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A B S T R A C T

We used a spatially explicit agent-based model of SARS-CoV-2 transmission combined with spatially fine-
grained COVID-19 observation data from Public Health Scotland to investigate the initial rise of the Omicron
(BA.1) variant of concern. We evaluated plausible scenarios for transmission rate advantage and vaccine
immune escape relative to the Delta variant based on the data that would have been available at that time.
We also explored possible outcomes of different levels of imposed non-pharmaceutical intervention. The initial
results of these scenarios were used to inform the Scottish Government in the early outbreak stages of the
Omicron variant.

Using the model with parameters fit over the Delta variant epidemic, some initial assumptions about
Omicron transmission rate advantage and vaccine escape, and a simple growth rate fitting procedure, we
were able to capture the initial outbreak dynamics for Omicron. We found that the modelled dynamics hold
up to retrospective scrutiny. The modelled imposition of extra non-pharmaceutical interventions planned by
the Scottish Government at the time would likely have little effect in light of the transmission rate advantage
held by the Omicron variant and the fact that the planned interventions would have occurred too late in the
outbreak’s trajectory. Finally, we found that any assumptions made about the projected distribution of vaccines
in the model population had little bearing on the outcome, in terms of outbreak size and timing. Instead, it
was the landscape of prior immunity that was most important.
1. Introduction

The B.1.1.529 SARS-CoV-2 variant was first detected in South Africa
and reported to the World Health Organisation on 24th November
2021; it was designated the Omicron variant of concern (VOC) or
‘‘Omicron’’ two days later (World Health Organisation, 2021). The
first cases of Omicron were detected in Scotland around 29th Novem-
ber (Scottish Government, 2021). Globally Omicron was associated
with rapid spread and increase in case numbers, most likely due to some
combination of increased transmission rate potential and increased
vaccine escape (Pulliam et al., 2022). However greater infectiousness
was somewhat offset by a reduction in outcome severity.

Upon the introduction of the variant to Scotland there was an
urgent need to understand how the dynamics of transmission could
put extra pressure on the already stressed National Health Service.
It was also necessary to estimate the effect of any potential control

∗ Corresponding author at: Royal (Dick) School of Veterinary Studies, University of Edinburgh, United Kingdom.
E-mail address: rowland.kao@ed.ac.uk (R.R. Kao).

measures to reduce the impact of a rapid outbreak of a new VOC.
The new variant was particularly concerning, owing to multiple new
mutations in the spike protein of the virus, and concern was raised
about the potential for an increase in vaccine escape and more effective
transmission. Indications from the outbreak in South Africa (Pulliam
et al., 2022) were confounded by low overall vaccine uptake in that
country, therefore assumptions made on that basis had to be considered
weak.

To address this, we adapted an existing simulation model of SARS-
CoV-2 transmission in Scotland, SCoVMod (Banks et al., 2022), to
investigate the rise of the Omicron VOC in the presence of previ-
ous variants, in order to evaluate plausible scenarios for transmission
rate advantage and vaccine immune escape relative to the Delta VOC
(‘‘Delta’’). We explored possible outcomes of different levels of imposed
non-pharmaceutical interventions (NPI’s) and booster vaccination, in
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order to provide insight into the possible severity of the epidemic in
erms of the probable number of infections. In order to avoid making
ssumptions about vaccine escape and transmission rate advantage, we

took a range of scenarios and the considered only those that fit closely
ith the already observed outbreak characteristics.

The initial results of these scenarios were used to inform the Scottish
Government and intended to aid policy decision making in the early
utbreak stages of the variant (Scottish Government, 2022a).

This model we use is similar in scope to other UK-based early-
response scenario models, for example the models developed by the
London School of Hygiene and Tropical Medicine (Davies et al., 2020,
2021a,b; Barnard et al., 2021), the University of Warwick (Keeling
et al., 2022, 2021a,b; Moore et al., 2021), and Imperial College Lon-
don (Knock et al., 2021; Sonabend et al., 2021). However, it is an
ndividual-based simulation model and also includes explicit inter-
ocation mobility patterns derived from national statistical datasets,
ith finer grained data resolution than any other published UK-based
odel. This allows us to include, for example, regional variation in
ast exposure and effects of demography on transmission patterns as
 natural feature of the model.

We make use of the high levels of data granularity made available to
s by the Scottish government which allows for spatially heterogeneous
atterns of transmission to be compared to the distribution of cases.
rior immunity (to Delta), the movement-related connections between
reas (both in and out of lockdowns), and spatial heterogeneity in
ealth equity, as indicated by the Scottish Index of Multiple Deprivation
ealth Index have all been found to have significance descriptors
f case distribution both in prior studies (Banks et al., 2022; Wood
t al., 2023) and by the finding that transmission trees generated by

the model show a significant effect of Health Index deprivation on
transmission patterns. We make similar assumptions on vaccine efficacy
and escape to other models existing at the time of the onset of Omicron,
but our model inherently contains fine detail about local characteristics
of vaccine uptake and prior immunity allowing greater confidence
when considering possible levels of vaccine escape.

