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Abstract: Inappropriate antimicrobial use in food animal farming propels antimicrobial resistance
(AMR) that affects all health domains. Colistin is a ‘Reserve’ antibiotic for human treatment to
be conserved for multidrug-resistant pathogens; however, it is being used as an animal growth
promoter in many developing countries. The evolution of mobilized colistin resistance (mcr) gene-
mediated colistin resistance has been reported to be associated with rampant colistin use. This
study investigated the current variants of the mcr gene in chicken gut contents in Bangladesh. A
cross-sectional study was designed to assess the mcr-1 to mcr-5 genes in 80 fresh poultry droppings
from commercial poultry farms and 40 poultry droppings from household farms. DNA was extracted
from each poultry dropping using commercial kits (Qiagen GmbH, Hilden, Germany). Real-time
quantitative polymerase chain reaction (RT-qPCR) was employed using the qTOWER3 thermal cycler
(Analytik Jena GmbH, Jena, Germany) to analyze the mcr gene variants in the extracted DNA. This
study observed that 47.5% (57/120) of the samples exhibited the presence of at least one mcr gene
out of the five variants investigated. The individual detection rates of the mcr-1, mcr-2, mcr-3, mcr-4,
and mcr-5 genes were 42.5% (51/120), 2.5% (3/120), 1.7% (2/120), 5% (6/120), and 9.2% (11/120),
respectively. The co-carriage of two or more genes was found in over 10% (10/57) of the samples.
The triple occurrence of mcr genes was identified in three samples with the combination of mcr-1+mcr-
2+mcr-4, mcr-1+mcr-3+mcr-5, and mcr-1+mcr-4+mcr-5. Overall, a significantly higher number of mcr
genes were identified in the commercial farm chicken droppings compared to the household chicken
droppings (p = 0.007). The existence of mcr genes in poultry feces in Bangladesh emphasizes the
importance of proper poultry waste disposal and good hygiene practices in poultry livestock and
its value chain. The potential impact of environmental ARGs should be considered in national and
global policy documents. An integrated and combined approach to the One Health concept should
be applied in all domains to understand and control the environment’s role in the evolution and
transmission of AMR.

Keywords: antimicrobial resistance genes (ARGs); mobilized colistin resistance genes (mcr-1, mcr-2,
mcr-3, mcr-4, and mcr-5); qPCR; Bangladesh
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1. Introduction

