, (15)

where ξ1(x; r, σ ) = ∑n
i=1 ri f

( x−σi
λ

) ≥ 0 and ξ2(x; r, σ ) = ∑n
i=1 ri F

( x−σi
λ

) ≥ 0. Fur-
ther, let us take

�13 = ∂ h̃Un(r;σ )(x)

∂ri
− ∂ h̃Un(r;σ )(x)

∂r j
sign= ξ1(x; r, σ )ζ1 + ξ2(x; r, σ )ζ2, (16)

where ζ1 = F
(
x−σ j

λ

)
−F

( x−σi
λ

)
and ζ2 = f

( x−σi
λ

)− f
(
x−σ j

λ

)
. Consider 1 ≤ i ≤ j ≤ n.

Without loss of generality, let r ∈ D+
n and σ ∈ D+

n , that is, ri ≥ r j and σi ≥ σ j . Now, from

σi ≥ σ j , we get
x−σi

λ
≤ x−σ j

λ
. Then, we obtain

F

(
x − σi

λ

)
≤ F

(
x − σ j

λ

)
, (17)

that is, ζ1 ≥ 0. Under the assumption made, it holds that

f

(
x − σi

λ

)
≥ f

(
x − σ j

λ

)
, (18)
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that is, ζ2 ≥ 0. Thus, for 1 ≤ i ≤ j ≤ n, r ∈ D+
n and σ ∈ D+

n , we have �13 ≥ 0, giving that
∂ h̃Un (r;σ )(x)

∂rk
is decreasing in k ∈ {1, . . . , n}. Hence, by using Part (i) of Lemma 6with the help

of Remark 1, h̃Un(r;σ )(x) is Schur-concave with respect to r ∈ D+
n . Using similar arguments,

it can be established that h̃Un(r;σ )(x) is also Schur-concave with respect to r ∈ D+
n when

x belongs to the other subintervals, say σ2 < x ≤ σ1, σ3 < x ≤ σ2, . . . , σn−1 < x ≤
σn−2, σn < x ≤ σn−1. Thus, the theorem is proved. ��
Remark 5 Part (i) and Part (i i) of Theorem 6 also hold if r ∈ D+

n , σ ∈ E+
n and r ∈ E+

n ,
σ ∈ E+

n .

The following example provides an illustration of the result stated in Theorem 6.

Example 2 Consider Pareto distribution with cd f F(t) = 1 − t−1, 1 ≤ t < ∞ and pd f
f (t) = t−2, 1 ≤ t < ∞ as the baseline distribution for the MMs of location-scale family
of distributions. The pdf is decreasing with respect to t in its domain. Now, we assume that
r = (r1, r2, r3) = (0.2, 0.3, 0.5) ∈ E+

3 and s = (s1, s2, s3) = (0.1, 0.3, 0.6) ∈ E+
3 . Further,

take σ = (σ1, σ2, σ3) = (0.4, 0.2, 0.1) ∈ D+
3 and λ = 2. Clearly, r

m
� s. For the clear

visualization of the graphs of reversed hazard rate functions of U3(r; σ ) and V3(s; σ ), we
have plotted them in three different subintervals, say (2.1, 2.2), (2.2, 2.4), and (2.4,∞) in
Fig. 2, which readily suggest that U3(r; σ ) ≥rh V3(s; σ ). For the third graph, we consider
q(y) = y

1−y ,
12
17 < y < 1 to capture the line from 2.4 to ∞.

The following counterexample shows that the result in Theorem 6 does not hold if r /∈ D+
3 ,

σ /∈ D+
3 , and r

m
� s.

Counterexample 4 Consider Pareto distribution with pdf f (t) = 2t−3, 1 ≤ t < ∞ and cdf
F(t) = 1 − 1/t2, 1 ≤ t < ∞ as the baseline distribution. Here, f (t) is decreasing with
respect to t in its domain. Assume that r = (r1, r2, r3) = (0.2, 0.6, 0.2) /∈ D+

3 and σ =
(σ1, σ2, σ3) = (0.4, 0.6, 0.3) /∈ D+

3 . Further, take s = (s1, s2, s3) = (0.1, 0.2, 0.7) ∈ E+
3

and λ = 2. It is then easy to check that r
m
� s. Writing k4(t) = h̃U3(r;σ )(t) − h̃V3(s;σ )(t).

Now, if we take t = 5, then the function K4(t) gives the value 0.0028828 (> 0), giving that
h̃U3(r;σ )(t) > h̃V3(s;σ )(t). Again, if we take t = 50, then K4(t) gives the value −3.44858 ×
10−6 (< 0), giving that h̃U3(r;σ )(t) < h̃V3(s;σ )(t). Thus, K4(t) changes in sign. Hence,
U3(r; σ ) �rh V3(s; σ ).

One question may arise whether the result in Theorem 6 holds if r ∈ E+
3 , σ ∈ D+

3 , and

r
m�� s? The following counterexample gives an answer.

Fig. 2 Plots of the reversedhazard rate functions ofU3(r; σ ) andV3(s; σ ) inExample 2,when (a) t ∈ (2.1, 2.2)
(b) t ∈ (2.2, 2.4), and (c) y ∈ ( 1217 , 1). The red colour graph is for the reversed hazard rate of V3(s; σ ) and
the blue-colour graph is for the reversed hazard rate of U3(r; σ )
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Counterexample 5 Considering the same distribution as in the above Counterexample 4,
we have f (t) is decreasing with respect to t ≥ 1. Assume that r = (r1, r2, r3) =
(0.1, 0.3, 0.6) ∈ E+

3 and σ = (σ1, σ2, σ3) = (0.6, 0.4, 0.2) ∈ D+
3 . Further, take

s = (s1, s2, s3) = (0.2, 0.3, 0.5) ∈ E+
3 and λ = 2. It is clear that r

m�� s. Also, let the
difference between two reversed hazard rate functions of the MRVs U3(r; σ ) and V3(s; σ )

be K5(t) as in the above Counterexample 4, which is not presented here for brevity. If we
choose t = 2.2003, then K5(2.2003) = −9.09495 × 10−13 (< 0) and choose t = 2.2083,
then K5(2.2083) = 1.42109× 10−14 (> 0). Thus, we have seen that K5(t) changes in sign.
Hence, we conclude that U3(r; σ ) �rh V3(s; σ ).

Remark 6 Onemay find various other distributions, for which the pdf f (t) is decreasing with
respect to t > 0. For example,

(i) Power distribution: Consider the power distribution with pd f f (t) = ata−1, 0 < t < 1
and 0 < a < 1. After differentiating f (t), we get f ′(t) = a(a − 1)ta−2 < 0, for all
0 < t < 1 and 0 < a < 1, which implies that f (t) is decreasing with respect to t > 0.

(ii) Exponential distribution: Assume the exponential distribution with pd f f (t) = λe−λt ,
0 < t < ∞ and λ > 0. On differentiating f (t), we obtain f ′(t) = −λ2e−λt < 0, for
all 0 < t < ∞ and λ > 0. This clearly implies that f (t) is decreasing in t > 0.

Next, we present sufficient conditions for the likelihood ratio ordering between twoMRVs.

Theorem 7 Let Un(r; σ ) and Vn(r;μ) be two MRVs with a common mixing proportion
vector r , constructed from two sets of nonnegative RVs {Xσ1 , . . . , Xσn } and {Xμ1 , . . . , Xμn },
respectively, such that Xσi ∼ F

( x−σi
λ

)
and Xμi ∼ F

( x−μi
λ

)
, for i = 1, . . . , n. Further, let

f (t) be log-concave (log-convex) with respect to t > 0. Then, for σ ,μ ∈ D+
n and for fixed

λ > 0, we have

Un(r; σ ) ≥lr (≤lr ) Vn(r;μ),

provided that max{μ1, . . . , μn} ≤ min{σ1, . . . , σn}.