2. Methods

Using the SCoVMod simulation model (Banks et al., 2022), we fit
odel parameters to the explicit pattern of recorded cases across all

local authorities in Scotland, considering the period from August to De-
cember 2021. This was a period in which Delta was dominant (Sheikh
t al., 2021) and over which the COVID-19 epidemic in Scotland can

be considered as a single infection process. We introduced a variant in-
fection (representing Omicron), and then modelled the period from the
11th December to the end of March 2022. While considerable evidence
on the differences between Omicron and Delta soon became available,
here we assume knowledge only available up to 11th December when
this analysis was initiated, to demonstrate an approach that is relevant
o early outbreak analysis. We examine a range of scenarios with either
ixed parameters or multipliers of the Delta parameters for the variant
rocess.

In order to fit the model to observed data our simulated epidemics
are compared to the spatio-temporal pattern of COVID-19 incidence in
Scotland. Non-observable parameters were estimated using the number
of infections estimated in the population. Incidence of SARS-CoV-2,
here defined as the number of new infections each day, was not directly
obtainable from surveillance data and therefore needs to be estimated.
The number of confirmed cases found through PCR and lateral flow de-
vice tests is a useful indicator of incidence, however, a large proportion
of infections would not be discovered through testing (Colman et al.,
2023).

At local scales it is not appropriate to apply the same ascertainment
rate to all sub-regions. This is particularly true in a heterogeneous
opulation like Scotland where infection levels, access to testing, and
est seeking propensity vary greatly between local authority areas.
2 
Hence we also introduce a novel method to estimate the incidence
in each sub-region of Scotland. We derive a formula that takes the
number of positive and negative PCR tests across the nation as input,
and gives an estimate of the number of people who would test positive
for SARS-CoV-2 in each sub-region on any given day. We then re-scale
the prevalence estimate to form our estimate of incidence, which is used
as our observed incidence in the model-fitting process.

2.1. Data

Data for fitting Delta, estimating the seeding of Omicron, and
the distribution of COVID-19 vaccines was supplied by Public Health
Scotland’s eDRIS team (Public Health Scotland, 2022). We differentiate
between Delta and Omicron using S-Gene Target Failure (SGTF) in PCR
tests as a proxy for Omicron infections. Community tests where SGTF
is measured represent approximately 80% of all tests at the time of
running these scenarios. We also used publicly available Scottish census
data from National Records for Scotland (NRS) (Scottish Government,
2022b). We used datazone (DZ) level resolution where DZs are popu-
ation census units of approximately 500 to 1,000 residents. The data
or assignment of individuals to work locations is drawn from the NRS
ensus Flows data (UK Data Service, 2022), Table WU01UK, which

provides origin/destination workplace data for the population from
the 2011 census. We adjust these with respect to the 2018 population
estimates.

Age demographics and movement to work patterns are available
t the level of Census Output Areas (OA), each of which contains
pproximately 20 households or 50 people (National Records of Scot-

land, 2022). Census data on the Scottish Index of Multiple Deprivation
SIMD) (Scottish Government, 2022c) considers multiple relative depri-
ation measures and combines them into a single value. Deprivation
ata are publicly available at the DZ level.

We also used publicly available data from Google to estimate mobil-
ity levels over time, with respect to commuting patterns (Google Inc.,
2022).

2.2. Model

SCoVMod is an explicitly spatial agent-based simulation model that
ccounts for recorded commuter patterns and additional local move-

ments that are intended to capture non-work interactions such as recre-
ation, shopping, and school. These movements are further modulated
by the recorded time-varying mobility statistics, and geographically
explicit population age structures. Whilst this does not capture all
human movement, we assume that commuting patterns capture a large
proportion of the long-range mobility and that local movements at least
partially capture the non-commuting population travelling to shops,
schools, and other local community movements. This is a similar as-
sumption regarding mobility to the one used in other studies, including
e.g. Barnard et al. (2021). The model also uses deprivation metrics to
account for spatial heterogeneity in outcome likelihoods. The model
is parameterised against an estimation of the number of COVID-19
nfections that we describe below. The model parameters were inferred

using the well-established Sequential Monte Carlo approach to Approxi-
mate Bayesian Computation (ABC-SMC) (Toni et al., 2009). The outputs
f a range of scenarios and their projections were then used to estimate
 plausible range of hospital admissions from variant cases.

The model output is summarised at national and Council Area
evels. Council Areas are the largest administrative units into which
cotland is divided of which there are 32.

The core of the simulation model breaks down into the following
arts:

• Local transmission—a homogeneous mixing compartmental
model for each OA of the country;
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Fig. 1. Schematic of infection stages in SCoVMod. Individuals pass through stages post
infection as described by arrows. Not all stages are obligatory for all infected individuals
(e.g. some individuals recover without going to hospital).

• National transmission—a network-based simulation of the move-
ment of individuals between OAs;

• Parameter inference—a Bayesian estimation of the parameters
for local transmission, this also involves a model of infection
incidence used as the observed value for inference;

• Transmission rate over time adjustment—the modulation of both
local and national transmission to simulate non-pharmaceutical
interventions and other changes in transmission rates over time.

The compartmental model considers key aspects of COVID-19 epi-
demiology including phases for latent infection, infectious and mildly
infected (showing few or no clinical signs) and severely infected (with
substantial clinical signs) individuals, hospitalised, recovered and died,
similar to other investigations (Arenas et al., 2020; Di Domenico et al.,
2020). These epidemiological processes are captured as individual
disease states (Fig. 1). Individuals are also stratified into three age
groups: young (0–15), adult (16–64) and elderly (65+). Within-OA
transmission is assumed to be homogeneously mixed while between-

A transmission is determined by the empirical age-specific patterns of
ome and work contact (creating day/night patterns of contact). We do

not consider overnight shifts in location or introductions from outside
cotland beyond the impact on the initial seeding.