The demand for animal protein for humans has been increasing worldwide over the
past few decades [1]. By 2033, the global requirements of poultry, sheep meat, pig meat, and
beef are calculated to increase by 16%, 16%, 11%, and 8%, respectively, reaching a projected
retail consumption weight equivalent to 28.6 kg/year/person [2]. The increased demand
for animal protein production currently requires the increased application of antimicrobials
in food animal farming [3]. The World Organization for Animal Health (WOAH) has esti-
mated that an average of 99.1 to 108.5 milligrams of antimicrobials were used per kilogram
of animal biomass covering bovine, swine, poultry, and aquatic species in 2019 [4], with a
marginal increase in 2021 up to 109.65 milligrams [5]. Over 70% of all antimicrobials are
used for animals worldwide [6,7]. Inappropriate antimicrobial use in food animal farming
propels antimicrobial resistance (AMR), affecting all the domains of health including animal
health, the environment, and human health [6,8,9]. Overall, the use of antibiotics outside
the healthcare sector is considered one of the single most important factors leading to
AMR [10–13]. The estimated global antimicrobial usage was 99,502 tons in 2020 and is
projected to increase by 8.0–11.5% by 2030 unless it is addressed [3,7]. Asia/Oceania remain
the key continents with considerable concerns regarding their antimicrobial use in animals,
although all continents are prone to increased use [7]. Tetracyclines are currently the most
utilized antimicrobial agent in animal health worldwide (35.5% of the total usage) followed
by penicillins (13.3%) [4]. Both of these antimicrobials belong to the Veterinary Critically
Important Antimicrobial (VCIA) classes and are not considered critically important antimi-
crobials for human health as they both belong to the ‘Access’ group of antibiotics [14,15].
This is unlike colistin, which is classified as a ‘Reserve’ antibiotic for human treatment to be
conserved for multidrug-resistant pathogens [15,16]. Colistin, once widely used in livestock
feed for growth promotion, has faced increasing regulatory scrutiny due to concerns over
antibiotic resistance [17]. In the European Union, its use has been banned since 2016, allow-
ing only for therapeutic application to protect public health [18]. Similarly, in the United
States, the FDA prohibits colistin in animal feed, emphasizing the need to preserve its
effectiveness in human medicine [19]. Other countries are also tightening their regulations,
reflecting a global trend toward restricting the use of critically important antibiotics in
agriculture [20]. Until 2019, colistin was permissible in livestock and poultry industry as
a feed additive and therapeutic. In 2019, the Directorate General of Drug Administration
(DGDA) Bangladesh banned all combined colistin preparations from veterinary use by
canceling the registration of such products [21]. However, because of weak legislative
monitoring, some levels of colistin were found to be used in animal husbandry and agricul-
ture in several countries [4,22]. Colistin is a polymyxin family antibiotic, a natural cationic
polypeptide that binds the lipid A of lipopolysaccharides (LPSs) in the outer membrane
of Gram-negative bacteria [23,24]. This antimicrobial agent was discovered in 1947 and
was considered a low-risk antibiotic for AMR gene acquisition and transmission by the
European Medicines Agency (EMA) until 2015 [25]. The acquisition and transferability of
the plasmid-mediated mobilized colistin resistance gene variant-1 (mcr-1) was first reported
in Enterobacterales bacteria from animal products and humans in China [26] in 2016 and
subsequently became omnipresent in many countries [27,28]. To date, ten slightly different
genotype variants of the transferable mcr-1 gene (mcr-1 to mcr-10) have been reported in
different bacterial isolates from pigs, bovines, poultry, food, humans, and the environ-
ment [25,29,30]. China currently uses the greatest volume globally of antibiotics in the
livestock and poultry industries [4], with polymyxins extensively used as growth promoters
for disease prophylaxis in China until 2016 [31]. As a result, a surge in mcr gene-mediated
colistin resistance has been reported, which authenticates the relationship between antibi-
otic use and AMR evolution [32,33]. Since 2017, colistin has been banned in China as an
animal growth promoter [34]. Encouragingly, the use of colistin as a growth promoter has
now been curtailed in over 50% of developed countries in the last five years up to 2021 [4],
with such measures found to be effective in reducing the evolution of colistin-resistant
bacteria [35–37]. However, polymyxins are still being used in developing countries despite
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these being listed as “highest priority critically important antimicrobials” (Highest Priority
CIA by the WHO) for human medicine [4,14,38]. Of growing concern is the continually
high prevalence of mcr gene variants observed in livestock farming, mainly among poultry
and pigs [25,31,39]. mcr genes are worrisome globally because of their rapid interspecies
spreading capacity via horizontal gene transfer mechanisms [40,41]. The transferability of
the mcr genes from animal bacteria to human pathogens has also been seen during in vitro
analyses [26,42], with colistin-resistant pathogens seen to account for higher mortality
among critically ill patients with concerns regarding the lack of available options for these
patients [43–46]. Consequently, the identification of the primary source, associated factors,
and transmission of colistin resistance are key global priority areas. However, traditional
detection methods such as the conventional polymerase chain reaction (PCR) and Sanger
sequencing are time-consuming and labor-intensive for mcr gene analyses. Various real-time
quantitative PCR methods have recently been devised for the more rapid and specific identi-
fication of mcr gene variants [47,48]. This is of considerable importance in Bangladesh to help
guide future policies regarding the appreciable availability and use of antibiotics without
prescriptions, including ‘Reserve’ antibiotics such as polymyxins [14,49–51]. Consequently,
there is a need to investigate the current different variants of the mcr gene in chicken gut
contents in Bangladesh using culture-independent RT-qPCR techniques. This also includes
the development of a rapid and sensitive real-time PCR method for the specific detection of
all five mcr genes in fresh gut samples from poultry farms and native sources in Bangladesh.
These were the objectives of this study. The findings of this research are important for un-
derstanding the most important reservoir of mcr genes and their abundance in Bangladesh
and for providing future guidance. Culture-independent ARG detection in chicken gut
contents will build the foundation for future studies to predict comprehensive chicken gut
resistant microbiota that are potentially disseminated in all the One Health domains. The
findings can be used to develop future policies in Bangladesh and beyond, where there
are concerns.