Proof We prove the result when f (t) is log-concave with respect to t > 0. The proof when
f (t) is log-convex is similar, and thus is not presented here. The pdfs of the MRVsUn(r; σ )

and Vn(r;μ) are respectively given by

fUn(r;σ )(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1(x) = rn
1
λ
f
( x−σn

λ

) ; if σn < x ≤ σn−1

l2(x)=rn
1
λ
f
( x−σn

λ

)+ rn−1
1
λ
f
(
x−σn−1

λ

)
; if σn−1 < x ≤ σn−2

...
...

ln−1(x) = rn
1
λ
f
( x−σn

λ

)+ . . . + r2
1
λ
f
( x−σ2

λ

) ; if σ2 < x ≤ σ1

ln(x) = rn
1
λ
f
( x−σn

λ

)+ . . . + r1
1
λ
f
( x−σ1

λ

) ; if σ1 < x < ∞

(19)
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and

fVn(r;μ)(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∗1 (x) = rn
1
λ
f
( x−μn

λ

) ; if μn < x ≤ μn−1

l∗2 (x) = rn
1
λ
f
( x−μn

λ

)+ rn−1
1
λ
f
(
x−μn−1

λ

)
; if μn−1 < x ≤ μn−2

...
...

l∗n−1(x) = rn
1
λ
f
( x−μn

λ

)+ . . . + r2
1
λ
f
( x−μ2

λ

) ; if μ2 < x ≤ μ1

l∗n (x) = rn
1
λ
f
( x−μn

λ

)+ . . . + r1
1
λ
f
( x−μ1

λ

) ; if μ1 < x < ∞.

(20)

In order to obtain the required result, it suffices to show that fUn(r;σ )(x)/ fVn(r;μ)(x)
is increasing in x ∈ (σn,∞) ∪ (μn,∞) = (μn,∞), since max{μ1, . . . , μn} ≤
min{σ1, . . . , σn}, where fUn(r;σ )(x) and fVn(r;μ)(x) are given in Eqs. 19 and 20, respec-
tively. First we have to establish that

ln(x)

l∗n (x)
=

n∑
i=1

ri f
( x−σi

λ

)

n∑
i=1

ri f
( x−μi

λ

) = χ1(x), (say), (21)

is increasing with respect to x ∈ (σ1,∞). For this, differentiating χ1(x) with respect to x ,
we obtain

χ ′
1(x)

sign=
⎡

⎣
n∑

i=1

ri f

(
x − μi

λ

)⎤

⎦

⎡

⎣
n∑

i=1

ri f
′
(
x − σi

λ

)⎤

⎦−
⎡

⎣
n∑

i=1

ri f

(
x − σi

λ

)⎤

⎦

⎡

⎣
n∑

i=1

ri f
′
(
x − μi

λ

)⎤

⎦

=
n∑

i=1

n∑

j=1

ri r j f

(
x − μi

λ

)
f ′
(
x − σ j

λ

)
−

n∑

i=1

n∑

j=1

ri r j f

(
x − σi

λ

)
f ′
(
x − μ j

λ

)

=
n∑

i=1

n∑

j=1

ri r j

[
f

(
x − μi

λ

)
f ′
(
x − σ j

λ

)
− f

(
x − σ j

λ

)
f ′
(
x − μi

λ

)]

=
n∑

i=1

n∑

j=1

ri r j f

(
x − μi

λ

)
f

(
x − σ j

λ

)⎡

⎣
f ′ ( x−σ j

λ

)

f
( x−σ j

λ

) −
f ′ ( x−μi

λ

)

f
(
x−μi

λ

)

⎤

⎦ . (22)

Under the assumption made, max{μ1, . . . , μn} ≤ min{σ1, . . . , σn} implies that μi ≤ σ j ,
i, j = 1, . . . , n. After some calculations and using the log-concavity property of f (t), it
can be established that

x − μi

λ
≥ x − σ j

λ
⇒ f ′( x−μi

λ
)

f ( x−μi
λ

)
≤ f ′( x−σ j

λ
)

f (
x−σ j

λ
)
. (23)
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Using the inequality given by Eq. 23 in Eq. 22, we obtain χ ′
1(x) ≥ 0, which implies that

χ1(x) is increasing with respect to x ∈ (σ1,∞). Further, we have to establish that

ln−1(x)

l∗n−1(x)
=

n∑
i=2

ri f
( x−σi

λ

)

n∑
i=2

ri f
( x−μi

λ

) = χ2(x), (say), (24)

is increasing with respect to x in (σ2, σ1]. Now, differentiating χ2(x) with respect to x and
after some calculations, we obtain

χ ′
2(x)

sign=
n∑

i=2

n∑

j=2

ri r j f

(
x − μi

λ

)
f

(
x − σ j

λ

)⎡

⎣
f ′
(
x−σ j

λ

)

f
(
x−σ j

λ

) − f ′ ( x−μi
λ

)

f
( x−μi

λ

)

⎤

⎦ . (25)

Under the assumption made, max{μ2, . . . , μn} ≤ min{σ2, . . . , σn} implies that μi ≤ σ j ,
i, j = 2, . . . , n. After some calculations and using the log-concavity property of f (t), it
can be established that

x − μi

λ
≥ x − σ j

λ
⇒ f ′( x−μi

λ
)

f ( x−μi
λ

)
≤ f ′( x−σ j

λ
)

f (
x−σ j

λ
)
. (26)

Substituting Eq. 26 in Eq. 25, we get χ ′
2(x) ≥ 0, implying that χ2(x) is increasing

with respect to x ∈ (σ2, σ1]. Using similar arguments, it can be established that χ3(x) =
ln−2(x)/l∗n−2(x), . . . , χn−1(x) = l2(x)/l∗2 (x), χn(x) = l1(x)/l∗1 (x) are also increasing with
respect to x belongs to the other subintervals, say (σ3, σ2], . . . , (σn−1, σn−2], (σn, σn−1],
respectively. Also, 0/l∗n (x), . . . , 0/l∗2 (x), 0/l∗1 (x) are increasing with respect to x belongs to
the another subintervals, say (μ1, σn], . . . , (μn−1, μn−2], (μn, μn−1], respectively. Hence,
the theorem is proved. ��
Remark 7 If we consider σ ∈ E+

n and μ ∈ E+
n instead of σ ∈ D+

n and μ ∈ D+
n , then the

established result in Theorem 7 also holds.

Consider Weibull distribution with pdf

f (t) = ctc−1e−tc , t > 0, c > 0. (27)

Taking logarithm both sides of Eq. 27 and differentiating twicewith respect to t , we obtain

(ln f (t))′′ = −(c − 1)
1

t2
(
1 + ctc

) =
{≥ 0, if 0 < c ≤ 1

< 0, if c > 1.
(28)

Thus, clearly the pdf ofWeibull distribution is log-convexwhen c ∈ (0, 1] and log-concave
when c ∈ (1,∞). To illustrate the result in Theorem 7, we consider the following example.

Example 3

(i) Consider Weibull distribution with pd f f (t) = 2te−t2 , 0 < t < ∞ as the base-
line distribution. Here, f (t) is log-concave with respect to t > 0. Assume that
σ = (σ1, σ2, σ3) = (22, 18, 16) ∈ D+

3 and μ = (μ1, μ2, μ3) = (12, 8, 2) ∈ D+
3 .