Deprivation is also known to influence COVID-19 transmission.
We therefore adjust transmission rates in the model according to the
average SIMD health index in the local Council Area.

Population mobility patterns are determined by the patterns of
movements to work recorded in Scottish Census data. We assume that
only adults contribute to commuter movement, in the daytime. The
remaining proportion of adults and all young and elderly individuals
are assumed to move primarily within their local OAs, but also in
some proportion to nearby OAs, to account for non-work movements
(e.g. school, shopping, recreation). Finally, movement in the model is
restricted to healthy and exposed or mildly symptomatic individuals;
severely infected and hospitalised individuals do not move.

Individuals move within the spatial structure of the model on a
day/night cycle. During the day those who commute are moved to their
work location, and those others who move locally are moved to their
other daytime location, transmission occurs within these locations and
in the home locations for those who remain. During the night all indi-
viduals return to their home locations and transmission occurs within
the home locations. The day/night pattern results in two transmission
rates—the day rate where adults have moved to work locations and
others have potentially moved to nearby locations, and the night rate
where all individuals have returned to their home locations.
3 
Local transmission (within-OA)
Within each OA (𝑖) the infection process is governed by a com-

partmental model (Fig. 1) for which the frequency dependent force of
infection 𝛬𝑖(𝑡) defined in Figure S1. In the compartmental model are
infection classes 𝑆 (susceptible), 𝐸 (exposed), 𝐼𝑀 (mildly infected), 𝐼𝑆
(severely infected), 𝐻 (hospitalised).

The state transitions in the model are described by the following
quations:
𝑑 𝑆𝑖𝑎
𝑑 𝑡 = −𝛬𝑖(𝑡)𝛽𝐶 𝐴𝑆𝑖𝑎 + 𝜈 𝑅𝑖𝑎

𝑑 𝐸𝑖𝑎
𝑑 𝑡 = 𝛬𝑖(𝑡)𝛽𝐶 𝐴𝑆𝑖𝑎 − 𝛾 𝐸𝑖𝑎

𝑑 𝐼𝑀𝑖𝑎
𝑑 𝑡 = 𝛾 𝐸𝑖𝑎 − (𝛾𝑀 + 𝜌𝑀 )𝐼𝑀𝑖𝑎
𝑑 𝐼𝑆𝑖𝑎
𝑑 𝑡 = 𝛾𝑀𝐼𝑀𝑖𝑎 − (𝜌𝑆 𝑎 + 𝜇𝑆 𝑖𝑎 + 𝜂)𝐼𝑆𝑖𝑎

𝑑 𝐻𝑖𝑎
𝑑 𝑡 = 𝜂 𝐼𝑆𝑖𝑎 − (𝜌𝐻 𝑎 + 𝜇𝐻 𝑖𝑎)𝐼𝑆𝑖𝑎
𝑑 𝑅𝑖𝑎
𝑑 𝑡 = 𝜌𝑀𝐼𝑀𝑖𝑎 + 𝜌𝑆 𝑎𝐼𝑆𝑖𝑎 + 𝜌𝐻 𝑎𝐻𝑖𝑎 − 𝜈 𝑅𝑖𝑎

𝐷𝑖𝑎 = 𝑁𝑖𝑎 − (𝐸𝑖𝑎 + 𝐼𝑀𝑖𝑎 + 𝐼𝑆𝑖𝑎 +𝐻𝑖𝑎 + 𝑅𝑖𝑎)

The force of infection, 𝛬, is detailed in Figure S1 and other state
ransition rates are given by: 𝛾 for 𝐸 → 𝐼𝑀 , 𝛾𝑀 for 𝐼𝑀 → 𝐼𝑆 , 𝜂 for
𝐼𝑆 → 𝐻 , 𝜌𝑀 for 𝐼𝑀 → 𝑅, 𝜌𝑆 𝑎 for 𝐼𝑆 → 𝑅 for age class 𝑎, 𝜌𝐻 𝑎 for
𝐻 → 𝑅 for age class 𝑎, 𝜇𝑆 𝑖𝑎 for 𝐼𝑆 → 𝐷 for age class 𝑎 and location 𝑖,
𝜇𝐻 𝑖𝑎 for 𝐻 → 𝐷 for age class 𝑎 and location 𝑖, and 𝜈 for 𝑅 → 𝑆.

Transmission rates are adjusted by location, according to SIMD
Health Index:

𝛽𝐶 𝐴 = 1 + (

𝛽𝑚𝑜𝑑 (𝑘𝐶 𝐴 − 𝑘𝑎𝑣)
)

where 𝛽𝐶 𝐴 is the transmission modifier rate for a given CA, 𝑘𝐶 𝐴 is
he CA mean health index value (from the SIMD), and 𝛽𝑚𝑜𝑑 is a fitted
arameter for the strength of the overall effect.

For this study the model is extended with a second strain (variant) of
he virus. The compartment structure remains the same, but individuals

can be infected with one of two strains, each with a different set of
rates. We assume complete cross immunity between strains.

The values for all parameters are either established from the litera-
ture (Table S1) or fit (see below).

