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Abstract: Understanding the interactions between solutes and solvents is vital in many areas of
the chemical sciences. Solvation free energy (SFE) is an important thermodynamic property in
characterising molecular solvation and so accurate prediction of this property is sought after. The
One-Dimensional Reference Interaction Site Model (RISM) is a well-established method for modelling
solvation, but it is known to yield large errors in the calculation of SFE. In this work, we show
that a single machine learning free energy functional for RISM can accurately model solvation
thermodynamics in multiple solvents. A convolutional neural network is trained on solvation
free energy density functions calculated by RISM for small organic molecules in approximately
100 different solvent systems. We achieve an average RMSE of 1.41 kcal/mol and an R2 of 0.89 across
all solvent systems. We also compare the performance for the most and least commonly represented
solvents and show that higher accuracy is generally seen with higher volumes of data, with RMSE
values of 0.69–1.29 kcal/mol and R2 values of 0.78–0.97 for solvents with more than 50 data points.
We have shown that machine learning can greatly improve solvation free energy predictions in RISM,
while demonstrating that the methodology is generalisable across solvent systems. This represents a
significant step towards a universal machine learning SFE functional for RISM.
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1. Introduction
Solvation Free Energy

The process of solvation, as defined by Ben-Naim, is the transfer of one solute molecule
from a fixed position in the ideal gas phase to a fixed position in the liquid phase at a
given temperature and pressure [1]. The solvation free energy (SFE) is the reversible work
associated with the transfer of the solute molecule from the gas phase to the liquid phase.
SFE is important in many areas, such as drug discovery, as it may be used in the predic-
tions of solubility and octanol-water partition coefficient (logP) [2–4], and environmental
chemistry, as it is useful in understanding pollutant distributions in different aqueous
environments [5,6].

Generally, the SFE of solutes with low vapour pressures must be obtained indirectly
from separate measurements of the solubility and pure compound vapour pressure by
a thermodynamic cycle via the gas-phase. Experimental SFE determination is often a
lengthy and difficult process, so many computational approaches have been developed for
its prediction.

SFE prediction methods can be separated into implicit and explicit methods. Implicit
methods are characterised by a simplified representation of the solvent in which no sol-
vent particles are explicitly modelled. Continuum models are the most common form of
implicit methods, in which the solvent is represented by a homogeneous polarisable
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medium described by a dielectric constant. A commonly used implicit model was devel-
oped by Cramer et al. [7], a universal model named SMD, which uses full solute electron
density in place of atomic partial charges. The SFE consists of two components: bulk elec-
trostatics calculated using the nonhomogeneous Poisson equation, and a cavity-dispersion
term, which calculates the free energy required for forming a cavity in the solvent in which
to place the solute, and short-range interactions between solute and solvent within the
region of the first solvation shell. Cramer et al. also proposed the SMx models, the latest
of which is SM12 [8–10], which implements the Generalised-Born (GB) approximation in
conjunction with SASA to compute solvent effects. This model was parameterised for
many different thermodynamic properties, including SFE predictions for both neutral
and ionised species in both aqueous and organic solvents. The PCM by Tomasi et al. [11]
implements a non-uniform dielectric treatment by accounting for the polarisability of
the solvent and local polarisation effects around the solute. The PCM has been further
developed in many ways, including the conductor-like PCM [12], which implements
a boundary condition for conductor-like solvation screening, and the integral equation
formalism [13,14], which allows bespoke dielectric treatment depending on the nature of
chemical species. Additionally, the COSMO [15] approach calculates interaction energies
between the solute and the dielectric continuum by determining the response of the contin-
uum to screening charge distributions formed at the solvent accessible surface of the cavity
formed around the solute. This boundary is discretised and the charge distributions are
calculated, with exact solutions achievable for electric conductors.

Whilst implicit methods do provide reasonable accuracy and are computationally
efficient, many physical phenomena which affect the solvation process, such as the reorien-
tation of particles, are crudely approximated. This results in failure to accurately capture
many local effects. The dielectric constant treatment may exhibit shortcomings in capturing
local interactions which would be observed between solute and solvent molecules, such
as electrostatic interactions at the solute–solvent interface, charge distribution changes in
solvent molecules, and spatially induced changes to the solvent dielectric constant due to
solute behaviour.

Explicit methods offer a more rigorous approach to simulating chemical systems by
explicitly modelling both the solute and solvent particles. This allows the simulation of
specific solute–solvent interactions in which local effects may be thoroughly probed. This
additional level of molecular representation allows for a more physically realistic approach
to the simulation of chemical systems. Populating a virtual space with a large number of
additional simulated particles, i.e., solvent molecules, increases the computational expense
considerably when compared to implicit models. Explicit solvent simulations are not
generally amenable to high-throughout computing because of their computational expense.
Additionally, the values of structural and thermodynamic data obtained from simulation
may depend on the extent to which the configurational space has been sampled, with the
result that there is a trade-off between efficiency (simulation time) and repeatability that
introduces statistical noise to property estimates.

Explicit solvent methods for the calculation of SFE are commonly based on molecular
dynamics (MD) or Monte Carlo simulations. Alchemical free energy calculations can
be used to compute SFE. Sherman et al. [16] employed MD/free energy perturbation
simulations to calculate the SFE as a transfer energy of a solute molecule transitioning from
the ideal gas phase to the solvent, reporting an error of 1.1 kcal/mol. Leung et al. [17]
used ab initio MD alongside thermodynamic integration to calculate the SFE of various
ions to within approximately 2.5% of experimental observations. Although methods based
on explicit solvent simulation (MD/MC) can provide accurate estimates of solvation free
energies for small organic solutes in favourable circumstances, they are less reliable for
larger, polyfunctional organic molecules, where issues caused by inaccurate forcefields or
incomplete sampling of conformational/configurational space become more pronounced.
A good example of these issues is provided by the results of the SAMPL challenges, in
which entrants were asked to make blinded predictions of the HFEs of pharmaceutically
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and environmentally relevant molecules [18–20]. The best predictions were in the range
RMSE = 2.5–3.5 kcal/mol, which equates to an ∼2 log unit error in the related equilibrium
physicochemical property (e.g., solubility, pKa, etc.). As the authors of these challenges
observed, “Accurate calculations of more complex properties or events will remain over the
horizon until these more basic values [HFEs] can be predicted with greater accuracy” [18].
Moreover, computing power limits the size of the system that can be reliably modelled
using explicit solvent simulation, and even for smaller systems may limit the number of
simulations that can be run. Given that every solute and solvent molecule within the system
is modelled, many interactions must be computed at any given system state, particularly
when compared to implicit methods. This computational expense increases with larger
systems, requiring the use of more powerful processing units. For large systems, additional
considerations are often required to improve the computational feasibility, and techniques
such as coarse-graining have proven effective in this endeavour [21,22].