Further, take r = (r1, r2, r3) = (0.1, 0.7, 0.2) and λ = 2. Clearly, all the assumptions
of Theorem 7 are satisfied. Now, the ratio of pdfs of the MRVs U3(r; σ ) and V3(r;μ)

is plotted in Fig. 3(a), from which we have U3(r; σ ) ≥lr V3(r;μ). Here, we have
considered q(y) = y

1−y , 0 < y < 1 to capture the whole positive real axis.
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Fig. 3 (a) Graph of the ratio of pdfs ofU3(r; σ ) and V3(r;μ) as in Example 3(i). (b) Plot of the ratio of pdfs
of U3(r; σ ) and V3(r;μ) as in Example 3(i i)

(ii) We take Weibull distribution with pdf f (t) = 1
2 t

−1/2e−t1/2 , 0 < t < ∞ as the baseline
distribution, which is log-convex with respect to t > 0. Considering the same numerical
values of the parameters as in the previous case, the ratio of pdfs of U3(r; σ ) and
V3(r;μ) is plotted in Fig. 3(b), which assures U3(r; σ ) ≤lr V3(r;μ). Similar to the
previous case, here, we consider q(y) = y

1−y , 0 < y < 1 to capture the whole positive
real axis.

The following counterexample shows that the result in Theorem 7 may not be true for the
likelihood ratio order if the sufficient condition is not satisfied.

Counterexample 6 Consider log-normal distribution as the baseline distribution with pdf
f (t) = 1

t
√
2π

e−(ln t)2/2, t > 0. It can be easily seen that f (t) is neither log-concave nor log-

convex on its entire domain. Assume r = (r1, r2, r3) = (0.2, 0.7, 0.1), σ = (σ1, σ2, σ3) =
(4.8, 7.3, 10.2) ∈ E+

3 , μ = (μ1, μ2, μ3) = (1.2, 2.5, 3.9) ∈ E+
3 , and λ = 12. Clearly,

max{μ1, μ2, μ3} ≤ min{σ1, σ2, σ3}. The ratio of pdfs of the MRVs U3(r; σ ) and V3(r;μ),
denoted as fU3(r;σ )(x)/ fV3(r;μ)(x), is plotted in Fig. 6(b). It can be seen that the ratio function
is nonmonotone in t > 0, which means that U3(r; σ ) �lr V3(r;μ) and U3(r; σ ) �lr

V3(r;μ).

It is worth pointing that there are various other distributions, for which the pdfs satisfy
log-convexity or log-concavity properties. In the following remark, we consider three such
distributions.

Remark 8 (i) Pareto distribution: Consider Pareto distribution with pdf f (t) = βt−β−1,
1 ≤ t < ∞, β > 0. After some calculations, we get (ln f (t))′ = −β+1

t and

(ln f (t))′′ = β+1
t2

> 0, for all 1 ≤ t < ∞ and β > 0, which implies that the
density function f (t) is log-convex with respect to t ∈ [1,∞).

(ii) Power distribution: Take power distribution with pdf f (t) = ctc−1, 0 < t ≤ 1, 0 <

c < 1. Some calculations lead to (ln f (t))′ = c−1
t and (ln f (t))′′ = − c−1

t2
> 0, for all

0 < c < 1. This observation proves that f (t) is log-convex with respect to t ∈ (0, 1].
(iii) Gamma distribution: Assume gamma distribution with pdf f (t) = 1

�(d)
td−1e−t , t >

0, d > 0, where �(d) is an Eular gamma function. After differentiating ln f (t) with
respect to t twice, we get (ln f (t))′′ = 1−d

t2
, which is ≥ 0 when d ∈ (0, 1] and < 0

when d ∈ (1,∞). Thus, the density function f (t) is log-convex and log-concave with
respect to t , when d ∈ (0, 1] and d ∈ (1,∞), respectively.
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3.2 Heterogeneity in Two Parameters

In the previous subsection, we have proposed sufficient conditions for comparing MRVs
in various stochastic senses when there is heterogeneity in one model parameter. Here, we
assume that heterogeneity exists in two model parameters. The next result shows that usual
stochastic order between two MRVs Un(r;λ) and Vn(s; θ) holds when mixing proportions
ri , si and scale parameters λi , θi are varying.

Theorem 8 Let F̄Un(r;λ)(x) = ∑n
i=1 ri [1 − F( x−σ

λi
)] and F̄Vn(s;θ)(x) = ∑n

i=1 si [1 −
F( x−σ

θi
)] be the sfs of twoMRVsUn(r;λ) and Vn(s; θ), respectively. Further, suppose t2 f (t)

is increasing in t > 0. Then, for r �w s, λ �w θ , r, s ∈ E+
n , λ, θ ∈ D+

n and for fixed σ > 0,
we have

Un(r;λ) ≥st Vn(s; θ).

Proof To prove the result, we consider a MRV Wn(s;λ) with sf

F̄Wn(s;λ)(x) =
n∑

i=1

si

[
1 − F

(
x − σ

λi

)]
,

where F(.) is the cdf of the baseline distribution. Now, our aim is to show that

F̄Un(r;λ)(x) ≥ F̄Wn(s;λ)(x) ≥ F̄Vn(s;θ)(x). (29)

To establish the first inequality in Eq. 29, we differentiate F̄Un(r;λ)(x) with respect to ri
and obtain as

∂ F̄Un(r;λ)(x)

∂ri
= 1 − F

(
x − σ

λi

)
≥ 0, (30)

implies F̄Un(r;λ)(x) is increasing with respect to ri , i = 1, . . . , n. Further, consider

∇11 = ∂ F̄Un(r;λ)(x)

∂ri
− ∂ F̄Un(r;λ)(x)

∂r j

= F

(
x − σ

λ j

)
− F

(
x − σ

λi

)
. (31)

Under the assumptions made, we have r ∈ E+
n and λ ∈ D+

n . That is, ri ≤ r j and λi ≥ λ j

for 1 ≤ i ≤ j ≤ n. Then, clearly

F

(
x − σ

λ j

)
≥ F

(
x − σ

λi

)
. (32)

Thus, for 1 ≤ i ≤ j ≤ n, r ∈ E+
n and λ ∈ D+

n , using Eq. 32 in Eq. 31, we obtain∇11 ≥ 0,

giving that
∂ F̄Un (r;λ)(x)

∂rk
is decreasing in k ∈ {1, . . . , n}. Hence, by using Part (i i) of Lemma 6

with the help of Remark 1, F̄Un(r;λ)(x) is Schur-concave with respect to r ∈ E+
n . Hence,

r �w s ⇒ F̄Un(r;λ)(x) ≥ F̄Wn(s;λ)(x). (33)

Furthermore, to show the second inequality in Eq. 29, let us differentiate F̄Wn(s;λ)(x)with
respect to λi and obtain

∂ F̄Wn(s;λ)(x)

∂λi
= (x − σ)

1

λ2i
si f

(
x − σ

λi

)
≥ 0. (34)
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Thus, F̄Wn(s;λ)(x) is increasing with respect to λi , i = 1, . . . , n. Now, let

∇12 = ∂ F̄Wn(s;λ)(x)

∂λi
− ∂ F̄Wn(s;λ)(x)

∂λ j

sign= si

(
x − σ

λi

)2

f

(
x − σ

λi

)
− s j

(
x − σ

λ j

)2

f

(
x − σ

λ j

)
. (35)

For 1 ≤ i ≤ j ≤ n, consider s ∈ E+
n and λ ∈ D+

n , i.e., si ≤ s j and λi ≥ λ j . Then, clearly
x−σ
λi

≤ x−σ
λ j

, and since t2 f (t) is increasing in t > 0, we have

(
x − σ

λi

)2
f

(
x − σ

λi

)
≤
(
x − σ

λ j

)2

f

(
x − σ

λ j

)
. (36)

Substituting Eq. 36 in Eq. 35 with si ≤ s j , we have ∇12 ≤ 0, giving that
∂ F̄Wn (s;λ)(x)

∂λk
is

increasing in k ∈ {1, . . . , n}. Thus, by using Part (i) of Lemma 6 with the help of Remark 1,
F̄Wn(s;λ)(x) is Schur-concave with respect to λ ∈ D+

n . As a result,

λ �w θ ⇒ F̄Wn(s;λ)(x) ≥ F̄Vn(s;θ)(x). (37)

Thus, the desired result follows after combining Eqs. 33 and 37. The proof is completed.
��

Remark 9 If we consider r ∈ D+
n and λ ∈ E+

n instead of r ∈ E+
n and λ ∈ D+

n , then the
established result in Theorem 8 also holds.