National transmission (between-OA movements)
Between OAs individuals move daily across a network of locations

efined by Scottish Census data adjusted by Google mobility data.
From the current population estimates we draw the number of

individuals whose primary residence is mapped onto an OA, with
their age group. The total population of Scotland from this estimate
is 5,438,054 (Young: 919,580; Adult: 3,492,421; Elderly: 1,026,053).
Of the adults 1,960,712 commute to work, reduced to 647,034 under
lockdown (see details below).

An individual’s workplace is assigned by distributing a proportion
f the population of each location to each work location, weighted by

the proportion of individuals from each home location in the census
flows data who work in another location. For the remaining proportion

e synthetically generated daytime locations by randomly selecting
As either from the OAs within the same intermediate zone (a geo-
raphical area containing approximately 4200 people), with probability

0.9, or from the OAs within a neighbouring intermediate zone, with
probability 0.1.

For each origin 𝑜 and destination 𝑑 we assign a weight 𝑤𝑜𝑑 from the
census flow data:

𝑤𝑜𝑑 =
𝑛𝑜𝑑
𝑡𝑜

where 𝑛𝑜𝑑 is the total number of people who move from 𝑜 to 𝑑 to work,
and 𝑡 is the total number who move from origin 𝑜 to any location for
𝑜
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Epidemics 49 (2024) 100800 
work. We take the individuals of each home location if they are eligible
to work (total 𝑛𝑜); in this case we assume all individuals of adult age
16–64. Each destination is assigned to 𝑛𝑜 × 𝑤𝑜𝑑 of these individuals.
The individuals who remain have no assigned workplace—we assume
either they do not work, or they work within their home location.

For each day of the simulation we consider two time steps: a day
tep where individuals can move to their place of work, and a night
tep where those individuals move back to their home location. In each
ay step, we take each destination location 𝑑. Let 𝜆𝑑 be the number of
ligible workers who may move to the destination location. The number

of moves 𝑠 is then scaled according to the per cent change in mobility
𝑚 (see below) for the given day: 𝑠𝑚 = ⌊𝑠(1 + 𝑚

100 )⌋.
In order to improve the computational efficiency of the overall

imulation, movements of commuters between OAs were batched into
roups of 5, with movements between OAs of fewer than five individu-
ls per day retained at a proportionate rate by drawing from a binomial
istribution: 𝑠𝑚𝑡 ∼ 𝐵(𝑠𝑚,

1
5 ). If the sampled number of workers 𝑠𝑚𝑡 is less

han or equal to the number of workers who may normally move to
estination 𝑑, then those who move are sampled randomly from those
ho may normally move. However, if 𝑠𝑚𝑡 is greater than the number
f workers who may normally move to 𝑑, then the additional workers

are drawn randomly from workers who have no assigned destination
location. While this reduces the overall network link density, the effect
on transmission dynamics in this setting is negligible. We note that this
means that interpretation of the combined 𝛽𝐷 and 𝛽𝑁 must be made
with caution and not compared directly to other models.

For each night of the simulation, the workers who moved in the day
step are moved back to their origin location.

Vaccination
Vaccination is represented in the model by flagging an individual

with its vaccination status. The transmission rates affecting a vacci-
nated individual are adjusted accordingly—i.e. the probability that a
vaccinated individual receives an infection is reduced according to
vaccine effectiveness. Vaccination numbers per DZ in this study were
initiated as recorded in eDRIS data, and all doses and booster doses
were applied to individuals in the model, within each DZ and each age
lass, in the same proportions as were administered in the real popula-
ion. Vaccine effectiveness in each dose phase is a fixed parameter per

phase and per strain.
For the period after 11th Dec 2021, we assumed a modelled dis-

tribution of the booster doses that were being delivered at that time.
We distributed booster doses to all individuals in the model, who have
had their second dose, after three months (as per the actual distribution
schedule at the time). We ran one scenario with 100% uptake w.r.t. 2nd
dose, and one with 55% uptake. At a national level 2097633 boosters
had been administered by 11 Dec 2021, 3814877 s doses had been
administered by 18 Sep 2021 (12 weeks prior, thus eligible for a booster
n 11 Dec 2021), thus 55% of all eligible had their booster by 11 Dec.

More recently we also ran a final scenario based on the recorded
vaccine distribution beyond the 11th December for comparison.

Based on the available information at the time (Andrews et al.,
2021) and consistent with other approaches (Barnard et al., 2021;
Keeling et al., 2021a), we assume no reduction in outcome severity
associated with vaccinated individuals, but rely on the transitive effect
of reducing associated transmission.

Modelling COVID-19 incidence
As PHS eDRIS data gives us only the reported cases of infection, we

eed to determine the likely number of infected individuals with which
o seed the model and to use as the summary statistic for validation and
arameter estimation. For this we using methods described in Colman
t al. (2023) we estimated the proportion of infections ascertained to
e 𝑎 = 0.25 and thus the likely number of infected individuals on a
iven day, 𝜏, to be 𝐼𝜏 = 𝐶𝜏∕𝑎 where 𝐶𝜏 is the number of reported cases
n day 𝜏. As case ascertainment is expected to vary by region, we use
4 
testing data for the 32 subregions of Scotland, known as council areas,
o improve our estimates of incidence. Supposing the number of tests in
he region is 𝑠𝜏 , and 𝑐𝜏 of them are positive, while at the national scale
he number of tests is 𝑆𝜏 and 𝐼𝜏 are positive, and finally the population
f the region is 𝑛, the formula

𝜇𝑡 =
∑𝑡

𝑖=1(𝑠𝑖 + 𝑐𝑖)𝑧𝑡−𝑖
∑𝑡

𝑖=1(𝑠𝑖 + 𝑛𝑆𝑖∕𝐼𝑖)𝑧𝑡−𝑖
(1)

to give the expected number of individuals in the region who would
potentially test positive (if tested) on day 𝑡. Here 𝑧 is a hyperparameter
that we are able to adjust between smooth (𝑧 > 0) or more responsive
(𝑧 ≈ 0) outputs. We choose 𝑧 = 0.1. The derivation of this formula is
iven in the supplementary information.