Comparisons between the use of implicit and explicit models for the prediction of
SFE have been the focus of many studies. Shivakumar et al. [23] calculated the absolute
hydration free energies of 239 ligands commonly used in drug-like compounds using
both explicit and implicit water models. It was found that the explicit method generally
outperformed the implicit method, but that the implicit method had good agreement
with the explicit method when using the Poisson–Boltzman (PB) model. Additionally, the
implicit method was much more sensitive to parameter changes, such as atomic charges
and dielectric coefficients. The ESE-GB-DNN method proposed by Vyboishchikov employs
terms calculated from a Generalized-Born implicit solvent model as input to a deep neural
network for the calculation of SFE [24]. Steinmann et al. [25] focused on an organic
adsorbate chemisorbed at a metal–liquid interface and compared the SFE calculations of an
implicit and explicit approach. It was found that each method yielded the same general
conclusions in terms of the stability profiles of different chemical species, but that the
explicit method had generally better agreement with experimental findings. Interestingly,
neither method accurately described the adsorption strength of water on the metal surface.
VanderSpoel et al. [26] explored the use of implicit and explicit approaches to calculate the
SFE of organic solutes in organic solvents, using various different methods. It was observed
that the implicit methods were less accurate than explicit methods, but that the PB implicit
method was in much closer agreement to both the explicit and experimental results than
the GB variants. Errors of 15 kJ/mol and 6 kJ/mol were observed for the implicit GB and
PB methods, respectively, while the explicit method yielded an error of 4.8 kJ/mol.

An alternative approach for modelling molecular solvation is the Reference Interaction
Site Model (RISM), initially proposed by Chandler et al. [27], which captures specific solute–
solvent interactions while circumventing the need for large-scale modelling of many solute
and solvent molecules. The RISM models are a method derived from integral equation
theory (IET), which captures how a solute and solvent interact in such a way that the
solvent density distribution around a solute molecule can be calculated. RISM comes in the
form of 1D-RISM and 3D-RISM, which differ in the dimensionality of the integral equations
involved. The approach of 1D-RISM solves integral equations between solute and solvent
sites (atoms) over a radial distance, while 3D-RISM solves integral equations over a set
of 3D coordinates, which allows for modelling of the spatial distributions of solvent sites
around a solute molecule. With 1D-RISM models, both the solute and the solvent molecules
are represented as a set of sites (atoms), while 3D-RISM considers the full solute molecule
as a single entity. In recent years, 3D-RISM has been more commonly used than 1D-RISM.

In 2010, Palmer et al. [28] showed that 3D-RISM lacked the ability to accurately
predict SFE, resulting in errors of approximately 17 kcal/mol, and so proposed a uni-
versal correction. Based on earlier findings by Chuev et al. [29], Palmer et al. [30], and
Ratkova et al. [31], where it was found that the partial molar volume correlated with the
difference between experimental SFE and that predicted by 1D-RISM methods, the partial
molar volume was used with a scaling coefficient and a bias correction term to improve the
3D-RISM SFE predictions. Truchon et al. [32] showed that the non-polar component of 3D-
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RISM is the cause for inaccurate SFE prediction, while the electrostatic component requires
no correction. They implemented a correction factor such that the non-polar component bet-
ter describes repulsions between the oxygen in water and the solute such that solvent cavity
formation is better described. Sergiievsky et al. [33] developed a pressure correction (PC)
and an expansion upon this correction (PC+), originally for molecular density functional
theory, in order to compensate for the overpressure resulting from homogeneous reference
fluid approximation. Misin et al. then applied these corrections to 3D-RISM calculations
in SFE prediction, finding that the accuracy did increase with the corrections [34]. This
correction was later applied alongside solvent LJ approximations for coarse-grained solvent
models and non-polar or weakly polar solvents [35], followed by an additional study in the
use of this pressure correction as a means to describe the effects that salt has on solutes [36].

The standard 1D-RISM methods commonly produce errors of up to 20 kcal/mol
in the prediction of SFE and so are not routinely used for the calculation of solvation
thermodynamics. Ratkova and Fedorov [37] developed a model in which hydration free
energy (HFE) calculations using 1D-RISM are improved using a cheminformatics-based
correction. A multilinear regression model is trained on molecular features, such as the
partial molar volume and various structural descriptors, to offset the error between the
experimental and 1D-RISM-calculated HFE values. Fowles et al. [38] developed a machine
learning approach trained on 1D-RISM calculations to predict the SFE in water, chloroform,
and carbon tetrachloride. RMSE values with the 1D-RISM calculations themselves ranged
between approximately 16 and 44 kcal/mol for two of three investigated approaches, with
the third approach showing much lower error of approximately 1.8 to 6 kcal/mol. After
training a machine learning model on these data, the RMSE values then dropped to below
1 kcal/mol. This approach was later applied to a multi-output model for the simultaneous
prediction of the free energy, enthalpy, and entropy of hydration [39].

In this work, we use a machine learning model trained on the output of 1D-RISM
calculations to accurately predict the SFE of various solute/solvent combinations. Ad-
ditionally, we expand the number of solvents with the aim to make it feasible to make
accurate SFE predictions for any combination of solute and solvent using this approach.

2. Theory
2.1. 1D-RISM

RISM is a method derived from the Integral Equation Theory (IET) of liquids, which
is an implicit solvent model which uniquely describes interactions between solute and
solvent particles to yield radial distribution functions (RDFs), which describe solvent
density around the solute. This approach is effective as it provides a sufficient molecular
description of solute molecules while being less computationally intensive than explicit
solvent simulation, allowing for fast calculations of SFE.

The IET of atomic liquids is described by the Ornstein–Zernike (OZ) equation, which
defines the total correlation function between two spherically symmetric particles in a
homogeneous solvent, shown in Equation (1):

h(r12) = c(r12) + ρ
∫

c(r13)h(r32)dr3, (1)

where h(rij) and c(rij) are the total and direct correlation functions, respectively, between
particles i and j, and ρ is the solvent density. The OZ equation is only applicable to
simple atomic liquids, which is insufficient for chemical applications where more complex
liquids are routinely used. Hence, the OZ equation has been generalised to the Molecular
Ornstein–Zernike (MOZ) equation, which considers non-spherical molecules and is shown
in Equation (2):

h(r12, Θ1, Θ2) = c(r12, Θ1, Θ2) +
ρ

Z

∫
c(r13, Θ1, Θ3)h(r32, Θ3, Θ2)dr3dΘ3, (2)
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where r12 and Θ1 and Θ2 are the displacement and the orientation, respectively, of particles 1
and 2. In this case, r is defined by a set of coordinates, (x, y, z), and Θ is defined by three
Euler angles, (ψ, θ, φ). Z is equal to 4π for linear molecules, where only two angles are
required to describe the molecule, or 8π2 for non-linear molecules, where three angles
are required.

The 1D-RISM approach uses a one-dimensional approximation of the MOZ equation,
based on spherically symmetric site–site correlation functions. In this approach, a modelled
molecule is considered as a set of sites, each of which is spherically symmetric, where every
atom is a single site. There are three types of correlation function present in the RISM
theory: intramolecular correlation functions, ω(r), total correlation functions, h(r), and
direct correlation functions, c(r), each of which depends only on the radial distance, r,
between sites and has no angular dependencies.

In RISM calculations, the derived integral equations are solved in combination with
a closure relation. The closure relation imposes limitations on the derived equations and
ensures that there is self-consistency between pair correlation functions and the direct
correlation function. To obtain solutions which are accurate beyond the mean-field ap-
proximation, it may be necessary for the integration over an effectively infinite series of
integrals, which is not computationally feasible. Hence, a bridge functional is introduced
to the closure relation, which quantifies the spatial contributions in the solvent density
distribution and accounts for the correlations between solvent molecules. This reduces the
necessity for an infinitely expansive integral series by helping to describe the part of the
direct correlation function which cannot be easily determined from the solvent structure.