2. Materials and Methods
2.1. Study Area and Sampling

A cross-sectional study was designed to assess the presence of mcr genes in fresh
chicken guts between January 2021 and November 2021. Eighty fresh poultry droppings
were collected from 16 commercial poultry farms and forty poultry droppings were col-
lected from 20 separate household farms. Information regarding the history of diseases
and medication use was obtained through a structured questionnaire developed and vali-
dated in our previous study [52]. Sampling sites were selected from poultry farming areas
across five districts in Bangladesh: Dhaka, Gazipur, Manikgang, Tangail, and Mymensingh
(Supplementary Figure S1). All necessary safety measures and aseptic techniques were
followed during sample collection to prevent potential cross-contamination. The sam-
ples were placed in clean, labeled containers and promptly stored in insulated ice boxes.
These were then transported to the One Health Laboratory at the Department of Micro-
biology, Jahangirnagar University, Savar, where subsequent molecular biology analyses
were conducted.

2.2. DNA Extraction from Chicken Gut Samples

Approximately one gram of each chicken dropping sample was mixed thoroughly
with 3 mL of sterile phosphate-buffered saline (PBS) using a sterile spatula. DNA extraction
from the resuspended chicken stools was performed manually using the QIAamp DNA
stool mini kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s protocol.
This kit utilizes the QIAamp spin-column method for the quick purification of nucleic
acids. Following extraction, the DNA was eluted in 200 µL of elution buffer and stored
at −20 ◦C for subsequent analyses. Additionally, separate aliquots of the extracted DNA
were preserved in a repository at −80 ◦C for potential future research endeavors.
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2.3. Primer Design for Assessing ARGs

The primer sequences for five pairs of mcr genes (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5)
along with their corresponding annealing temperatures and amplicon lengths were ac-
quired from previous literature [47,48]. These primer sequences were then cross-referenced
for accuracy using the NCBI BLAST (Basic Local Alignment Search Tool) database (Table 1).
Subsequently, the primers were synthesized by an external manufacturer (Macrogen Inc.,
Teheran-ro, Seoul, South Korea).

Table 1. Primers and positive controls used for the detection of mcr-1 to mcr-5 and 16S genes in
qPCR assays.

Primers Sequences (5′-3′) Amplicon Size (bp) References

mcr-1-qf a AAAGACGCGGTACAAGCAAC 213 [47,48]
mcr-1-qr b GCTGAACATACACGGCACAG
mcr-2-qf CGACCAAGCCGAGTCTAAGG 92 [47,48]
mcr-2-qr CAACTGCGACCAACACACTT
mcr-3-qf ACCTCCAGCGTGAGATTGTTCCA 169 [47,48]
mcr-3-qr GCGGTTTCACCAACGACCAGAA
mcr-4-qf AGAATGCCAGTCGTAACCCG 230 [48]
mcr-4-qr GCGAGGATCATAGTCTGCCC
mcr-5-qf CTGTGGCCAGTCATGGATGT 98 [48]
mcr-5-qr CGAATGCCCGAGATGACGTA
16S-qf c CGGTGAATACGTTCYCGC 467 [48,53]
16S-qr GGWTACCTTGTTACGACTT

a indicates the forward primer of the mobilized colistin resistance gene. b demonstrates the mobilized colistin
resistance gene’s reverse primer. c shows the specified primer for the 16s RNA used as an internal control in qPCR.

2.4. Optimization of qPCR Conditions for mcr-1 to mcr-5 Assays

Real-time quantitative polymerase chain reaction (qPCR) was utilized to assess the
relative abundances of antimicrobial resistance genes (ARGs) per 16Sr RNA gene in DNA
extracted from chicken dropping samples. The qTOWER3 thermal cycler (Analytik Jena
GmbH, Jena, Germany) was employed for qPCR amplification. In each qPCR reaction,
1.0 µL of extracted DNA was combined with 10 µL of Go Taq qPCR master mix (Promega
Corporation Inc., Fitchburg, WI, USA), 2 µL of each primer, and nuclease-free water to
reach a final volume of 20 µL. The optimal qPCR program involved an initial denaturation
at 95 ◦C for 2 min, followed by 45 cycles of denaturation at 95 ◦C for 15 s. An annealing
temperature of 53 ◦C was used to amplify genes mcr-1, mcr-2, and mcr-3, and 55 ◦C for genes
mcr-4 and mcr-5, each for 15 s, followed by extension at 60 ◦C for 20 s. The amplification
was finalized with a melting step, cycling through temperatures from 60 ◦C for 15 s, with
adjustments up to a final temperature of 95 ◦C. SYBR Green fluorescence was utilized to
quantify the amplified product.