We convert this daily estimate of the number of people testing
positive into a weekly number of new infections by summing 𝜇𝑡 for
each day across the 7-day period, then multiplying by a constant to
account for the duration of test-sensitivity and to correct for infected
individuals who are never test-sensitive. The value of the constant,
0.265, was chosen in such a way to create agreement between the
obtained incidence at the national scale (by summing across all regions)
and other estimates derived using the method described in Colman
et al. (2023).

Modelling transmission rate changes over time
To model the changes in activity over time — e.g. those that are

the effect of lockdowns, but also other more voluntary changes in
behaviour — we consider two factors. First, we thin movements in the
simulation (mobility reduction) in proportion to observed changes in
mobility according to Google mobility reports (Google Inc., 2022). This
is applied as a proportional change in the number of individuals making
between-OA movements on a given day (as above).

Second, physical distancing is incorporated via a reduction in con-
acts applied to both daytime and nighttime transmission rates (trans-
ission reduction). Beyond the initial fit period (see below), we fit a

hange in transmission rate over time only, assuming that posterior
istributions for all other parameters estimated based on the initial fit
emain relevant.

Parameter estimation
Simulated epidemics are compared to the spatio-temporal pattern

f COVID-19 spread in Scotland. Non-observable parameters were es-
timated using the incidence of COVID-19, according to the model
described above, during the initial Delta-dominant period.

Estimation was performed using a Sequential Monte Carlo imple-
mentation of Approximate Bayesian Computation (ABC-SMC) (Hartig
et al., 2011; Toni et al., 2009). We calibrated the model output to the

eekly incidence (number of estimated infections per week) due to
OVID-19 aggregated at the level of CAs, using this spatial variation in

ncidence across Scotland to provide the necessary signature to properly
alibrate the role of human mobility.

Simulated and observed summary statistics are compared via a score
qual to a sum of squared errors, recorded weekly:

𝑠𝑐 𝑜𝑟𝑒 =
∑

𝑤

∑

𝑙

(

𝐼𝑠𝑖𝑚(𝑤, 𝑙) − 𝐼𝑜𝑏𝑠(𝑤, 𝑙))2

where 𝐼𝑠𝑖𝑚(𝑤, 𝑙) is the weekly (𝑤) incidence per CA (𝑙) simulated and
𝐼𝑜𝑏𝑠(𝑤, 𝑙) its observed value.

The total number of infected individuals at the start of the sim-
ulation (the seeds) are fitted as part of the inference. The seeds are
andomly assigned a disease state from 𝐸, 𝐼𝑀 , and 𝐼𝑆 . Seed locations
re distributed according to the proportion of infections registered
er Intermediate Zone on the date of the start of the simulation.
ntermediate zones are neighbourhood level aggregates of approximately
ive DZs.

Uniform prior distributions constrain all parameter values to plau-
sible ranges based on the available literature relevant to the early,
pre-lockdown period. Infection dynamics are simulated via a 𝜏-leap
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algorithm using half-day timesteps (Gillespie, 2001). All parameters are
listed in Table S1.

The inference framework is run on a distributed application frame-
work (Akka) (Lightbend Inc., 2022) running on a cloud computing
infrastructure (Amazon AWS2) (Amazon Web Services Inc., 2022). The

odel code has been written using industry grade software engineering
ractices including agile development for project task planning, test
riven development, pair programming and code reviews to produce
nit tested, robust, and reusable software components. The majority of
he code has been reviewed by at least one other software developer
nd the source code is available1.

Fitting transmission rate changes over time
After fitting the initial parameter set, a further temporal refinement

s employed to improve the fit where the model cannot account for
xternal factors such as changes in transmission rate owing to NPIs or
ther changes in human behaviour not captured by the mobility data.
ere we perform a piece-wise least-squares fit over just the transmis-

ion rate 𝛽, per Council Area. This is piece-wise in the inflection points
in the case data, which largely correspond to the times at which NPIs
were enacted or relaxed.

2.3. Scoping scenarios

We modelled a range of scenarios, considering two variants (Delta
nd Omicron) with differing transmission rate advantage and levels of
accine protection. At the time of the analysis, there were limited data
n the potential of the Omicron VOC for either greater transmission
ates than the Delta VOC, or increased ability to escape either natural
r vaccine-induced immunity. We therefore generated simulations over
ossible transmission rates and vaccine escape levels for the Omicron

variant, based on this existing evidence, in order to choose combina-
tions that generate plausible trajectories of SGTF cases in Scotland.

e used values for transmission rate advantage and vaccine efficacy
from the UKHSA Technical Briefing on Variants of Concern (UK Health
Security Agency, 2021).

We modelled three levels of vaccine escape: a baseline with the
ame vaccine efficacy as Delta (Escape Level 1), a lower vaccine escape
otential (Escape Level 2) as described by the central estimates from the
KHSA Technical Briefing (90% after two doses, falling to 35% after 15
eeks, and 75% after booster), and a higher vaccine escape potential

Escape Level 3) as described by the lower efficacy bounds (65% after
wo doses, falling to 10% after 15 weeks, and 60% after booster).