The structure of a molecule is described by the intramolecular correlation functions,
ω(r). For two sites in a given molecule, denoted u and u′, the intramolecular correlation
function is shown in Equation (3):

ωuu′(r) =
δ(r − ruu′)

4πr2
uu′

, (3)

where ruu′ is the distance between the two sites and δ(r − ruu′) is the Dirac delta function.
A single molecule will be described by a set of intramolecular correlation functions as these
functions are site-pairwise in their description.

Intermolecular correlations between solute and solvent molecules are described by
both pairwise total correlation functions and direct correlation functions, and are shown in
Equation (4) for the solute site u and the solvent site v:

huv(r) = guv − 1, (4)

where huv(r) is the total correlation function and guv(r) is the RDF of the solvent site around
the solute site. Additionally, a total correlation function between sites of different solvent
molecules, hvv′(r), is used to describe the distribution of solvent sites, v′, of one molecule
around the solvent site, v, of another solvent molecule. Hence, both solute–solvent and
solvent–solvent total correlation functions are calculated.

In 1D-RISM, the total and direct correlation functions are related to one another
through the derived integral equations, shown in Equation (5):

huv(r) =
M

∑
u′=1

N

∑
v′=1

∫
R3

∫
R3

ωuu′(|r1 − r′|)× cu′v′(|r′ − r′′|)χvv′(|r′′ − r2|)dr′dr′′, (5)

where r = |r1 − r2| and χvv′(r) are the bulk solvent susceptibility functions and M and
N are the number of sites of the solute and solvent, respectively. Bulk solvent sites have
mutual correlations which are described by χvv′(r), which may be obtained via the sol-
vent total correlation function, hvv′(r), and a 3D structure of the solvent molecule, and



Liquids 2024, 4 715

therefore, the intramolecular correlation function, ωvv′(r). Equation (6) shows the mutual
correlation function:

χvv′(r) = ωvv′(r) + ρhvv′(r), (6)

where ρ is the bulk number density of the solvent.
To allow the total and direct correlation functions to be obtained by numerical solution

of the RISM equations, M × N closure relations are introduced, the general form of which
is shown in Equation (7):

huv(r) = e(−βuuv(r)+γuv(r)+Buv(r)) − 1, (7)

where u = 1, ..., M, v = 1, ..., N, β = 1/kBT, uuv(r) is a pair interaction potential between
solute and solvent sites, and Buv(r) is a site–site bridge functional.

Generally, the interaction potential consists of short-range and long-range components.
It is common for the short-range interactions to be described by an LJ potential, while
the long-range interactions are described by an electrostatic term. Equation (8) shows the
components of the interaction potential:

uuv(r) = uel
uv(r) + uLJ

uv(r),

uel
uv(r) =

quqv

r
,

uLJ
uv(r) = 4εLJ

uv

(σLJ
uv
r

)12

−
(

σLJ
uv
r

)6
, (8)

where qu and qv are the partial charges of the solute and solvent sites, respectively, of
interest, and εLJ

uv and σLJ
uv are the solute–solvent LJ parameters.

A bridge functional can be selected to increase the accuracy of the closure relations by
accounting for higher-order correlations that are not considered in the mean-field approxi-
mation. The simplest bridge functional is the Hypernetted-chain (HNC) approximation,
which sets Buv(r) = 0. While this may be the most computationally inexpensive approx-
imation, this results in a lesser degree of control in the exponent of Equation (7), which
often leads to convergence issues, in which case, no solution is found. An improvement to
this approximation is the Kovalenko–Hirata (KH) closure, which linearises the exponent
above a threshold constant, C. The linearisation is shown in Equation (9):

huv(r) =

{
eΞuv(r) − 1 Ξuv(r) ≤ C,
Ξuv(r) + eC − C − 1 Ξuv(r) > C,

(9)

where Ξuv(r) = −βuuv(r) + γuv(r). When C tends to infinity, the KH closure becomes equal
to the HNC closure. This approach allows the capturing of short-range interactions, while
still setting them to 0 via the HNC closure in cases where observations of short-range
interactions are not likely.

2.2. Solvation Free Energy Functionals

In a given system, the free energy of solvation may be obtained analytically through
single-point calculations after the total and direct correlations functions have been com-
puted by RISM. The HNC and KH closures have been used to derive SFE functionals for
1D-RISM, shown by Equations (10) and (11), respectively:

∆GHNC
solv = 2πρkBT ∑

uv

∫ ∞

0
[−2cuv(r)− cuv(r)huv(r) + h2

uv(r)]r
2dr, (10)

∆GKH
solv = 2πρkBT

N

∑
s=1

M

∑
a=1

∫ ∞

0
[−2cuv(r)− cuv(r)huv(r) + h2

uv(r)Θ(−huv(r))]r2dr, (11)
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where ρ is the solvent bulk number density, kB is the Boltzmann constant, T is the temper-
ature, and h(r) and c(r) are the total and direct correlation functions, respectively. It has
been found that the error of these functionals is too high for common use, with observed
errors of the order of 20 kcal/mol. An alternative method is the Gaussian Fluctuations (GF)
functional, shown in Equation (12):

∆GGF
solv = 2πρkBT

N

∑
s=1

M

∑
a=1

∫ ∞

o
[−2cuv(r)− cuv(r)huv(r)]r2dr. (12)

Additionally, an improvement to the HNC functional was proposed: the repulsive bridge
extension, shown in Equation (13):

∆GHNCB
solv = ∆GHNC

solv + 2πρkBT ∑
uv

∫ ∞

0
(huv(r) + 1)(e−BR

uv(r)−1))r2dr, (13)

where BR
uv(r) is the repulsive bridge correction function. The bridge functional for a given

pair of solute, u, and solvent, s, sites is shown in Equation (14):

e−BR
uv(r) = ∏

v′ ̸=v

〈
ωvv′ × e(βεuv′ (

σuv′
r )12)

〉
, (14)

where ωuv′ are intramolecular correlation functions, and εuv′ and σuv′ are the LJ parameters
for the site–site pairwise potential. Both the GF functional and the repulsive bridge exten-
sion to the HNC functional provide improved descriptions of the solvation thermodynamics
compared to standard HNC and KH functionals [38,40].

2.3. Solvation Free Energy Densities

To define a machine learning SFE functional, we begin by noting that the standard
RISM SFE functionals as described previously may be reduced into a general form, shown
by Equation (15):

∆GRISM =
∫ ∞

0
w(r)dr, (15)

where the integrand, w(r), consists of a function of the total and direct correlation functions
of a single solute, as well as the prefactor, 2πρkT. w(r) may be used to discern a set
of variables which quantify the solvation effects between solute and solvent molecules
at a set distance, r, from the solute. This function, known as the solvation free energy
density (SFED), is the input to the ML SFE functional. SFED functions may be derived from
the previously mentioned functionals, HNC, KH, and GF, shown in Equations (16)–(18),
respectively:

HNCw(r) = 2πρkT × ∑
uv
[−2cuv(r)− huv(r)(cuv(r)− huv(r))], (16)

KHw(r) = 2πρkT × ∑
uv
[−2cuv(r)− huv(r)cuv(r) + h2

uvΘ(−huv(r))], (17)

GFw(r) = 2πρkT × ∑
uv
[−2cuv(r)− huv(r)cuv(r)]. (18)

2.4. Model Performance

The predictive accuracy of a model is typically quantified by statistical analysis.
Once a set of predicted values are output, they can be compared to the known tar-
get values and the agreement between these two sets can be measured in many ways.
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Equations (19) and (20) show the formulae for the coefficient by determination (R2) and
the root mean squared error (RMSE), respectively.