The following example provides an illustration of the result stated in Theorem 8.

Example 4 Consider inverted exponential distribution with cdf F(t) = e−β/t , t > 0, β > 0
and pdf f (t) = β

t2
e−β/t , t > 0, β > 0 as the baseline distribution. Here, the function

t2 f (t) is increasing with respect to t in its domain. Now, we assume that r = (r1, r2, r3) =
(0.2, 0.3, 0.5) ∈ E+

3 , s = (s1, s2, s3) = (0.1, 0.3, 0.6) ∈ E+
3 , λ = (λ1, λ2, λ3) =

(10.2, 8.3, 5.2) ∈ D+
3 , and θ = (θ1, θ2, θ3) = (12.5, 9.8, 4.3) ∈ D+

3 . Further, take σ = 0.1.
Clearly, r �w s and λ �w θ . Now, the difference between the sfs ofU3(r;λ) and V3(s; θ) is
plotted (forβ = 2) inFig. 4(a), fromwhichwe can readily observe thatU3(r;λ) ≥st V3(s; θ),
which confirms the result in Theorem 8. Here, we take q(y) = y

1−y , 0 < y < 1 to capture
the whole positive real axis.

In the previous theorem, we have considered different scale parameters and mixing pro-
portions. In the following result, we deal with themodels having different location parameters
and mixing proportions.

Theorem 9 Let Un(r; σ ) and Vn(s;μ) be twoMRVs with different mixing proportion vectors
r and s, constructed from two sets of nonnegative RVs {Xσ1 , . . . , Xσn } and {Xμ1 , . . . , Xμn },
respectively, such that Xσi ∼ F

( x−σi
λ

)
and Xμi ∼ F

( x−μi
λ

)
, for i = 1, . . . , n. Further, let

t f (t) be decreasing in t > 0. Then, for r
m
� s, σ �w μ, r, σ ∈ E+

n and for fixed λ > 0, we
have

Un(r; σ ) ≤st Vn(s;μ),

provided that max{σ1, . . . , σn} ≤ min{μ1, . . . , μn}.
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Fig. 4 (a) Graphs of the sfs of U3(r;λ) (in blue colour) and V3(s; θ) (in red colour) as in Example 4. (b)
Graph of the difference between the hazard rate functions of U3(r; σ ) and V3(s; μ) as in Example 5

Proof We consider a MRV, denoted by Wn(s; σ ) with sf given by

F̄Wn(s;σ )(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − sn F
( x−σn

λ

) ; if σn < x ≤ σn−1

1 −
[
sn F

( x−σn
λ

)+ sn−1F
(
x−σn−1

λ

)]
; if σn−1 < x ≤ σn−2

...
...

1 − [sn F
( x−σn

λ

)+ . . . + s2F
( x−σ2

λ

)] ; if σ2 < x ≤ σ1

1 − [sn F
( x−σn

λ

)+ . . . + s1F
( x−σ1

λ

)] ; if σ1 < x < ∞.

(38)

Thus, to prove the result, it suffices to show that

F̄Un(r;σ )(x) ≤ F̄Wn(s;σ )(x) ≤ F̄Vn(s;μ)(x). (39)

To prove the first inequality in Eq. 39 by using Definition 3, our goal is to show that
F̄Un(r;σ )(x) is Schur-convex with respect to r ∈ E+

n . Consider σ1 < x < ∞. The derivative
of F̄Un(r;σ )(x) with respect to ri , i = 1, . . . , n is given by

∂ F̄Un(r;σ )(x)

∂ri
= −F

(
x − σi

λ

)
. (40)

Now, to show F̄Un(r;σ )(x) is Schur-convex with respect to r , it is enough to prove that,
for 1 ≤ i ≤ j ≤ n

∇13 = ∂ F̄Un(r;σ )(x)

∂ri
− ∂ F̄Un(r;σ )(x)

∂r j

= F

(
x − σ j

λ

)
− F

(
x − σi

λ

)
≤ 0, (41)

which holds since r ∈ E+
n and σ ∈ E+

n i.e., ri ≤ r j and σi ≤ σ j , and F(.) is nondecreasing.

Thus, for 1 ≤ i ≤ j ≤ n, r ∈ E+
n and σ ∈ E+

n , we obtain ∇13 ≤ 0, giving that
∂ F̄Un (r;σ )(x)

∂rk
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is increasing in k ∈ {1, . . . , n}. Thus, from Part (i i) of Lemma 6 with the help of Remark 1,
F̄Un(r;σ )(x) is Schur-convex with respect to r ∈ E+

n . Using similar arguments, it can be
established that F̄Un(r;σ )(x) is also Schur-convex with respect to r ∈ E+

n , where x belongs
to the other subintervals, say σ2 < x ≤ σ1, . . . , σn−1 < x ≤ σn−2 and σn < x ≤ σn−1.
Furthermore, similar to the first inequality, to establish F̄Wn(s;σ )(x) ≤ F̄Vn(s;μ)(x) by using
Lemma 1, it is required to show that F̄Wn(s;σ )(x) is increasing and Schur-convex with respect
to σ , whenever x ∈ (σn,∞) ∪ (μn,∞) i.e., x ∈ (σn,∞) (according to the given condition
max{σ1, . . . , σn} ≤ min{μ1, . . . , μn}). Consider σ1 < x < ∞. In doing so, the first order
derivative of F̄Wn(s;σ )(x) with respect to σi , for i = 1, . . . , n is given by

∂ F̄Wn(s;σ )(x)

∂σi
= 1

λ
si f

(
x − σi

λ

)
≥ 0. (42)

Again, consider

∇14 = ∂ F̄Wn (s;σ )(x)

∂σi
− ∂ F̄Wn (s;σ )(x)

∂σ j

=
(

si
x − σi

)(
x − σi

λ

)
f

(
x − σi

λ

)
−
(

s j
x − σ j

)(
x − σ j

λ

)
f

(
x − σ j

λ

)
≤ 0, (43)

since s ∈ E+
n and σ ∈ E+

n i.e., si ≤ s j and σi ≤ σ j , and t f (t) is decreasing in t . Thus,

for 1 ≤ i ≤ j ≤ n, s ∈ E+
n and σ ∈ E+

n , we obtain ∇14 ≤ 0, giving that
∂ F̄Wn (s;σ )(x)

∂σk
is

increasing in k ∈ {1, . . . , n}. Thus, from Part (i i) of Lemma 6 with the help of Remark 1,
F̄Wn(s;σ )(x) is Schur-convex with respect to σ ∈ E+

n . Using similar arguments, it can be
established that F̄Wn(s;σ )(x) is also Schur-convex with respect to σ ∈ E+

n , where x belongs
to the other subintervals, say σ2 < x ≤ σ1, . . . , σn−1 < x ≤ σn−2 and σn < x ≤ σn−1. This
completes the proof of the theorem. ��

Remark 10 If we consider r, σ ∈ D+
n instead of r, σ ∈ E+

n , then the established result in
Theorem 9 also holds.

The preceding theorem provides sufficient conditions for the usual stochastic order
between twoMRVs, when location parameters and mixing proportions are different. Thus, it
is natural to ask the question “is it possible to extend the usual stochastic order to a stronger
stochastic order, say hazard rate order?” The following theorem answers this in affirmative
way with different sufficient conditions.