We modelled two levels of transmission rate advantage for Omicron:
an increased level based on the UKHSA Technical Briefing estimate
of 3.2× household transmission, under the assumption that gener-
alised transmission rate advantages, i.e. including transmission outside
the household has a similar advantage, and an intermediate level
based on 80% of the higher level, giving a 2.25× transmission rate—
corresponding with the lower bound of the UKHSA estimate. We then
have two sets of scenarios. The first assumes the overall transmission
rate for Delta remains at the current level. The second assumes an

PI-based intervention, reducing transmission rates to 80% its previous
alue on 17th December 2021, to reflect a combination of voluntary
ehavioural change in response to new guidance, and new restrictions.
he latter scenario aims to generate a reproduction number around 0.8
or the Delta VOC, as observed during previous similar NPI restricted
eriods in Scotland (Scottish Government, 2022a).

We assumed that all parameters for the Omicron VOC were the same
s for Delta, with the exception of the transmission rate, which was
ssumed to be a fixed multiplier of the transmission rates for Delta. The
ransmission rates for Delta are from parameters jointly drawn from the

1 SCoVMod Omicron source code: https://github.com/Kao-Group/
SCoVMod-Omicron
5 
Table 1
Levels of vaccine escape (1,2,3) used in our scenarios, with level 1 being

complete protection (an efficacy multiplier of 1 on all doses). Efficacy
multiplier is applied to the base efficacy level for the vaccine dose.

Efficacy multiplier

2 dose +15
weeks

Booster

Vaccine Escape Level
1 1 1 1
2 1 0.45 0.8
3 0.72 0.15 0.63

Table 2
Scenario labels as used in figures in the exploration of scenario

plausibility.
Vaccine Escape Level

1 2 3

Transmission Level

1 a b c
2 d e f
1+NPI g h i
2+NPI j k l

posterior parameter distributions fitted for Delta from the earlier period
(i.e. from August 2021 to November 2021). Vaccine escape levels were
mplemented as a multiplier on the within-model vaccine efficacy for

Delta as in Table 1. The combination of vaccine escape and transmission
parameters generates 12 scenarios (a–l), labelled as in Table 2.

The transmission model does not take account of vaccine protec-
ion from severe disease. It either completely protects individuals or
ails completely and so if infected, results in an infection as likely to
e severe as would be the case for infection in a previously wholly
usceptible individual.

2.4. Fitting of plausible scenarios

From the scoping scenarios, we carried forward only those that
were plausible, being closest to the observed SGTF incidence trajectory.
We then adjusted the transmission rates of each to fit the growth rate
observed in incidence.

Growth rate =
ln 𝐼(𝑡𝑓 ) − ln 𝐼(𝑡0)

𝑡𝑓 − 𝑡0
where 𝐼(𝑡) is the number of infected at time 𝑡 from an initial point
(𝑡 = 𝑡0) fitted to match the SGTF incidence trajectory. We use the
time period for which we have confirmed observed Omicron cases.
We then take the growth rates for the modelled scenario (𝑔𝑚) and for
the observed incidence (𝑔𝑜) and increase the scenario transmission rate
by 𝑔𝑜

𝑔𝑚
. The reported transmission rate advantage is expressed as this

value 𝑔𝑜
𝑔𝑚

.
We then took a range of further scenarios:

NPI Level
1 2 3 4

Lower vaccine escape m o q s
Higher vaccine escape n p r t

where NPI Level 1 is as considered previously, an initial drop to
80% of the original transmission rate. Levels 2, 3, and 4 have a
further post-Christmas restriction applied with a further drop to 64%,
48%, and 40% of the original transmission rates respectively, imposing
these restrictions on 27th December 2021. As the mean of the fitted
trajectories of the fitted Delta period were observed to stabilise after
100 runs, further simulations were restricted to this number.

We take the value 𝑔𝑜
𝑔𝑚

as the estimated transmission rate multiplier
for the Omicron VOC, for both the lower and higher vaccine escape
scenarios.

https://github.com/Kao-Group/SCoVMod-Omicron
https://github.com/Kao-Group/SCoVMod-Omicron
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Fig. 2. Model fit (black line, blue confidence intervals) to observed incidence (red
rosses) for the Delta variant, after the initial ABC-based parameter estimation and
emporal transmission rate fit, national scale. The vertical line shows the final inflection
oint in the piece-wise temporal fit. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

2.5. Hospital occupancy estimates

We estimate trajectories of hospital admissions, and overall hospital
ccupancy, from the model output infections. Here, we assume that the
ge distribution of infections, rates of hospital admissions and length
f hospital occupancy are identical to that observed over the period
 May 2021 – 1 December 2021, during which the Delta variant was
ominant.

Methods are described in detail by Wood and Kao (2022). We
stimate a trajectory of hospital admissions and hospital occupancy
y time convolutions – transformations that delay and ‘‘draw out’’ the
rajectories based on known variation in the time between cases and
ospitalisations, and in the time spent by individuals in hospital with
OVID-19. The admissions trajectory is first estimated by a convolution
f cases with the distribution of times between cases and hospital-
sations, drawing from empirical distributions obtained in this prior
eriod. We then estimate an occupancy trajectory by a convolution
f the admissions trajectory with the distribution of time spent by
ndividuals in hospital with COVID-19. The number of cases is scaled
elative to infections by a case ascertainment of 25% (an estimate
onsistent with historical case ascertainment in the UK when testing
as widely available (Colman et al., 2023)). The overall hospitalisation

ate (the proportion of cases that result in an admission) is estimated
t 2.5%, age-stratified based on hospital admissions in the prior period
Table S2).