R2 = 1 −
∑N

i=1(y
i − yi

exp)
2

∑N
i=1(yi − M(yi

exp))
2

, (19)

RMSE(y, yexp) =

√√√√ 1
N

N

∑
i=1

(yi − yi
exp)

2, (20)

where index i runs through the set of N selected samples, M() indicates a mean, and yi and
yi

exp are the predicted and experimental target values, respectively. R2 provides a measure
of how well the output predictions match the target values with respect to the y = x line, as
a perfect set of predictions will reside on this line. RMSE provides a measure of the average
difference between the predicted and target values, and also describes the combination of
both the systematic and random error. The total deviation can be split into two parts: bias
(or mean displacement, M), and the standard deviation of the error of prediction (SDEP),
shown in Equations (21) and (22), respectively.

bias = M(y − yexp) =
1
N

N

∑
i=1

(yi − yi
exp), (21)

SDEP = σ(y − yexp) =

√√√√ 1
N

N

∑
i=1

(yi − yi
exp − M(y − yexp))2 (22)

The bias gives the systematic error, which can be corrected by the addition of a simple
constant term in the final model. The SDEP gives the random error which is not explained
by the model and cannot be corrected as bias can. The bias and SDEP are connected through
the RMSE, given by Equation (23).

RMSE(y, yexp)
2 = M(y − yexp)

2 + σ(y − yexp)
2. (23)

Models which report an RMSE greater than the standard deviation of the experimental
data offer less accurate predictions than the null model provided by the mean of the
experimental data.

3. Materials and Methods
3.1. Overview

Previously, work was undertaken to predict the SFE of small organic molecules in
four different solvents; water, methanol, chloroform, and carbon tetrachloride [39]. A
convolutional neural network (CNN) was trained on SFED data that resulted from 1D-
RISM calculations for the accurate prediction of SFE. The focus of the work detailed in
this paper is to expand this approach to a larger number of solvents such that the SFE
of any solvent/solute combination can be predicted. Hence, SFE predictions have been
made using a reoptimised CNN for over 100 different solvent systems with a variety of
different small organic solutes. A workflow was developed for this to produce the required
input files for the RISM calculations, as well as performing the RISM calculations and
CNN predictions.

3.2. Dataset Compilation

Vermeire et al. [41] compiled several datasets containing various experimental SFE
and enthalpy values at different temperatures. The work discussed in this paper made use
of the CombiSolv-Exp (CSE) dataset. After applying structural filters and completing RISM
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calculations, the resulting dataset consisted of 2698 samples, each consisting of a unique
combination of solute and solvent.

In order to perform 1D-RISM calculations, the generation of several inputs was re-
quired. Forcefield parameters and structure files were required for both the solute and
solvent molecule for a given pair, and the density of the pure solvent was also required.
The general AMBER forcefield (GAFF) was used to model both the solute and solvent
molecules and non-bonded parameters were obtained using Antechamber and tLEaP [42].
GAFF was used because it is a high-throughput method able to create a consistent set
of parameters for all samples. The structure files were generated by converting SMILES
strings to pdb files using OpenBabel [43] for all solutes and solvents. Solvent densities were
obtained from various freely available libraries.

3.3. 1D RISM Calculations

PyRISM [44] was used to carry out 1D-RISM calculations using the KH closure within
a system consisting of 16384 grid points over a 20.48 Å radius from the solute. The extended
reference interaction site model (XRISM) was used for all calculations to allow for the same
treatment of both organic and non-organic solvents.

The SFE calculations were performed using the KH, HNC, and GF free energy func-
tionals, with the assumption of infinite dilution. The modified direct inversion of the
iterative subspace (MDIIS) solver was used for these calculations as it achieves convergence
quickly when compared to other solvers. The following parameters were used to solve
the equations: lambda = 10, picard damping = 0.1, depth = 16, and tolerance = 10−5. The
lambda parameter dictates the extent of discretisation in the RISM calculation. With a
lambda value of 1, a single calculation is performed before an output is given, while a
lambda value of 10 means the calculation is performed a total of 10 times. A random guess,
as described earlier, is used to perform the first calculation, while the output serves as the
initial guess for the next calculation. This allows the calculation to iterate over several initial
guesses to allow for a more robust methodology at the cost of increased calculation time.
The Picard damping parameter applies an operator to the output of the RISM calculations
to manipulate the extent to which the resulting c(r) deviates from the initial c(r). The
higher the Picard damping value, the more the initial c(r) is retained, resulting in slower
convergence and decreased chance of divergence. With the MDIIS solver, a solution plane
is explored and an optimal orthogonal plane is identified to increase the iterative subspace
and increase chances of converging on a solution. The depth parameter sets the number of
previous solutions that are saved, along with residuals, which are the difference between
consecutive solutions. The residuals are then compared to the tolerance parameter. If the
tolerance is met, then the calculation ends and produces an output, otherwise the calcula-
tion will continue until either the tolerance is met or it is determined that convergence is
not possible.

3.4. SFED Processing

The SFED is a functional of the total and direct correlation functions between a solute
and solvent molecule, dependent on the systems conditions (such as temperature) and the
choice of RISM bridge and SFE functional. Here, SFED was calculated from Equation (18)
based on the GF SFE functional. The choice of SFE functional has previously been shown
to have little influence on the obtained form of the SFED function [38]. System conditions
were kept constant throughout all calculations.

Post-processing of the SFED outputs involved grid reduction to remove highly cor-
related data. Every 40th grid point up to an 8Å radius was retained, which additionally
removed noisy data corresponding to long-range separation between the solute and solvent.
This resulted in a feature vector of length 160 that was used in the training of a machine
learning model.

Figure 1 shows the total and direct correlation functions between solute and solvent
sites. Figure 1a shows a selection of the solute–solvent site pairs between which total
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correlation functions, hsα, are calculated. In practice, a total correlation function is cal-
culated between every possible solute–solvent site pair, though in practice some may be
identical due to symmetry in the solute or solvent. Hence, in the example of methanol
and water, there are 18 total correlation functions calculated. The figure also illustrates
an intramolecular correlation function, ωss′(r), in the methanol molecule. Each molecular
structure involved in the RISM calculation will be described by intramolecular correla-
tion functions, where one of these functions will be calculated for each site-pair within
the molecule, e.g., water will be described by three intramolecular correlation functions;
ωOH1(r), ωOH2(r), and ωH1H2(r). Figure 1b shows the direct correlation functions be-
tween different particle sites. Figure 1c shows the total correlation functions highlighted by
Figure 1a, while Figure 1d shows the direct correlation functions for the same solute–solvent
site pairs, all plotted against the distance, r, between solute–solvent sites in Angstroms.
Figure 1e shows the SFED calculated from the data in Figure 1c,d with Equation (15).