Theorem 10 LetUn(r; σ )and Vn(s;μ)be twoMRVswith differentmixingproportion vectors
r and s, constructed from two sets of nonnegative RVs {Xσ1 , . . . , Xσn } and {Xμ1 , . . . , Xμn },
respectively, such that Xσi ∼ F

( x−σi
λ

)
and Xμi ∼ F

( x−μi
λ

)
, for i = 1, . . . , n. Further, let

f (t) be increasing in t > 0 and h̃(t) be decreasing with respect to t > 0. Then, for r
m
� s,

r ∈ D+
n , σ , μ ∈ D+

n and for fixed λ > 0, we have

Un(r; σ ) ≥hr Vn(s;μ),

provided that max{μ1, . . . , μn} ≤ min{σ1, . . . , σn}.
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Proof The hazard rate function of the MRV Un(r; σ ) is given by

hUn(r;σ )(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rn
1
λ
f
( x−σn

λ

)

1−rn F
( x−σn

λ

) ; if σn < x ≤ σn−1

rn
1
λ
f
( x−σn

λ

)+rn−1
1
λ
f
(
x−σn−1

λ

)

1−
[
rn F

( x−σn
λ

)+rn−1F
(
x−σn−1

λ

)] ; if σn−1 < x ≤ σn−2

...
...

rn
1
λ
f
( x−σn

λ

)+...+r2
1
λ
f
(
x−σ2

λ

)

1−
[
rn F

( x−σn
λ

)+...+r2F
(
x−σ2

λ

)] ; if σ2 < x ≤ σ1

rn
1
λ
f
( x−σn

λ

)+...+r1
1
λ
f
(
x−σ1

λ

)

1−
[
rn F

( x−σn
λ

)+...+r1F
(
x−σ1

λ

)] ; if σ1 < x < ∞.

(44)

Denote the hazard rate function of another MRV Wn(s; σ ) by hWn(s;σ )(x). Note that the
proof of theorem will be completed by establishing two inequalities. Consider σ1 < x < ∞.
Differentiating hUn(r;σ )(x) with respect to ri partially, for i = 1, . . . , n, we obtain

∂hUn(r;σ )(x)

∂ri

sign= ζ2(x; r, σ ) f

(
x − σi

λ

)
+ ζ1(x; r, σ )F

(
x − σi

λ

)
, (45)

where ζ1(x; r, σ ) = ∑n
i=1 ri f

( x−σi
λ

) ≥ 0 and ζ2(x; r, σ ) = 1 −∑n
i=1 ri F

( x−σi
λ

) ≥ 0.
Further, let us take

∇15 = ∂hUn(r;σ )(x)

∂ri
− ∂hUn(r;σ )(x)

∂r j
sign= ζ1(x; r, σ )T1 + ζ2(x; r, σ )T2, (46)

where T1 = F
( x−σi

λ

)−F
(
x−σ j

λ

)
and T2 = f

( x−σi
λ

)− f
(
x−σ j

λ

)
. Consider 1 ≤ i ≤ j ≤ n.

Without loss of generality, let r ∈ D+
n and σ ∈ D+

n , that is, ri ≥ r j and σi ≥ σ j . Now, from

σi ≥ σ j , we get
x−σi

λ
≤ x−σ j

λ
. Then, we obtain

F

(
x − σi

λ

)
≤ F

(
x − σ j

λ

)
, (47)

that is, T1 ≤ 0. Under the assumptions made, it holds that

f

(
x − σi

λ

)
≤ f

(
x − σ j

λ

)
, (48)

that is, T2 ≤ 0. Thus, for 1 ≤ i ≤ j ≤ n, r ∈ D+
n and σ ∈ D+

n , we have ∇15 ≤ 0, giving that
∂hUn (r;σ )(x)

∂rk
is increasing in k ∈ {1, . . . , n}. Hence, by using Part (i) of Lemma 6 with the help

of Remark 1, hUn(r;σ )(x) is Schur-concave with respect to r ∈ D+
n . Thus, from Definition 3,

we have

r
m
� s ⇒ hUn(r;σ )(x) ≤ hWn(s;σ )(x). (49)
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Using similar arguments, it can be established that hUn(r;σ )(x) is also Schur-concave
with respect to r ∈ D+

n when x belongs to the other subintervals, say σ2 < x ≤ σ1,
σ3 < x ≤ σ2, . . . , σn−1 < x ≤ σn−2, σn < x ≤ σn−1. Next, our target is to show that
hWn(s;σ )(x) ≤ hVn(s;μ)(x). In order to obtain the inequality Wn(s; σ ) ≥hr Vn(s;μ), it
suffices to show that

F̄Wn(s;σ )(x)

F̄Vn(s;μ)(x)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
m∗
1(x)

= 0

1−sn F
(
x−μn

λ

) = 0 ; if μn < x ≤ μn−1

0
m∗
2(x)

= 0

1−
[
sn F

(
x−μn

λ

)
+sn−1F

(
x−μn−1

λ

)] = 0 ; if μn−1 < x ≤ μn−2

0
m∗
3(x)

= 0

1−
[
sn F

(
x−μn

λ

)
+sn−2F

(
x−μn−2

λ

)] = 0 ; if μn−2 < x ≤ μn−3

...
...

0
m∗
n−2(x)

= 0

1−
[
sn F

(
x−μn

λ

)
+s3F

(
x−μ3

λ

)] = 0 ; if μ3 < x ≤ μ2

0
m∗
n−1(x)

= 0

1−
[
sn F

(
x−μn

λ

)
+...+s2F

(
x−μ2

λ

)] = 0 ; if μ2 < x ≤ μ1

0
m∗
n(x)

= 0

1−
[
sn F

(
x−μn

λ

)
+...+s1F

(
x−μ1

λ

)] = 0 ; if μ1 < x ≤ σn

m1(x)
m∗
1(x)

= 1−sn F
( x−σn

λ

)

1−sn F
(
x−μn

λ

) ; if σn < x ≤ σn−1

m2(x)
m∗
2(x)

= 1−
[
sn F

( x−σn
λ

)+sn−1F
(
x−σn−1

λ

)]

1−
[
sn F

(
x−μn

λ

)
+sn−1F

(
x−μn−1

λ

)] ; if σn−1 < x ≤ σn−2

m3(x)
m∗
3(x)

= 1−
[
sn F

( x−σn
λ

)+sn−2F
(
x−σn−2

λ

)]

1−
[
sn F

(
x−μn

λ

)
+sn−2F

(
x−μn−2

λ

)] ; if σn−2 < x ≤ σn−3

...
...

mn−2(x)
m∗
n−2(x)

= 1−
[
sn F

( x−σn
λ

)+...+s3F
(
x−σ3

λ

)]

1−
[
sn F

(
x−μn

λ

)
+...+s3F

(
x−μ3

λ

)] ; if σ3 < x ≤ σ2

mn−1(x)
m∗
n−1(x)

= 1−
[
sn F

( x−σn
λ

)+...+s2F
(
x−σ2

λ

)]

1−
[
sn F

(
x−μn

λ

)
+...+s2F

(
x−μ2

λ

)] ; if σ2 < x ≤ σ1

mn(x)
m∗
n(x)

= 1−
[
sn F

( x−σn
λ

)+...+s1F
(
x−σ1

λ

)]

1−
[
sn F

(
x−μn

λ

)
+...+s1F

(
x−μ1

λ

)] ; if σ1 < x < ∞,

(50)
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is increasing in x ∈ (σn,∞)∪(μn,∞) i.e., x ∈ (μn,∞), where F̄Wn(s;σ )(x) and F̄Vn(s;μ)(x)
are given by

F̄Wn(s;σ )(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1(x) = 1 − sn F
( x−σn

λ

) ; if σn < x ≤ σn−1

m2(x)=1−
[
sn F

( x−σn
λ

)+sn−1F
(
x−σn−1

λ

)]
; if σn−1 < x ≤ σn−2

...
...