3. Results

3.1. Model fit/parameters

The fit of the initial ABC-based parameter estimation to the ob-
served data, with the resultant posterior distribution of estimated pa-
ameters is shown in Figure S2. Fig. 2 shows the trajectory of incidence

in the model compared to the observed data (accounting for case
ascertainment), with detail at the Council Area level shown in Figure
3. Notably, the final imposed transmission rate change in the piece-
ise temporal transmission rate fit is at the start of October 2021, with

he final incidence inflection point in mid-November being a natural
result of the modelled dynamics and fitting well with the observed

ncidence.

6 
3.2. Scoping scenario results

The dynamics of infection with respect to the Delta and Omicron
ariants are directly compared in Fig. 3 showing trajectories both with
nd without NPI’s in place.

Figure S4 and Figure S5 provide additional detail, including con-
idence intervals, showing respectively trajectories without and with
urther NPI’s in place from 17th December, and showing the range of
imulations and a comparison to the observed incidence.

3.3. Selection of plausible scenarios

We compared scenarios to the observed incidence of SGTF-only
cases adjusted by our modelled case to infection ratio. Only a few
scenarios, all with the higher transmission rate were close to estimating
the true trajectory (growth rate) of Omicron infections (Figures S6 and
S7). Hence, we restricted further scenario development to the most
lausible of these.

We carry forward only scenarios k and l as being closest to the
bserved SGTF case trajectory, also under the assumption that the
easures already in place would have had some impact. Scenario k
as the lower and l the higher estimate for vaccine escape. Both have
he higher transmission rate estimate. We then adjust the transmission
ates of each to fit the growth rate observed in cases.

3.4. Fit scenario results

By fitting the growth rate to that of the observed Omicron cases, we
achieved an initial modelled growth rate consistent with the limited
knowledge of the early Omicron outbreak. Fig. 4 shows the fit to
observed case data (including knowledge of observed Omicron cases
after 11th December that were not known at the time of original
modelling).

We saw little difference between the different strategies for forward
distribution of vaccines (55% and 100% uptake of boosters with respect
to the uptake of 2nd doses). Figure S8 shows in detail the effect of the
different strategies, including a model with the actual uptake post-11th
December for comparison.

Based on the calculated transmission rate multiplier, we estimated
micron to have a transmission rate advantage over Delta of 5.3× in the

ower vaccine escape scenario, and an advantage of 5.1× in the higher
accine escape scenario.

Not even the severest restrictions considered (a reduction of trans-
mission rate to 40% of the rate in mid November) resulted in a
substantial reduction in cases, implying that restrictions alone were not
likely to be sufficient to reduce the reproduction number below one
at that time. Fig. 5 shows the range of post-Christmas NPI scenarios
(central estimates). Figure S9 details the NPI scenarios with confidence
intervals.

3.5. Hospital occupancy estimates

We estimate hospital admissions and hospital occupancy for Scenar-
ios m and n in Fig. 6. We emphasise that we generated these trajectories
on the assumption that the hospitalisation behaviour (admission rate,
length of stay) for Omicron were identical to that of Delta between
1 May 2021 and 1 December 2021 (Table S2); it later became clear
that the case-to-hospitalisation rate of Omicron was in fact significantly
lower than that of Delta (Sheikh et al., 2022). The overall (purple)
curves are combined admissions and occupancy from Omicron and
Delta. We again include data of observed admissions (with the dis-
crepancy between data and model confirming the lower severity) and
occupancy past 11th December, not known at the time of original
modelling.
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Fig. 3. Comparison of scenarios with no additional NPIs (left) and additional NPIs (right). Central estimate from 200 model runs, from the vaccination distribution scheme with
5% uptake. With lower transmission rate: a–c, g–i; higher transmission rate: d–f, j–l; and increasing vaccine escape within each group. The trajectory of the Delta variant is shown

as a dashed line. Simulation trajectories with confidence intervals are shown in Figure S4 and Figure S5.
Fig. 4. Adjusted transmission rate scenarios (log scale) for the 55% uptake vaccine distribution scheme: lower vaccine escape (left), higher vaccine escape (right). Dots represents
bounds for 95% of 200 simulations. Observed values prior to the vertical line (11th December) were the data available at the time of fitting, used to fit the growth rate; observed
values subsequent to this date were added later for comparison.
Fig. 5. Adjusted transmission rate scenarios, lower vaccine escape (left), higher vaccine escape (right), with a range of post-Christmas NPI levels. Figure S9 details the scenarios
with confidence intervals.
v

s

4. Discussion

In this study we have adapted an existing model, that was used
to provide the Scottish Government with medium term projections
of cases of COVID-19 across Scotland over much of the ‘‘emergency’’
period of COVID-19 restrictions. While many of the results were similar
to those that have been described by more parsimonious models, the
spatially detailed individual-based model described here does have
some advantages. In particular, the local spatial heterogeneity in dis-
tribution of prior immunity (from Delta) and heterogeneity on vaccine
distribution and uptake are relevant when attempting the estimate

the effect of vaccine escape and transmission rate advantage, and

7 
(while not directly considered in this analysis) therefore allows for
direct consideration of the impact of, for example, targeting improved
accination uptake on the basis of local cases numbers plus deprivation.