Figure 1. 1D-RISM correlation functions. (a) Intermolecular total correlation functions, hsα(r),
between a selection of solute sites and solvent sites. A total correlation function between every
solute–solvent site-pair is calculated. Also shown is an intramolecular correlation function, ωss′ (r),
between two sites of the methanol. (b) Decomposition of hOH4(r) in terms of direct correlation
functions csα(r) involving a third particle. (c) Total correlation functions corresponding to those
shown in (a). (d) Direct correlation functions between the same solute–solvent site-pairs described in
(c). (e) SFED calculated for methanol–water using hsα(r) and csα(r), as well as a prefactor, 2πρkT.
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3.5. Final Dataset Analysis

The dataset contained 2689 data points comprising binary combinations of 108 unique
solvents and 427 unique solutes. Figure 2a shows scores plots for principal component anal-
ysis (PCA) against the SFEDs calculated for all solute–solvent systems, while Figures 2b and 2c
show the explained variance ratio (EVR) and cumulative explained variance (CEV),
respectively.

Figure 2. PCA plots showing the chemical space in which the final compiled dataset resides, with
distribution plots of the first four PCs shown in the diagonal (a). Plots of the fraction of variance
described by each principal component (b) and the cumulative variance explained by multiple
principal components (c).

The EVR shows the variance captured by each PC, while the CEV shows the cumulative
variance that is captured by all PCs. It is worth noting that because the PCA was carried
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out against SFED functions, it captures information about the diversity of solute–solvent
systems. The first two PCs capture approximately 28% and 25% variance, respectively, with
a decrease in variance captured by each consecutive PC. Approximately 80% of the variance
is captured cumulatively by the first four PCs, and the plots of Fig. (a) show each of these
PCs plotted against one another. In each plot, it can be seen that the majority of samples
reside within a tight chemical space, with a few outliers, which include solute–solvent
systems with a wide range of values of ∆Gsolv, as indicated by the shading.

Figures 3 and 4 show the distributions of experimental SFE values for those solvents
and solutes, respectively, that appear in the dataset most commonly.

Figure 3. Boxplots showing the SFE distribution for the top 25% of solvents with respect to how
frequently they appear in the dataset. The mean SFE value for each solvent is shown by a cross.

The SFE distributions for each solute (in different solvents) are much tighter than those
for each solvent (with different solutes). This arises partly due to the sparsity of the dataset
in which experimental SFEs were only available for some of the possible solute–solvent
pairs. The most common solvent, methanol, appears 150 times, while the most common
solute, benzene, appears only 52 times. There are many more solutes than solvents that
appear only a small number of times, or even once. While there is a large degree of overlap
between the SFE distributions observed between solvents, there is much more variation
in the common solutes. Pyrene has measured ∆G values from −13.34 to −11.20 kcal/mol,
while molecular nitrogen has measured ∆G values from 0.75 to 1.54 kcal/mol amongst
19 and 23 instances, respectively. The solvent distributions show a much higher number of
outliers when compared to the solutes. This may be due to the fact that common solvents
will often be paired with solutes for which there are very little data, while conversely, many
solutes which appear a small number of times may be paired with a solvent for which a lot
of data are present.
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Figure 4. Boxplots showing the SFE distribution for the top 10% of solutes with respect to how
frequently they appear in the dataset. The mean SFE value for each solute is shown by a cross.

3.6. CNN Training

A Convolutional Neural Network (CNN) was developed using TensorFlow V2.12.0 for
the prediction of SFE based on 1D-RISM calculations. The model was trained and validated
by nested cross-validation (CV). An outer cross-validation consisted of 50 resamples, each
with a different random 70%/30% train/test split. Hyperparameter optimisation was
performed to minimise the mean square error (MSE) estimated from 5-fold CV against
the 70% training set, using the GridSearchCV function in SciKit-Learn and the SciKeras
package [45]. Only the batch size was optimised. Validation metrics were computed for
each of the (30%) test sets and then averaged over the 50 resamples.

The CNN was reoptimised from the initial work [39]. The reoptimised architecture
was built using the Keras Sequential API and consists of three convolution blocks, a flatten
layer, three densely connected hidden layers, and an output layer. The hidden layers
consisted of 64, 32, and 16 nodes, based on the architecture used in previous work [46].
Each convolution block consisted of a Conv1D, MaxPooling1D, and BatchNormalisation
layer, in that order. The Conv1D layer had 32 output filters, a kernal size of 3, a stride length
of 2, and did not make use of padding, while the MaxPooling1D layers had a max pool size
of 2. The ReLU activation function was used in each convolution block and hidden layer.
The SciKit-Learn StandardScaler was used to autoscale the feature values such that the
mean and standard deviation of the training data were used to scale the training, testing,
and validation sets. The Adam optimiser was used throughout the network and had a set
learning rate of 0.001. The mean signed error was used for the loss function. Each model
was trained for up to 200 epochs, with the Keras callback EarlyStopping used to cease
training when the validation loss stopped decreasing with a patience of 20.

4. Results
Model Validation

The CNN model was trained and validated by nested cross-validation in which the
inner loop was used to optimise model hyperparameters and the outer loop was used to
estimate the model performance. The R2, RMSE, SDEP, and bias are reported for both
the inner and outer loops in Table 1. The metrics from the inner loop are for 5-fold CV
against the 70% training set reported as means (with associated standard deviations)
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over 50 resamples. The metrics from the outer loop are for prediction of the 30% testing
set reported as means (and associated standard deviations) over 50 resamples. In all
cases, the performance of the model on the outer loop is consistent with that on the inner
loop, with each metric the same to within 1 standard deviation, which shows that the
model is performing consistently without significant under- or overfitting. The bias is
small compared to the RMSE, showing that the majority of the error is random rather
than systematic.

The effect of reoptimising the model hyperparameters against the inner loop is evident
in Figure 5, which shows that, as expected, the new model is more accurate and more con-
sistent than the model taken from Ref. [38] without reoptimisation of the hyperparameters.
This is not surprising given that the model from Ref. [38] was trained on data from only
four solvents, whereas the dataset considered here has over 100 different solvents covering
a wider array of solvation chemistries.

Table 1. Table showing mean statistics for the inner and outer loop of the nested cross-validation. The
metrics from the inner loop are for 5-fold CV against the 70% training set reported as means (with
associated standard deviations) over 50 resamples. The metrics from the outer loop are for prediction
of the 30% testing set reported as means (and associated standard deviations) over 50 resamples.

R2 RMSE (kcal/mol) Bias (kcal/mol) SDEP (kcal/mol)

Inner Loop (5-fold CV) 0.87 (0.02) 1.50 (0.14) 0.04 (0.13) 1.49 (0.14)
Outer Loop (Testing Set) 0.89 (0.02) 1.41 (0.11) −0.02 (0.14) 1.41 (0.11)

Figure 5. Plots showing the predictive performance of both the previous model (blue) and reoptimised
model (orange). Each model was run in triplicate and the RMSE at each resample is plotted. Also
plotted is the mean RMSE for each run (dotted lines).