mn−1(x) = 1 − [sn F
( x−σn

λ

)+ . . . + s2F
( x−σ2

λ

)] ; if σ2 < x ≤ σ1

mn(x) = 1 − [sn F
( x−σn

λ

)+ . . . + s1F
( x−σ1

λ

)] ; if σ1 < x < ∞

(51)

and

F̄Vn(s;μ)(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∗
1(x) = 1 − sn F

( x−μn
λ

) ; if μn < x ≤ μn−1

m∗
2(x)=1−

[
sn F

( x−μn
λ

)+sn−1F
(
x−μn−1

λ

)]
; if μn−1 < x ≤ μn−2

...
...

m∗
n−1(x) = 1 − [sn F

( x−μn
λ

)+ . . . + s2F
( x−μ2

λ

)] ; if μ2 < x ≤ μ1

m∗
n(x) = 1 − [sn F

( x−μn
λ

)+ . . . + s1F
( x−μ1

λ

)] ; if μ1 < x < ∞,

(52)

respectively. First we have to establish that

mn(x)

m∗
n(x)

=
1 −

n∑
i=1

si F
( x−σi

λ

)

1 −
n∑

i=1
si F

( x−μi
λ

) = χ1(x), (say), (53)

is increasing with respect to x ∈ (σ1,∞). For this, differentiating χ1(x) with respect to x ,
we obtain

χ ′
1(x)

sign=
⎡

⎣1 −
n∑

i=1

si F

(
x − μi

λ

)⎤

⎦

⎡

⎣−
n∑

i=1

si f

(
x − σi

λ

)
1

λ

⎤

⎦

−
⎡

⎣1 −
n∑

i=1

si F

(
x − σi

λ

)⎤

⎦

⎡

⎣−
n∑

i=1

si f

(
x − μi

λ

)
1

λ

⎤

⎦

sign=
⎡

⎣1 −
n∑

i=1

si F

(
x − σi

λ

)⎤

⎦

⎡

⎣
n∑

i=1

si f

(
x − μi

λ

)⎤

⎦
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−
⎡

⎣1 −
n∑

i=1

si F

(
x − μi

λ

)⎤

⎦

⎡

⎣
n∑

i=1

si f

(
x − σi

λ

)⎤

⎦

=
⎡

⎣
n∑

i=1

si f

(
x − μi

λ

)
−

n∑

i=1

si f

(
x − σi

λ

)⎤

⎦

+
⎡

⎣
n∑

i=1

si F

(
x−μi

λ

)⎤

⎦

⎡

⎣
n∑

i=1

si f

(
x−σi

λ

)⎤

⎦−
⎡

⎣
n∑

i=1

si F

(
x − σi

λ

)⎤

⎦

⎡

⎣
n∑

i=1

si f

(
x − μi

λ

)⎤

⎦ .

Simplifying further, we get from the preceding equation as

χ ′
1(x) =

n∑

i=1

si

[
f

(
x − μi

λ

)
− f

(
x − σi

λ

)]

+
n∑

i=1

n∑

j=1

si s j

[
F

(
x − μi

λ

)
f

(
x − σ j

λ

)
− F

(
x − σ j

λ

)
f

(
x − μi

λ

)]

=
n∑

i=1

si

[
f

(
x − μi

λ

)
− f

(
x − σi

λ

)]

+
n∑

i=1

n∑

j=1

si s j F

(
x − μi

λ

)
F

(
x − σ j

λ

)⎡

⎣
f
(
x−σ j

λ

)

F
(
x−σ j

λ

) − f
( x−μi

λ

)

F
( x−μi

λ

)

⎤

⎦

=
n∑

i=1

si

[
f

(
x − μi

λ

)
− f

(
x − σi

λ

)]

+
n∑

i=1

n∑

j=1

si s j F

(
x − μi

λ

)
F

(
x − σ j

λ

)[
h̃

(
x − σ j

λ

)
− h̃

(
x − μi

λ

)]
.(54)

Under the assumptionsmade,max{μ1, . . . , μn} ≤ min{σ1, . . . , σn}, implies thatμi ≤ σ j ,
i, j = 1, . . . , n and also μi ≤ σi , i = 1, . . . , n. Now, for μi ≤ σi , we obtain

x−μi
λ

≥ x−σi
λ

,
implies that

f

(
x − μi

λ

)
≥ f

(
x − σi

λ

)
. (55)

Again, for μi ≤ σ j , i, j = 1, . . . , n, the decreasing property of h̃(.) implies that

h̃

(
x − μi

λ

)
≤ h̃

(
x − σ j

λ

)
. (56)

Using the inequalities given by Eqs. 55 and 56 in Eq. 54, we obtain χ ′
1(x) ≥ 0, which

implies that χ1(x) is increasing with respect to x ∈ (σ1,∞). Then, we have to establish that

mn−1(x)

m∗
n−1(x)

=
1 −

n∑
i=2

si F
( x−σi

λ

)

1 −
n∑

i=2
si F

( x−μi
λ

) = χ2(x), (say), (57)
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is increasing with respect to x ∈ (σ2, σ1]. Now, differentiating χ2(x) with respect to x and
after some calculations, we obtain

χ ′
2(x)

sign=
n∑

i=2

si

[
f

(
x − μi

λ

)
− f

(
x − σi

λ

)]

+
n∑

i=2

n∑

j=2

si s j F

(
x − μi

λ

)
F

(
x − σ j

λ

)[
h̃

(
x − σ j

λ

)
− h̃

(
x − μi

λ

)]
. (58)

Under the assumptionsmade,max{μ2, . . . , μn} ≤ min{σ2, . . . , σn}, implies thatμi ≤ σ j ,
i, j = 2, . . . , n and alsoμi ≤ σi , i = 2, . . . , n. After some calculations, it can be established
that

f

(
x − μi

λ

)
≥ f

(
x − σi

λ

)
(59)

and

h̃

(
x − σ j

λ

)
≥ h̃

(
x − μi

λ

)
. (60)

Now, substituting Eqs. 59 and 60 in Eq. 58, we get χ ′
2(x) ≥ 0, implies that

χ2(x) is increasing with respect to x ∈ (σ2, σ1]. Using similar arguments, it can be
established that χ3(x) = mn−2(x)/m∗

n−2(x), . . . , χn−1(x) = m2(x)/m∗
2(x), χn(x) =

m1(x)/m∗
1(x) are also increasing with respect to x belongs to the other subintervals, say

(σ3, σ2], . . . , (σn−1, σn−2], (σn, σn−1], respectively. Also, 0/m∗
n(x), . . . , 0/m

∗
2(x), 0/m

∗
1(x)

are increasing with respect to x belongs to the another subintervals, say (μ1, σn], . . . ,
(μn−1, μn−2], (μn, μn−1], respectively, which are obvious. Hence, the theorem is proved. ��
Remark 11 If we consider r ∈ E+

n and σ ∈ E+
n instead of r ∈ D+

n and σ ∈ D+
n , then the

established result in Theorem 10 also holds.

To illustrate the result stated in Theorem 10, we consider the following example.

Example 5 Assume that r = (r1, r2, r3) = (0.5, 0.3, 0.2) ∈ D+
3 , s = (s1, s2, s3) =

(0.6, 0.3, 0.1) ∈ D+
3 , σ = (σ1, σ2, σ3) = (0.8, 0.7, 0.4) ∈ D+

3 , and μ = (μ1, μ2, μ3) =
(0.4, 0.3, 0.2) ∈ D+

3 . Further, take λ = 4, c = 3, and l = 2. Clearly, r
m
� s and

max{μ1, μ2, μ3} ≤ min{σ1, σ2, σ3}. Now, consider power distributionwith cdf F(t) = ( tl )
c,

0 < t < l, c > 0 and pdf f (t) = c
lc t

c−1, 0 < t < l, c > 0 as the baseline distribution.

Clearly, the pdf is increasing with respect to t in its domain when c > 1 and h̃(t) is decreasing
with respect to t in its domain. Based on these information, the difference between the hazard
rate functions of U3(r; σ ) and V3(s;μ) is plotted in Fig. 4(b), from which we can readily
observe that U3(r; σ ) ≥hr V3(s;μ). Here, we have considered x = − ln y, 0 < y < 1 to
capture the whole positive real axis.