2.5. Efficiency and Validation of qPCR Assays

A standard curve method was used to measure the effectiveness of the amplicon,
according to Rutledge and Cote [54]. To assess the efficacy and dynamic range of each
primer pair, serial dilutions ranging from 10−1 to 10−5 were prepared using DNA templates
of varying concentrations (median concentration: 14.2 ng/µL, minimum: 0.4 ng/µL,
maximum: 29.6 ng/µL). The concentrations of DNA were measured using a Qubit 4
Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Using melting profile analysis,
the amplification plots’ validity was evaluated. Additionally, to confirm the validity of the
assays, both a positive (mcr+) and a negative (mcr-) control were included for each gene in
every qPCR cycle. The 16S rRNA gene served as an internal process control and facilitated
the standardization of the counts of mcr-1 to mcr-5 gene copies during the analysis of ARGs
in chicken dropping samples [48].
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2.6. Statistical Analysis

Descriptive and inferential statistical methods were applied to assess the presence of
mcr genes across various chicken gut samples. Descriptive statistics were utilized to present
the frequencies and percentages of occurrence. Pearson’s chi-square test was employed to
examine the potential association between the carriage of antimicrobial resistance genes
(ARGs) in commercial poultry droppings and that from household settings. A significance
threshold of 0.05 or lower for the two-tailed p-value was adopted to determine statistical
significance. The analysis of all data was conducted using IBM SPSS version 20.0.

3. Results
3.1. Study Farms and Samples

From a total of 120 poultry droppings, 80 (66.7%) were obtained from chicken drop-
pings across 16 commercial poultry farms. These farms housed a variety of chicken breeds
for both egg and meat production, including Broilers, Layers, and Sonali variants. Ad-
ditionally, 40 samples (33.3%) were collected from the chickens in 20 individual houses.
Among the farm chickens, 16 were diagnosed with fowl cholera, 13 with infectious coryza,
and several others showed signs of illness during the sampling period. All the flocks
had been exposed to antibiotics within the past 3 months. In the case of the backyard
chickens, 38 droppings (95%, 38/40) showed no history of antibiotic exposure. Another
5% (2/40) of the chickens had received antibiotic treatment within one month prior to
sampling. The commercial poultry farms were found to use various types of antibiotics,
notably, amoxicillin, oxytetracycline, gentamicin, ciprofloxacin, and colistin, in different
combinations in higher proportions from 12.5% to 37.5%. Only 5.0% of the household
chickens were reported to receive oxytetracycline, but no other antibiotics. Colistin was
reported to be administered to 12.5% of the commercial poultry chickens (Table 2). Overall,
a statistically significantly higher antibiotic usage was recorded in the commercial farm
chickens compared to the household chickens (p = 0.000).

Table 2. Antibiotic usage history in chickens during the past three months.

Types of Chickens

History of Antibiotic Usage in the Chickens over the
Last Three Months

Poultry (n = 80),
Number (%)

Household (n = 40),
Number (%)

Oxytetracycline 30 (37.5) 2 (5.0)
Amoxicillin and oxytetracycline 14 (17.5) 0
Amoxicillin, gentamicin, oxytetracycline, and ciprofloxacin 26 (32.5) 0
Colistin, oxytetracycline, ciprofloxacin, and amoxicillin 10 (12.5) 0
No major antibiotic used 0 38 (95.0)

%, percentage.

3.2. Analytical Performance of mcr-1 to mcr-5 RT-PCR Assays

We used the optimized amplification settings for each of the mcr genes. The assays’
efficiencies ranged from 97.3% to 105.3%, and each R2 value was >0.98 (Figure 1). The
maximum limit number of quantification copies was 1.89 × 103, 8.03 × 102, 1.60 × 103,
2.37 × 102, and 4.36 × 102 for the mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 assays, respectively.
Using a melting plot analysis, the qPCR yielded a clean melting curve with only one peak
and without interference from contaminants or non-specific amplification (Figure 1). No
instances of primer dimers or non-specific signals were observed in any of the assays.
Whether utilizing template references or employing mcr oligonucleotide pairs as opposed
to non-target mcr genes, there was an absence of fluorescence elevation indicative of a
sigmoidal amplification curve.
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urement of the target DNA quantity in unidentified samples. Through plotting known DNA 