The model was adapted to account for the transmission of two
trains of SARS-CoV-2 with different levels of vaccine immune escape,

in order to mimic the properties of the emergent Omicron VOC as
known at time of analysis. Because this was a period of sustained consis-
tent exponential growth, with no obvious change in interventions, this
allowed us to fit a single model assuming a single baseline transmission
rate. In the scenario models we showed that, under plausible levels of
immune escape, only transmission rate advantages of between 5.1× and
5.3× result in trajectories consistent with the observed numbers of cases

with SGTF (assumed to be the Omicron variant). These estimates are
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Fig. 6. Estimated hospital admissions and occupancy from the infections trajectories in scenarios m and n, assuming the hospitalisation admission rates and occupancy for Omicron
re identical to that of Delta.
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consistent with other estimates at the time (at the upper ranges, though
ell within the published CIs) (Ito et al., 2022; Viana et al., 2022).

While further combinations of transmission rate advantage and vaccine
escape may of course be plausible, in our view the scenarios we exam-
ned provided a suitable backdrop on which to further investigate the
mpact of interventions beyond those imposed in mid-December and to
rovide reasonable mid-range forward projections of case numbers.

We saw little difference between the different vaccine uptake sce-
arios in the model. This is most likely because the landscape of

immunity already present at the time of the Omicron outbreak has a
ubstantially greater impact on transmission than the relatively small
umber of doses administered in the short period after the outbreak.
ence we consider a reasonable best estimate at projected distribu-

ion is sufficient for modelling a short to medium-term projection of
nfections. This would most likely not be the case for longer-term
rojections. While there is some evidence that immune protection is at
est, partial (Lind et al., 2023), it is difficult to translate the outcomes

from the correctional institute setting of these data to our analysis
of general circulation in Scotland. Further it is not likely to have a
ubstantial impact over short and medium term projection periods
hough it does place important restrictions on the validity of longer
erm projections.

We also saw that the imposition of post-Christmas NPI restrictions
hat were likely to have little effect, firstly because the transmission
ate advantage of the Omicron variant was so high, but also because
ost-Christmas the rapid outbreak would likely have already peaked
eaning any restrictions at that time would likely have come too late.

One important assumption in the model was that vaccinated in-
dividuals who become infected, were as likely to experience severe
 i

8 
disease as others. While it is known that vaccines do provide very
good protection against severe infection with the Delta VOC, such
data were not available at the time for the Omicron VOC. With its
observed greater ability to evade vaccine induced protection, this was
chosen as the more conservative option. We also assumed complete
ross immunity between strains. It is known now that this is not the
ase, but again there was little data available at the time to make
n assessment on this. Finally, we assumed no change in virulence or
utcomes. Whilst estimates from South Africa were available, there was
lso a very different immunity landscape and a much lower vaccine
ptake in that region, so we felt that we could not compare well enough
o make assumptions.

We observe that our final adjusted scenarios remained consistent
with observed Omicron cases beyond the observations available at
the time of fitting. Despite assumptions, we have shown that it was
possible, with a model that had been developed over the course of
the Delta variant period to make a rapid and reasonable estimate of
the impact of a new variant with little knowledge about its detailed
ynamics, an analysis aided by the tracking of immunity throughout
he population during the Delta period at fine geographical scale, and

thus facilitating the model’s ability to simulate the finer detail of the
spatial spread of the new variant.

A retrospective comparison with the observation data available after
the analysis period shows that the model’s projection of both the scale
nd timing of the Omicron outbreak and the likely utility, or lack

thereof, of post-Christmas NPIs were consistent with the outcome data
and therefore could be considered predictive. This indicates that for
hat time period, the landscape of immunity prior to a variant outbreak,
f it has a significant transmission rate advantage, was much more
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important for modelling the dynamics of the initial outbreak than any
horter-term change in immunity or contact patterns after the outbreak
as taken hold. We have shown that how a computationally intensive
ndividually-based spatial simulation model was used under conditions
f urgent, policy-relevant needs, and that this model provided robust
dvice to the Scottish government. Such an approach does come with
ome cost. The model complexity can make model alterations unwieldy,
hough in this case, this was mitigated by the availability of a dedicated
oftware developer. It also is expensive in terms of compute time
nd resource, and this is exacerbated by the challenges of parameter
nference with a large number of fitted parameters.

Using this framework, further work could be done to improve the
odel’s capacity to generate projections. A previous analysis (Wood

t al., 2023) has identified the importance of finer-grained age de-
ographics, household sizes, and student populations in determining

he distribution of cases over the whole delta and omicron periods.
herefore the inclusion of these factors are likely to be important for
he observed patterns that our model captures. Further work could be
one to refine the simulation approach along these lines, however this
ies beyond the scope of this paper.

While similar conclusions could be made with more parsimonious
approaches, our spatially explicit model would have been well set up
to examine more refined interventions such as improving vaccination
uptake in deprived areas, should there have been evidence this was
merited. By building upon a professionally developed code base and
with the availability of appropriate high-granularity data, we were able
to provide timely advice to the Scottish government, on timescales
imilar to other teams, providing support for the development and
tility of similar approaches in the future.
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