In Remarks 5-11, it is written that similar results with other sufficient conditions hold if
we change the ordering of some parameters. Here, we consider examples for the illustration
of Remarks 7 and 9. The illustrative examples for other remarks can be constructed; however
they are omitted for brevity.
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Example 6

(i) Assume that σ = (σ1, σ2, σ3) = (16, 18, 22) ∈ E+
3 and μ = (μ1, μ2, μ3) =

(2, 8, 12) ∈ E+
3 . Then, under the similar setup in Example 3(i i), the ratio of the pdfs

ofU3(r; σ ) and V3(r;μ) is displayed in Fig. 5(a), which clearly justifies the likelihood
ratio order between U3(r; σ ) and V3(r;μ) in Remark 7.

(ii) Set r = (r1, r2, r3) = (0.5, 0.3, 0.2) ∈ D+
3 , s = (s1, s2, s3) = (0.6, 0.3, 0.1) ∈ D+

3 ,
λ = (λ1, λ2, λ3) = (5.2, 8.3, 10.2) ∈ E+

3 , and θ = (θ1, θ2, θ3) = (4.3, 9.8, 12.5) ∈
E+
3 . Under the similar settings in Example 4, the sfs ofU3(r;λ) and V3(s; θ) are plotted

in Fig. 5(b), from which the result in Remark 9 can be easily justified.

Next, we consider heterogeneity in mixing proportion parameter vectors and scale param-
eter vectors. The concept of T -transform matrix is required in the following results. For the
definition of T -transform matrix, please refer to Hazra et al. (2017); Barmalzan et al. (2022),
and Panja et al. (2022). First, we consider mixtures having two components and establish
sufficient conditions, under which the usual stochastic order between two MRVs holds.

Theorem 11 Let F̄U2(r;λ)(x) = ∑2
i=1 ri [1 − F( x−σ

λi
)] and F̄V2(s;θ)(x) = ∑2

i=1 si [1 −
F( x−σ

θi
)] be the sfs of the MRVs U2(r;λ) and V2(s; θ), respectively. Further, suppose t2 f (t)

is increasing in t > 0. Then, for r ∈ D+
2 (or E+

2 ), λ ∈ E+
2 (or D+

2 ), and for fixed σ > 0, we
have

(
r1 r2
λ1 λ2

)


(
s1 s2
θ1 θ2

)
⇒ U2(r;λ) ≤st V2(s; θ).

Proof To establish the desired result,we have to check theConditions (i) and (i i)ofLemma7.
Clearly, F̄U2(r;λ)(x) is permutation invariant on (r;λ), which confirms Condition (i). Now,
for fixed x > 0 and i �= j , consider the function

ξ(x; r,λ) = (r1 − r2)

(
∂ F̄U2(r;λ)(x)

∂r1
− ∂ F̄U2(r;λ)(x)

∂r2

)

+(λ1 − λ2)

(
∂ F̄U2(r;λ)(x)

∂λ1
− ∂ F̄U2(r;λ)(x)

∂λ2

)

= ξ1(x; r,λ) + ξ2(x; r,λ), (say), (61)

Fig. 5 (a) Plot of the ratio of the pdfs of U3(r; σ ) and V3(r;μ) in Example 6(i). (b) Graphs of the sfs of
U3(r;λ) (in blue colour) and V3(s; θ) (in red colour) in Example 6(i i)
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where

ξ1(x; r,λ) = (r1 − r2)

[
F

(
x − σ

λ2

)
− F

(
x − σ

λ1

)]
and

ξ2(x; r,λ) = (λ1 − λ2)

[
(x − σ)

r1
λ21

f

(
x − σ

λ1

)
− (x − σ)

r2
λ22

f

(
x − σ

λ2

)]

sign= (λ1 − λ2)

[
r1

(
x − σ

λ1

)2

f

(
x − σ

λ1

)
− r2

(
x − σ

λ2

)2

f

(
x − σ

λ2

)]
.

Let r ∈ D+
2 (or E+

2 ) and λ ∈ E+
2 (or D+

2 ). That is, r1 ≥ (or ≤) r2 and λ1 ≤ (or ≥) λ2.
We present the proof only for the case when r1 ≥ r2 and λ1 ≤ λ2, since the other case
is quite similar. For r1 ≥ r2 and λ1 ≤ λ2, we obtain 1

λ1
≥ 1

λ2
and x−σ

λ2
≤ x−σ

λ1
, implies

F( x−σ
λ2

) ≤ F( x−σ
λ1

), that is, ξ1 ≤ 0. Further, t2 f (t) is increasing with respect to t > 0,

implies ( x−σ
λ1

)2 f ( x−σ
λ1

) ≥ ( x−σ
λ2

)2 f ( x−σ
λ2

), that is, ξ2 ≤ 0. Thus, from Eq. 61, we see that
ξ(x; r,λ) ≤ 0. Therefore, from Lemma 7, we get the required result. This completes the
proof of the theorem. ��

To illustrate the aforementioned theorem, we consider the following example.

Example 7 Consider inverted exponential distribution as the baseline distribution with cdf as
in Example 4. The condition on pdf is clearly satisfied. Assume r = (r1, r2) = (0.6, 0.4) ∈
D+
2 , s = (s1, s2) = (0.56, 0.44) ∈ D+

2 , λ = (λ1, λ2) = (0.2, 0.7) ∈ E+
2 , and θ =

(θ1, θ2) = (0.30, 0.60) ∈ E+
2 . Take σ = 0.1. Next, let us consider the T -transform matrix

T0.2 =
(
0.2 0.8
0.8 0.2

)
. It can then be seen that

(
0.56 0.44
0.30 0.60

)
=
(
0.6 0.4
0.2 0.7

)
×
(
0.2 0.8
0.8 0.2

)
,

which implies that
(
0.6 0.4
0.2 0.7

)


(
0.56 0.44
0.30 0.60

)
.

Therefore, from Theorem 11, we get U2(r;λ) ≤st V2(s; θ), which can be verified from
Fig. 1(b). Here, q(y) = y

1−y , 0 < y < 1 is used in order to capture the positive real axis.

The following counterexample describes that the result stated in Theorem 11 may not be
true if r /∈ D+

2 and λ ∈ E+
2 .

Counterexample 7 Consider Burr type-III distribution as the baseline distribution for the
location-scale model with cdf F(t) = t

1+t , t > 0 and pdf f (t) = 1
(1+t)2

, t > 0. The
condition on pdf is satisfied. Let us take

(
r1 r2
λ1 λ2

)
=
(
0.2 0.8
0.4 0.6

)
and

(
s1 s2
θ1 θ2

)
=
(
0.62 0.38
0.54 0.46

)
.

It is then easy to check that
(
0.62 0.38
0.54 0.46

)
=
(
0.2 0.8
0.4 0.6

)
×
(
0.3 0.7
0.7 0.3

)
,
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where T0.3 =
(
0.3 0.7
0.7 0.3

)
is a T -transform matrix, which implies that

(
0.2 0.8
0.4 0.6

)


(
0.62 0.38
0.54 0.46

)
.

The difference between the sfs of the MRVs U2(r;λ) and V2(s; θ) is plotted in Fig. 6(a).
Clearly, the difference is negative aswell as positive,whichmeans thatU2(r;λ) �st V2(s; θ).

Here, q(y) = y
1−y , 0 < y < 1 is considered for capturing the positive real axis.

Next, we present a generalization of Theorem 11 in terms of the number of mixing com-
ponents. The proof of the following theorem follows using similar arguments as in the proof
of Theorem 21 of Balakrishnan et al. (2018), and thus it is omitted. In the following theorem,
Tω is used to denote the T -transform matrix of the form Tω = ωIn + (1 − ω)�n , where In
and �n are the identity and permutation matrices of order n × n, respectively.