Figure 1. Real-time PCR amplification curves, standard curves, and melting curves for mcr−1 (a),
mcr−2 (b), mcr−3 (c), mcr−4 (d), and mcr−5 (e). The amplification curve shows important data
regarding the qPCR reaction’s effectiveness. A steep, exponential increase in fluorescence during the
early cycles indicates efficient amplification of the target DNA. The standard curve facilitates the
measurement of the target DNA quantity in unidentified samples. Through plotting known DNA
concentrations against their respective threshold cycle (Ct) values, a linear correlation is established.
This correlation acts as a guide to ascertain the concentration of target DNA in unknown samples,
utilizing their Ct values. By employing successive dilutions of a precisely measured inoculum, real-
time qPCR exhibited satisfactory efficiency, as evidenced by a standard curve showing linearity across
DNA copies ranging from 34 to 19 Ct. The melting curve serves as an indicator of the overall quality
of the qPCR assay. A clean, sharp melting curve with a single peak indicates robust amplification of
the target sequence and reliable results.

3.3. Distribution of mcr Genes in Chicken Gut Samples

This study showed that 52.5% (63/120) of the chicken gut samples had no presence
of any mcr gene. Conversely, the remaining 47.5% (57/120) of the samples exhibited the
presence of at least one mcr gene out of the five variants investigated (Figure 2). The
newly optimized qPCR technique worked well for identifying all the mcr genes in the test
samples. A cut-off Ct value of 30 was determined to be ARG-detection positive. The overall
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detection rates of the mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes were 42.5% (51/120),
2.5% (3/120), 1.7% (2/120), 5% (6/120), and 9.2% (11/120), respectively. Interestingly,
different combinations of double occurrences of mcr genes were found in 10.8% (10/57) of
the samples. The most frequent double occurrence combination was mcr-1+mcr-5; other
combinations were mcr-1+mcr-2, mcr-1+mcr-4, and mcr-4+mcr-5. Three samples were
detected with triple occurrences of mcr genes with combinations of mcr-1+mcr-2+mcr-4,
mcr-1+mcr-3+mcr-5, and mcr-1+mcr-4+mcr-5. The highest prevalence of mcr genes was
detected in the samples from the Dhaka district followed by those from the Gazipur district
(p = 0.001).

Sci 2024, 6, x FOR PEER REVIEW 7 of 13 
 

 

concentrations against their respective threshold cycle (Ct) values, a linear correlation is established. 
This correlation acts as a guide to ascertain the concentration of target DNA in unknown samples, 
utilizing their Ct values. By employing successive dilutions of a precisely measured inoculum, real-
time qPCR exhibited satisfactory efficiency, as evidenced by a standard curve showing linearity 
across DNA copies ranging from 34 to 19 Ct. The melting curve serves as an indicator of the overall 
quality of the qPCR assay. A clean, sharp melting curve with a single peak indicates robust amplifi-
cation of the target sequence and reliable results. 

3.3. Distribution of mcr Genes in Chicken Gut Samples 
This study showed that 52.5% (63/120) of the chicken gut samples had no presence of 

any mcr gene. Conversely, the remaining 47.5% (57/120) of the samples exhibited the pres-
ence of at least one mcr gene out of the five variants investigated (Figure 2). The newly 
optimized qPCR technique worked well for identifying all the mcr genes in the test sam-
ples. A cut-off Ct value of 30 was determined to be ARG-detection positive. The overall 
detection rates of the mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes were 42.5% (51/120), 2.5% 
(3/120), 1.7% (2/120), 5% (6/120), and 9.2% (11/120), respectively. Interestingly, different 
combinations of double occurrences of mcr genes were found in 10.8% (10/57) of the sam-
ples. The most frequent double occurrence combination was mcr-1+mcr-5; other combina-
tions were mcr-1+mcr-2, mcr-1+mcr-4, and mcr-4+mcr-5. Three samples were detected with 
triple occurrences of mcr genes with combinations of mcr-1+mcr-2+mcr-4, mcr-1+mcr-
3+mcr-5, and mcr-1+mcr-4+mcr-5. The highest prevalence of mcr genes was detected in the 
samples from the Dhaka district followed by those from the Gazipur district (p = 0.001). 