The correlation between the experimental and predicted values for each sample
throughout the full set of 50 resamples can be seen in Figure 6, which shows the predictive
correlation coloured by (a) solvent and (b) solute, respectively. The overall agreement be-
tween the experimental and predicted values is high with few outliers, showing the model
has performed well. The line of best fit is very close to the x = y line, and when considered
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alongside the R2 value of 0.89, illustrates that the model is performing satisfactorily. The
largest outlier is the solute–solvent system 1,1-difluoroethane-1,4-dimethylbenzene, with
an average error of 12 kcal/mol. The least consistently predicted solute–solvent system is
niflumic acid-formamide, with a standard deviation of 5.02 kcal/mol.

Figure 6. Plots showing the mean prediction vs. the experimentally measured SFE with standard
deviations included on each data point, coloured according to (a) solvent used and (b) solute used.
The x = y line is included as a black dotted line, while the trendline is shown as a solid blue line.

Given the sparsity of the experimental data, in which not all solutes have been analysed
in all solvents, it is interesting to consider how the availability of training data influences
the prediction accuracy. Figure 7 shows that the ML SFE functional is more accurate for
solvents that are well represented in the training data. The solvents with 50 or more
data points have significantly higher correlations between experimental and predicted
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values (0.76 < R2 < 1) than those solvents that are under-represented in the dataset.
Indeed, all solvents with 80 or more data points are modelled accurately (R2 > 0.9), as is
evident in Table 2. These solvents are generally small and contain some polar heteroatoms
(Figure 8), but these characteristics are not directly related to the predictive accuracy since
several apolar solutes with fewer than 80 data points are also modelled accurately (e.g.,
1,2-demethylbenzene, R2 = 0.78). The performance of the CNN model validates the main
hypothesis of this work—that a single ML SFE functional can accurately model different
solvent systems—but it also suggests that expanding the dataset size to ensure an even
representation of all solvents would improve the model. Unfortunately, the availability
of experimental data in the published literature is a limitation. Despite the challenges
associated with measuring SFE, there is a clear need for new experimental data.

Table 2. The most common solvents within the dataset with the number of solutes for which each
solvent has a measured SFE. The R2, RMSE, Bias, and SDEP are given for each solvent, calculated
across all predictions made on samples containing these solvents.

Solvent Solutes R2 RMSE Bias SDEP

Methanol 150 0.96 1.07 −0.19 1.05
N,N-Dimethylformamide 143 0.95 1.06 0.08 1.06

Propan-1-ol 138 0.96 1.00 0.08 1.00
Ethanol 133 0.96 1.10 −0.20 1.08

Propan-2-ol 124 0.96 1.00 0.07 1.00
Butan-1-ol 123 0.97 0.90 −0.15 0.88

Tetrachloromethane 118 0.95 0.70 0.05 0.70
Propan-2-one 96 0.93 1.18 −0.28 1.15
Ethyl acetate 83 0.96 0.97 −0.06 0.97

Methyl acetate 78 0.94 1.27 −0.41 1.20
N,N-Dimethylacetamide 77 0.93 0.88 −0.03 0.88

Butan-2-one 72 0.92 0.79 −0.23 0.76
Formamide 71 0.89 1.21 0.45 1.13

1,2-Dichloroethane 70 0.85 1.29 −0.34 1.24
Acetonitrile 64 0.78 0.69 −0.16 0.67
1,4-Dioxane 61 0.82 1.16 0.36 1.10

Given the overall high performance of the most common solvents, the model was
retrained on a filtered variation of the dataset such that only samples corresponding to a
solvent which appeared 50 or more times were retained. This reduced the dataset from
2698 samples to 1705. The predictive performance is shown in Table 3.

Table 3. Table showing the mean and standard deviation of 30% testing split prediction statistics
calculated over 50 resamples.

R2 RMSE (kcal/mol) Bias (kcal/mol) SDEP (kcal/mol)

Mean 0.91 1.35 0.01 1.34
Standard Deviation 0.02 0.13 0.18 0.13
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Figure 7. Plot showing the R2 between the experimental and mean prediction ∆G values vs. the
number of data points per solvent.

Figure 8. The most common solvents which appear in the dataset used for training.

All the mean values have improved slightly, but only the R2 has had a significant
increase, as the other statistics are within a standard deviation of the earlier results. In-
terestingly, the standard deviations for RMSE, bias, and SDEP have all slightly increased.
Additionally, the sign on the bias has switched, meaning that this model is slightly overpre-
dicting, when it was previously slightly underpredicting. Figure 9 shows the experimental
vs. mean predicted SFE values for the common solvents dataset, coloured by (a) solvent and
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(b) solute. The same general trends can be drawn from this plot as with the full dataset. The
overall agreement between the experimental and mean predictions is satisfactory. There
are fewer outliers with the common solvents, which is unsurprising as some scarce data
have been removed. The region up to −15 kcal/mol experimental SFE and lower is still less
accurately predicted, with larger standard deviations than the region above −15 kcal/mol.
It is interesting to note that the highest standard deviation is once again observed on the
niflumic acid-formamide data point.

Figure 9. Plots showing the mean prediction vs. the experimentally measured SFE with standard
deviations included on each data point, coloured according to (a) solvent used and (b) solute used for
the common solvents. The x = y line is included as a black dotted line, while the trendline is shown
as a solid blue line.
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Although only common solvents are retained, there has been no direct filtering of the
solute data, meaning there are still solutes in the dataset which have a low amount of data.
This is a limitation of the dataset and will likely also limit the predictive accuracy of the
model. In order to improve the model performance, there would need to be a sufficiently
large amount of data for each solute as well as for each solvent. Unfortunately, filtering the
dataset by common solvents and solutes reduces the overall sample size to only 14 when
setting a threshold of 50 data points on each, and 378 when setting a threshold of 50 for
solvents and 20 for solutes. This is not an appropriately large enough volume of data to
train a neural network and so more data would be required to verify this.

5. Conclusions

We have developed an ML SFE functional for 1D-RISM that gives accurate predictions
for multiple different solvents. A CNN model was trained on SFED functions obtained from
1D-RISM calculations. We achieved accurate predictions, with an RMSE of 1.41 kcal/mol
and R2 of 0.89, using a dataset comprised of 2698 solute/solvent pairs. The CNN was
retrained on a reduced version of this dataset, which included only solvents with a large
volume of data present in the original dataset. A slight improvement to the model was
observed, with an RMSE of 1.35 kcal/mol and R2 of 0.91. Analysing these results has shown
that the predictions are generally more accurate and less varied for those solvents which
have larger volumes of data. We have also successfully treated a large number of solvent
systems in this way, with a total of 108 solvents being considered in this dataset. The code
and datasets used in this work are available at https://github.com/PalmerChem/Conn_
Liquids_SI (accessed on 3 November 2024) [47]. The pyRISM software can be accessed at
https://github.com/2AUK/pyRISM (accessed on 3 November 2024) [48].
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HFE Hydration Free Energy
HNC Hypernetted-Chain
IET Integral Equation Theory
KH Kovalenko–Hirata
LJ Lennard-Jones
MD Molecular Dynamics
MDIIS Modified Direct Inversion of the Iterative Subspace
MOZ Molecular Ornstein–Zernike
OZ Orstein–Zernike
PB Poisson–Boltzmann
PC Pure Pressure Correction
PCM Polarisable Continuum Model
PC+ Expanded Pure Pressure Correction
RDF Radial Distribution Function
ReLU Rectified Linear Unit
RISM Reference Interaction Site Model
RMSE Root Mean Squared Error
SASA Surface Accessible Surface Area
SDEP Standard Deviation of the Error of Prediction
SFE Solvation Free Energy
SFED Solvation Free Energy Density
SMILES Simplified Molecular-Input Line-Entry System
XRISM Extended Reference Interaction Site Model

References
1. Ben-Naim, A. A Molecular Theory of Solutions; Oxford University Press: New York, NY, USA, 2006.
2. Abel, R.; Wang, L.; Harder, E.D.; Berne, B.J.; Friesner, R.A. Advancing Drug Discovery through Enhanced Free Energy Calculations.