Theorem 12 Let F̄Un(r;λ)(x) = ∑n
i=1 ri [1 − F( x−σ

λi
)] and F̄Vn(s;θ)(x) = ∑n

i=1 si [1 −
F( x−σ

θi
)] be the sfs of the MRVs Un(r;λ) and Vn(s; θ), respectively. Further, suppose t2 f (t)

is increasing in t > 0. Then, for r ∈ D+
n (or E+

n ), λ ∈ E+
n (or D+

n ), and for fixed σ > 0, we
have

(
s1 . . . sn
θ1 . . . θn

)
=
(
r1 . . . rn
λ1 . . . λn

)
Tw ⇒ Un(r;λ) ≤st Vn(s; θ).

The following corollary is a direct consequence of Theorem 11 due to the fact that a finite
product of T -transform matrices with same structure is also a T -transform matrix. We note
that the T -transform matrices Tω1 , . . . , Tωk have the same structure if they have all zero and
non-zero elements at the same positions which means that

Tωi = ωi In + (1 − ωi )�i,n, i = 1, . . . , k,

for the same �i,n and possibly different ωi , i = 1, . . . , k. On the other hand, Tω1 , . . . , Tωk

have different structures if at least one of �i,n differs from the others (Table 1).

Corollary 2 Let F̄Un(r;λ)(x) = ∑n
i=1 ri [1 − F( x−σ

λi
)] and F̄Vn(s;θ)(x) = ∑n

i=1 si [1 −
F( x−σ

θi
)] be the sfs of the MRVs Un(r;λ) and Vn(s; θ), respectively. Further, suppose t2 f (t)

Fig. 6 (a) Plot of the difference between the sfs of MRVs U2(r;λ) and V2(s; θ) as in Counterexample 7. (b)
Plot of the ratio of the pdfs of MRVs U3(r; σ ) and V3(r;μ) as in Counterexample 6
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Table 1 List of (baseline) lifetime distributions satisfying the conditions in the established results

Distribution pdf ( f (t) =) Condition Useful for

Pareto 1
t2

, t ≥ 1 t f (t) is decreasing
[ f (t) is decreasing]
{ f (t) is log-convex}

Theorems 3.1 and 3.9,
Corollary 3.1 [The-
orem 3.6] {Theorem
3.7}

IE λ

t2
e− λ

t , t, λ > 0 t2 f (t) is increasing Theorems
3.2,3.8,3.11,3.12,3.13
and Corollary 3.2

Burr-III 1
(1+t)2

, t > 0 t2 f (t) is increasing Theorems
3.2,3.8,3.11,3.12,3.13
and Corollary 3.2

GG ptq−1

�(
q
p )et

p , t, p, q > 0 f (t) is decreasing Theorem 3.6

Exponential λe−λt , t, λ > 0 f (t) is decreasing Theorem 3.6

Weibull ctc−1

etc
, t > 0, c > 0 f (t) is decreasing for

c ∈ (0, 1] [ f (t) is log-
convex for 0 < c ≤
1 { f (t) is log-concave
for c > 1}] (h(t) is
increasing for c > 1)

Theorem 3.6 [The-
orem 3.7] (Theorem
3.5)

Gamma tq−1

�(q)et
, t, q > 0 f (t) is log-convex

(log-concave) for
0 < q ≤ 1 (q > 1)

Theorem 3.7

Rayleigh t
σ2 e

− t2

2σ2 , t, σ > 0 h(t) is increasing Theorem 3.5

G-M (αeβt + λ)e
−λt− α

β
eβt

,

t, α, β, λ > 0
h(t) is increasing Theorem 3.5

Power c
lc t

c−1, 0 < t < l, c > 0 f (t) is increasing for
c > 1 and h̃(t) is
decreasing

Theorems 3.3, 3.4 and
3.10

t
σ2 e

− t2

2σ2 , t, σ > 0 h(t) is increasing Theorem 3.5

Here, IE, GG, G-M denote for the inverted exponential, generalized gamma, and Gompertz-Makeham distri-
butions, respectively. �(.) denotes the Euler gamma function

is increasing in t > 0. If the T -transform matrices Tw1 , . . . , Twk have the same structure,
then for r ∈ D+

n (or E+
n ), λ ∈ E+

n (or D+
n ), and for fixed σ > 0, we have

(
s1 . . . sn
θ1 . . . θn

)
=
(
r1 . . . rn
λ1 . . . λn

)
Tw1 . . . Twk ⇒ Un(r;λ) ≤st Vn(s; θ).

The following result gives an illustration if the T -transform matrices Twi , i = 1, . . . , k,
k ≥ 2 have the different structure. The proof of theorem follows using similar arguments
as in Theorem 22 of Balakrishnan et al. (2018), and therefore it is omitted for the sake of
conciseness.

Theorem 13 Let F̄Un(r;λ)(x) = ∑n
i=1 ri [1 − F( x−σ

λi
)] and F̄Vn(s;θ)(x) = ∑n

i=1 si [1 −
F( x−σ

θi
)] be the sfs of the MRVs Un(r;λ) and Vn(s; θ), respectively. Further, suppose
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t2 f (t) is increasing in t > 0. If the T -transform matrices Tw1 , . . . , Twk have the dif-

ferent structures, then for r ∈ D+
n (or E+

n ), λ ∈ E+
n (or D+

n ),

(
r1 . . . rn
λ1 . . . λn

)
∈ Mn, and

(
r1 . . . rn
λ1 . . . λn

)
Tw1 . . . Twi ∈ Mn, i = 1, . . . , (k − 1), where k ≥ 2, we have

(
s1 . . . sn
θ1 . . . θn

)
=
(
r1 . . . rn
λ1 . . . λn

)
Tw1 . . . Twk ⇒ Un(r;λ) ≤st Vn(s; θ).

4 Concluding Remarks

In this article, we have obtained several stochastic comparison results, comparing two FMMs
with respect to various stochastic senses. The usual stochastic, hazard rate, reversed hazard
rate, and likelihood ratio orders have been proved for MMs when heterogeneity is considered
in one parameter. When heterogeneity in two parameters are considered, the usual stochastic
order and hazard rate order have been established. To illustrate the established results, various
examples and counterexamples have been provided.

We note that when considering heterogeneity in three parameters of the location-scale
model, then the sf of the MRV with two components, say U2(r, σ ,λ) is given by

F̄U2(r,σ ,λ)(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − r2F
(
x−σ2
λ2

)
; if σ2 < x ≤ σ1

1 −
[
r1F

(
x−σ1
λ1

)
+ r2F

(
x−σ2
λ2

)]
; if σ1 < x < ∞

= ϕ(P), (say),

where P =
⎛

⎝
r1 r2
σ1 σ2
λ1 λ2

⎞

⎠, r = (r1, r2),σ = (σ1, σ2) andλ = (λ1, λ2). Now, to checkCondition

(i) of Lemma 7, we need to consider all the permutation matrices of order 2 × 2, which are

given by �1 =
(
1 0
0 1

)
and �2 =

(
0 1
1 0

)
. Further, P�1 = P and

P�2 =
⎛

⎝
r1 r2
σ1 σ2
λ1 λ2

⎞

⎠×
(
0 1
1 0

)

=
⎛

⎝
r2 r1
σ2 σ1
λ2 λ1

⎞

⎠ .

Then,

ϕ(P�2) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − r1F
(
x−σ1
λ1

)
; if σ1 < x ≤ σ2

1 −
[
r1F

(
x−σ1
λ1

)
+ r2F

(
x−σ2
λ2

)]
; if σ2 < x < ∞

�= ϕ(P).

Thus, the sf is not permutation invariant. So, one can not apply Lemma 7 to obtain result
based on matrix chain majorization when heterogeneity is taken in three parameters. Thus,
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further research/development is required in this direction. This can be considered as open
problem.
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