 
Figure 2. Cumulative distribution of mcr genes in chicken gut samples. The value bar shows the 
percentage prevalence. Only 10.8% of the tested samples carried two mobilized colistin resistance 
genes concurrently. Co-carriage of three or more genes was found in over 2.5% of samples. 

3.4. Comparative Distribution of mcr Genes in Farm and Backyard Chicken Droppings 
mcr-1 was found in 51.2% (41/80) of the commercial farm chicken droppings and 25% 

(10/40) in the droppings of chickens reared in households (p = 0.007). No significant dif-
ference in the prevalence of mcr-2 to mcr-5 was identified between the commercial and 
household chicken droppings. mcr-2 and mcr-3 were found in 3.8% (3/80) and 0% (0/40) of 
the commercial farm samples, and 0% (0/80) and 5% (2/40) of the household samples. mcr-

Figure 2. Cumulative distribution of mcr genes in chicken gut samples. The value bar shows the
percentage prevalence. Only 10.8% of the tested samples carried two mobilized colistin resistance
genes concurrently. Co-carriage of three or more genes was found in over 2.5% of samples.

3.4. Comparative Distribution of mcr Genes in Farm and Backyard Chicken Droppings

mcr-1 was found in 51.2% (41/80) of the commercial farm chicken droppings and
25% (10/40) in the droppings of chickens reared in households (p = 0.007). No significant
difference in the prevalence of mcr-2 to mcr-5 was identified between the commercial and
household chicken droppings. mcr-2 and mcr-3 were found in 3.8% (3/80) and 0% (0/40)
of the commercial farm samples, and 0% (0/80) and 5% (2/40) of the household samples.
mcr-4 and mcr-5 were identified in 6.25% (5/80) and 2.5% (1/40) of the farm samples, and
7.5% (6/80) and 12.5% (5/40) of the household dropping samples (Figure 3). Overall, a
significantly higher number of mcr genes were identified in the commercial farm chicken
droppings compared to the chicken droppings from households (p = 0.007).
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commercial farming poultry droppings. Two mcr resistance genes, mcr-3 and mcr-5, exhibited a
slightly higher prevalence in household chicken gut samples. Notably, mcr-2 was absent in native
chicken droppings, while mcr-3 was not detected in commercial poultry farms. Statistical analysis
revealed statistically significantly higher presence of mcr genes in commercial poultry droppings
(p = 0.007).

4. Discussion

To the best of our knowledge, this is the first study to investigate the occurrence of
colistin resistance mcr gene variants using real-time quantitative PCR in poultry droppings
in Bangladesh. We investigated the five mcr gene contaminants (mcr-1 to mcr-5) in both
commercial farm-based chicken droppings and home-based farming chicken droppings
from five districts of Bangladesh. Overall, over 47% of the tested poultry droppings carried
at least one type of mcr gene, with a higher prevalence in the samples collected around
Dhaka, Bangladesh. We identified a higher mcr gene content in the commercial poultry
droppings than in the household chicken droppings. The higher comparative abundance
of mcr genes in the commercial poultry farms could be related to the greater use of colistin
and other antibiotics in farm settings, which we identified in this study. The overuse and
misuse of antibiotics prophylactically or therapeutically in either animal husbandry or
humans were found to associated with higher accumulations of ARGs in metagenomic
environments and bacterial pathogens [55]. There is always great concern about the fate and
consequences of the resistance genes in poultry litter. We have no concrete evidence that the
identified ARG pollution in the environment can certainly contribute to the risks of AMR
acquisition in humans. However, ARGs may create selection pressure for evolving resistant
pathogens [56,57]. mcr genes are plasmid-mediated, having a rapidly emerging capacity
to be disseminated from one bacterium to another by HGT [40,41]. Using poultry litter
as manure in agricultural lands and natural rainwater can disseminate ARGs further into
other health domains. Humans can be exposed to ARGs or ARG-carrying bacteria by direct
contact with a polluted environment, fecal waste, food, and/or drinking water [58,59].
Consequently, the potential impact of ARGs in the food value chain and environment on
AMR emergence needs to be evaluated alongside possible control practices in national and
global policy documents. This is already happening, with many countries banning the use
of colistin as a growth promoter in animal feeds [22,35,36,60].