Acc. Chem. Res. 2017, 50, 1625–1632. [CrossRef] [PubMed]
3. Ganguly, A.; Tsai, H.; Fernández-Pendás, M.; Lee, T.; Giese, T.J.; York, D.M. AMBER Drug Discovery Boost Tools: Automated

Workflow for Production Free-Energy Simulation Setup Analysis (ProFESSA). J. Chem. Inf. Model. 2022, 62, 6069–6083. [CrossRef]
[PubMed]

4. Skyner, R.E.; McDonagh, J.L.; Groom, C.R.; Mourick, T.V.; Mitchell, J.B.O. A review of methods for the calculation of solution free
energies and the modelling of systems in solution. Phys. Chem. Chem. Phys. 2015, 17, 6174–6191. [CrossRef] [PubMed]

5. Li, W.; Ding, G.; Gao, H.; Zhuang, Y.; Gu, X.; Peijnenburg, W.J.G.M. Prediction of octanol-air partition coefficients for PCBs at
different ambient temperatures based on the solvation free energy and the dimer ratio. Chemosphere 2020, 242, 125246. [CrossRef]
[PubMed]

6. Ding, W.; Chen, Y.; Ge, Z.; Cao, W.; Jin, H. A molecular simulation study on solvation free energy and structural properties of
polycyclic aromatic hydrocarbons in supercritical water environment. J. Mol. Liq. 2020, 318, 114274. [CrossRef]

7. Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum
model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 2009, 113, 6378–6396.
[CrossRef]

8. Marenich, A.V.; Olson, R.M.; Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Self-Consistent Reaction Field Model for Aqueous and
Nonaqueous Solutions Based on Accurate Polarized Partial Charges. J. Chem. Theory Comput. 2007, 3, 2011–2033. [CrossRef]

9. Cramer, C.J.; Truhlar, D.G. A Universal Approach to Solvation Modeling. Acc. Chem. Res. 2008, 41, 760–768. [CrossRef]
10. Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Generalized Born Solvation Model SM12. J. Chem. Theory Comput. 2013, 9, 609–620.

[CrossRef]
11. Miertus̆, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular

potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [CrossRef]
12. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the

C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [CrossRef] [PubMed]
13. Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: theoterical

background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [CrossRef]
14. Cancès, E.; Mennucci, B. New applications of integral equations methods for solvation continuum models: ionic solutions and

liquid crystals. J. Math. Chem. 1998, 23, 309–326. [CrossRef]
15. Klamt, A.; Schüürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening

energy and its gradient. J. Chem. Soc. 1993, 2, 799–805. [CrossRef]
16. Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using

Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [CrossRef]

http://doi.org/10.1021/acs.accounts.7b00083
http://www.ncbi.nlm.nih.gov/pubmed/28677954
http://dx.doi.org/10.1021/acs.jcim.2c00879
http://www.ncbi.nlm.nih.gov/pubmed/36450130
http://dx.doi.org/10.1039/C5CP00288E
http://www.ncbi.nlm.nih.gov/pubmed/25660403
http://dx.doi.org/10.1016/j.chemosphere.2019.125246
http://www.ncbi.nlm.nih.gov/pubmed/31704525
http://dx.doi.org/10.1016/j.molliq.2020.114274
http://dx.doi.org/10.1021/jp810292n
http://dx.doi.org/10.1021/ct7001418
http://dx.doi.org/10.1021/ar800019z
http://dx.doi.org/10.1021/ct300900e
http://dx.doi.org/10.1016/0301-0104(81)85090-2
http://dx.doi.org/10.1002/jcc.10189
http://www.ncbi.nlm.nih.gov/pubmed/12666158
http://dx.doi.org/10.1063/1.474659
http://dx.doi.org/10.1023/A:1019133611148
http://dx.doi.org/10.1039/P29930000799
http://dx.doi.org/10.1021/ct900587b


Liquids 2024, 4 730

17. Leung, K.; Rempe, S.B.; von Lilienfeld, O.A. Ab Initio molecular dynamics calculations of ion hydration free energies. J. Chem.
Phys. 2009, 130, 204507. [CrossRef]

18. Geballe, M.T.; Skillman, A.G.; Nicholls, A.; Guthrie, J.P.; Taylor, P.J. The SAMPL2 blind prediction challenge: introduction and
overview. J. Comput.-Aided Mol. Des. 2010, 24, 259–279. [CrossRef]

19. Geballe, M.T.; Guthrie, J.P. The SAMPL3 blind prediction challenge: transfer energy overview. J. Comput. Aided Mol. Des. 2012, 26,
489–496. [CrossRef]

20. Mobley, D.L.; Wymer, K.L.; Lim, N.M.; Guthrie, J.P. Blind prediction of solvation free energies from the SAMPL4 challenge. J.
Comput. Aided Mol. Des. 2014, 28, 135–150. [CrossRef]

21. Varilly, P.; Patel, A.J.; Chandler, D. An improved coarse-grained model of solvation and the hydrophobic effect. J. Chem. Phys.
2011, 134, 074109. [CrossRef]

22. Genheden, S. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained
MARTINI models. J. Comput. Aided Mol. Des. 2017, 31, 867–876. [CrossRef] [PubMed]

23. Shivakumar, D.; Deng, Y.; Roux, B. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and
Implicit Solvent Model. J. Chem. Theory Comput. 2009, 5, 919–930. [CrossRef] [PubMed]

24. Vyboishchikov, S.F. Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural
Network: A Generalized-Born Approach. J. Chem. Theory Comput. 2023, 19, 8340–8350. [CrossRef] [PubMed]

25. Steinmann, S.; Sautet, P.; Michel, C. Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation
models. Phys. Chem. Chem. Phys. 2016, 18, 31850. [CrossRef] [PubMed]

26. Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation
of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [CrossRef]

27. Chandler, D.; Anderson, H.C. Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. J. Chem. Phys.
1972, 57, 1930–1937. [CrossRef]

28. Palmer, D.S.; Frolov, A.I.; Ratkova, E.L.; Federov, M.V. Towards a universal method for calculating hydration free energies: 3D
refernce interaction site model with partial molar volume correction. J. Phys. Condens. Matter 2010, 22, 492101. [CrossRef]

29. Chuev, G.N.; Fedorov, M.V.; Crain, J. Improved estimates for hydration free energy obtained by the reference interaction site
model. Chem. Phys. Lett. 2007, 448, 198–202. [CrossRef]

30. Palmer, D.S.; Sergiievskyi, V.P.; Jensen, F.; Fedorov, M.V. Accurate calculations of the hydration free energies of druglike molecules
using the reference interaction site model. J. Chem. Phys. 2010, 133, 044104. [CrossRef]