More than 10% of the tested samples had two or more colistin resistance genes present.
To the best of our knowledge, this research is also the first to report the identification of
mcr-1 to mcr-5 in Bangladesh. Some earlier studies have reported mcr-1, mcr-2, and mcr-3
genes in poultry, the environment, and clinical bacteria [22,52,61–64]; however, reports of
mcr-4 and mcr-5 had not yet been seen in Bangladesh. We also believe this study is unique
in Bangladesh because we reported mcr genes using culture-independent real-time qPCR
analysis. We optimized a Sybr Green-based qPCR and melting plot analysis to quickly
and accurately find and measure the different ARGs in chicken feces. qPCR can identify
ARGs rapidly, precisely, and reliably in samples where conventional microbiology takes
a much longer time. This is important in countries such as Bangladesh. With culture-
based microbiology, it is sometimes critical or impossible to grow injured or fastidious
bacteria [65]. Because of the higher sensitivity of qPCR, the mcr gene detection rate ap-
peared to be much higher than that reported previously in research using conventional PCR
detection [22,52,61,64,66]. Similarly, the prevalence of mcr genes in India, Pakistan, and
Nepal was reported to be between 9.2% and 27.6% according to conventional PCR [67–69].
As such, culture-independent molecular analyses can be helpful for the surveillance of
antibiotic resistance profiles in environmental and clinical samples where conventional
microbiology is challenging, and where there are key concerns including increased resis-
tance to antibiotics in the ‘Reserve’ group. We will continue to evaluate this new technique
and seek to rapidly introduce it into microbiological laboratories in Bangladesh as we seek
to improve the communication of resistance patterns and their implications. Strengthen-
ing the monitoring of antibiotic usage can be achieved through enforced regulations, the
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implementation of antibiotic stewardship programs, and transparent reporting systems.
Promoting environmentally friendly commercial poultry farms involves encouraging sus-
tainable practices and offering financial incentives for eco-friendly operations. Education
and training for farmers on responsible antibiotic use and environmental impacts are cru-
cial. Collaborative efforts among stakeholders will enhance knowledge sharing and foster
an improvement in sustainability and responsibility in poultry farming. To educate farmers
on these issues, awareness-building programs that increase biosecurity, vaccination, and
antimicrobial stewardship must be created. Most of all, the government should play a
key role in this regard while coordinating the activities of donor agencies, law-enforcing
bodies, pharmaceutical industries, professionals, and research institutes. It is mandatory
to monitor antibiotic manufacturing plants, drug licensing bodies, and poultry farms to
confirm the adherence to guidelines provided by the Government to supervise illegal
antibiotic production, selling, importing, and usage. Where applicable, strict penalties in
the form of monetary fines, jail time, and cancelation of licenses and registrations should
be employed. These guidelines could be aligned with the goals of the National Action Plan
of Bangladesh to reduce AMR [70].

This study had several limitations, including its cross-sectional design and lack of
follow-up due to resource constraints. The collected antimicrobial usage history in this
study was self-reported by the chicken farm owners and has not been validated by other
independent investigations. This study did not investigate the acquisition of ARGs in
bacterial communities through microbiological methods. Future research should focus
on determining the presence of ARGs in bacteria and their phenotypic antimicrobial
susceptibilities. This study covered five variants of the mcr (mcr-1 to mcr-5) genes; other
gene variants such as mcr-6 to mcr-10 were not explored.

5. Conclusions

The existence of mcr genes in poultry feces in Bangladesh emphasizes the importance
of proper poultry waste disposal and good hygiene practices among people who work
closely with livestock and poultry meats. The Sybr Green-based quantitative polymerase
chain reaction method appeared to be a rapid, accurate, and highly sensitive screening
technique for the mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes from the culture-independent
chicken gut contents. Validated RT-qPCR could be employed as a sensitive and reliable
technique for designing any AMR surveillance method in livestock, the environment,
and clinical settings. The potential impacts of ARGs in the food value chain on AMR
emergence should be considered in national and global policy documents. An integrated
and combined approach to the One Health concept should be applied in all domains
to understand and control the environment’s role in the evolution and transmission of
AMR. Further extensive research is imperative to discover new methods and strategies to
neutralize genomic and metagenomic ARG contaminants in different One Health sectors.
This is particularly important in countries such as Bangladesh, with critical concerns
regarding AMR, especially among antibiotics in the ‘watch’ and ‘reserve’ groups.
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