31. Ratkova, E.L.; Chuev, G.N.; Sergiievskyi, V.P.; Federov, M.V. An Accurate Prediction of Hydration Free Energies by Combination
of Molecular Integral Equations Theory with Structural Descriptors. J. Phys. Chem. B 2010, 114, 12068–12079. [CrossRef]

32. Truchon, J.F.; Pettitt, B.M.; Labute, P. A Cavity Corrected 3D-RISM Functional for Accurate Solvation Free Energies. J. Chem.
Theory Comput. 2014, 10, 934–941. [CrossRef] [PubMed]

33. Sergiievskyi, V.P.; Jeanmairet, G.; Levensque, M.; Borgis, D. Solvation free-energy pressure corrections in the three dimensional
reference interaction site model. J. Chem. Phys. 2015, 143, 184116. [CrossRef] [PubMed]

34. Misin, M.; Federov, M.V.; Palmer, D.S. Hydration Free Energies of Molcular Ions from Theory and Simulation. J. Phys. Chem. B
2016, 120, 975–983. [CrossRef] [PubMed]

35. Misin, M.; Palmer, D.S.; Federov, M.V. Predicting Solvation Free Energies Using Parameter-Free Solvent Models. J. Phys. Chem B
2016, 120, 5724–5731. [CrossRef]

36. Misin, M.; Vainikka, P.A.; Federov, M.V.; Palmer, D.S. Salting-out effects by pressure-corrected 3D-RISM. J. Chem. Phys. 2016,
145, 194501. [CrossRef]

37. Ratkova, E.L.; Fedorov, M.V. Combination of RISM and Cheminformatics for Efficient Predictions of Hydration Free Energy of
Polyfragment Molecules: Application to a Set of Organic Pollutants. J. Chem. Theory Comput. 2011, 7, 1450–1457. [CrossRef]

38. Fowles, D.J.; McHardy, R.G.; Ahmad, A.; Palmer, D.S. Accurately predicting solvation free energy in aqueous and organic
solvents beyond 298 K by combining deep learning and the 1D reference interaction site model. Digit. Discov. 2022, 2, 177–188.
[CrossRef]

39. Fowles, D.J.; Palmer, D.S. Solvation entropy, enthalpy, and free energy prediction using a multi-task deep learning functional in
1D-RISM. Phys. Chem. Chem. Phys. 2023, 25, 6944–6954. [CrossRef]

40. Kovalenko, A.; Hirata, F. Hydration free energy of hydrophobic solutes studied by a reference interaction site model with
repulsive bridge correction and a thermodynamic perturbation method. J. Chem. Phys. 2000, 113, 2793–2805. [CrossRef]

41. Vermeire, F.H.; Chung, Y.; Green, W.H. Predictinf Solubility Limits of Organic Solutes for a Wide Range of Solvents and
Temperatures. J. Am. Chem. Soc. 2022, 144, 10785–10797. [CrossRef]

42. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of General AMBER Force Field. J.
Comput. Chem. 2004, 25, 1157–1174. [CrossRef] [PubMed]

43. The Open Babel Package, Version 3.1.1. Available online: http://openbabel.org (accessed on 1 November 2020)
44. Ahmad, A. 2AUK/pyRISM: pyRISM 0.3.0; University of Strathclyde: Glasgow, UK, 2023. [CrossRef]
45. Badaracco, A.G. Adriangb/Scikeras: Scikeras 0.11.0. Available online: https://pypi.org/project/scikeras/ (accessed on 3

November 2024).

http://dx.doi.org/10.1063/1.3137054
http://dx.doi.org/10.1007/s10822-010-9350-8
http://dx.doi.org/10.1007/s10822-012-9568-8
http://dx.doi.org/10.1007/s10822-014-9718-2
http://dx.doi.org/10.1063/1.3532939
http://dx.doi.org/10.1007/s10822-017-0059-9
http://www.ncbi.nlm.nih.gov/pubmed/28875361
http://dx.doi.org/10.1021/ct800445x
http://www.ncbi.nlm.nih.gov/pubmed/26609601
http://dx.doi.org/10.1021/acs.jctc.3c00858
http://www.ncbi.nlm.nih.gov/pubmed/37962524
http://dx.doi.org/10.1039/C6CP04094B
http://www.ncbi.nlm.nih.gov/pubmed/27841404
http://dx.doi.org/10.1021/acs.jctc.7b00169
http://dx.doi.org/10.1063/1.1678513
http://dx.doi.org/10.1088/0953-8984/22/49/492101
http://dx.doi.org/10.1016/j.cplett.2007.10.003
http://dx.doi.org/10.1063/1.3458798
http://dx.doi.org/10.1021/jp103955r
http://dx.doi.org/10.1021/ct4009359
http://www.ncbi.nlm.nih.gov/pubmed/24634616
http://dx.doi.org/10.1063/1.4935065
http://www.ncbi.nlm.nih.gov/pubmed/26567655
http://dx.doi.org/10.1021/acs.jpcb.5b10809
http://www.ncbi.nlm.nih.gov/pubmed/26756333
http://dx.doi.org/10.1021/acs.jpcb.6b05352
http://dx.doi.org/10.1063/1.4966973
http://dx.doi.org/10.1021/ct100654h
http://dx.doi.org/10.1039/D2DD00103A
http://dx.doi.org/10.1039/D3CP00199G
http://dx.doi.org/10.1063/1.1305885
http://dx.doi.org/10.1021/jacs.2c01768
http://dx.doi.org/10.1002/jcc.20035
http://www.ncbi.nlm.nih.gov/pubmed/15116359
http://openbabel.org
http://dx.doi.org/10.5281/zenodo.10362430
https://pypi.org/project/scikeras/


Liquids 2024, 4 731

46. Conn, J.G.M.; Carter, J.W.; Conn, J.J.A.; Subramanian, V.; Baxter, A.; Engkvist, O.; Llinas, A.; Ratkova, E.L.; Pickett, S.D.;
McDonagh, J.L.; et al. Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training
Data and Feature Set Selection for Machine and Deep Learning Models. J. Chem. Inf. Model. 2023, 63, 1099–1113. [CrossRef]
[PubMed]

47. Conn, J.G.M. PalmerChem/Conn_Liquids_SI, 2024; University of Strathclyde: Glasgow, UK. Available online: https://github.com/
PalmerChem/Conn_Liquids_SI (accessed on 3 November 2024)

48. Ahmad, A. 2AUK/pyRISM, 2024; University of Strathclyde: Glasgow, UK. Available online: https://github.com/2AUK/pyRISM
(accessed on 3 November 2024)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/acs.jcim.2c01189
http://www.ncbi.nlm.nih.gov/pubmed/36758178
https://github. com/PalmerChem/Conn_Liquids_SI
https://github. com/PalmerChem/Conn_Liquids_SI
https://github.com/2AUK/pyRISM

	Introduction
	Theory
	1D-RISM
	Solvation Free Energy Functionals
	Solvation Free Energy Densities
	Model Performance

	Materials and Methods
	Overview
	Dataset Compilation
	1D RISM Calculations
	SFED Processing
	Final Dataset Analysis
	CNN Training

	Results
	Conclusions
	References

