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Abstract 

    This paper presents a comprehensive literature review of smart maintenance techniques used in manufacturing, aviation, 

and electric automobiles, with the objective of identifying strategies to optimize the longevity and sustainability of satellite 

operations. This study assesses the latest advancements in smart maintenance, including data analytics, machine learning, 

artificial intelligence, and the integration of sensor technologies. These methods are suggested to reduce downtime, cut 

overall maintenance costs, and increase functional or component reliability and reusability. This study explores state-of-

the-art maintenance approaches and industry best practices and examines their applicability in space. The research outlines 

the advantages of applying smart maintenance techniques to satellites, including enhanced operational efficiency, 

operational life-time extension, and overall cost-effectiveness. Moreover, the research proposes that the space industry 

can utilize the findings as a blueprint for customized satellite maintenance solutions and towards the establishment of 

standards and policies. This paper emphasizes the importance of adopting advanced maintenance procedures as a critical 

step towards a circular space economy that prioritizes sustainability and efficiency in space missions. This research 

contributes towards the sustainable future of the space industry by starting the dialogue on advanced smart maintenance 

technologies. It offers insights into improving satellite maintenance practices and encourages further research and 

collaboration to overcome implementation barriers. Furthermore, maintenance strategies are presented as a vital 

component towards space sustainability, enabling sustainable, reliable space missions, also aligning with the goals of a 

circular space economy. 
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1. Introduction

The number of human-made objects in Earth’s orbit 

continues to grow each year, further accelerated by the 

launch of mega-constellations such as Starlink [1, 2]. To 

mitigate risks associated with orbital overpopulation and 

the creation of space debris, regulatory bodies suggest 

lowering the current recommended post-mission lifetime 

of 25 years, with organizations like the FCC 

recommending 5 years [3]. This end-of-life approach 

prevents materials being reused and negatively impacts 

Earth’s atmosphere through the release of chemicals and 

the creation of metal particles during atmospheric 

burnup [4]. Instead of focusing solely on a 

decommission of satellites as a solution to orbital 

overpopulation, using Smart Maintenance and Health 

Monitoring techniques to extend the Remaining Useful 

Life (RUL) of satellites and investigating if they can be 

repurposed for continued use during their post-mission 

lifetime can offer a sustainable alternative for preserving 

the orbital environment. By implementing smart health 

monitoring, operators can minimize the number of 

redundant satellites in constellations, as faults can be 

detected and addressed in real-time. This decreases the 

overall need for new satellites, conserving resources, 

lowering costs, and minimizing the environmental 

impact of frequent launches and satellite disposals. This 

proactive approach can support the application of 

circular economy-based strategies in space, where 

extending the lifecycle of satellites can reduce waste and 

also enhances overall operational sustainability [5]. 

Satellite technology has advanced significantly in recent 

years and satellites are becoming more flexible in their 

abilities. Some satellites are already equipped with 

sensing equipment for health status reporting, reducing 

the barriers to implementing smart maintenance 

solutions [6, 7]. Capitalizing on existing capabilities and 
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combining them with other Industry 4.0 technologies 

such as Machine Learning and the Internet of Things 

(IoT) [2] can enable satellite networks to act as self-

monitoring sensor networks, providing the data 

necessary for smart maintenance activities in orbit [6]. 

This process can allow for regular re-calculation of a 

spacecraft’s RUL, and more dynamic planning of 

spacecraft repurposing to extend its operational life and 

improve the sustainability of its operations. To 

investigate how emerging technologies can enable 

longer operational lifetimes of satellites and enhance 

sustainability in space, this review examines literature on 

maintenance strategies employed in several key systems, 

including stabilizing systems, propulsion mechanisms, 

power subsystems, communication networks, thermal 

control systems, structural components, and optical 

instruments. The focus of this review is on preventive, 

corrective, and predictive maintenance methods, which 

are essential for the optimal functioning of these systems 

and maximizing both their design life and remaining 

useful life. In particular, this paper examines literature 

on maintenance techniques in comparable industries and 

investigates industrial smart maintenance and health 

monitoring approaches. Furthermore, this paper presents 

a case study on using satellite data to implement these 

smart maintenance and health monitoring solutions. 

 

2. The Role of Maintenance in the Space Industry 

Maintenance activities, which can be classified as 

preventative, corrective, or predictive, play a key role in 

implementing a circular economy [8]. Preventative 

maintenance aims to extend the RUL of an asset by 

preserving or improving its condition before a fault 

occurs, reducing the risk of future faults that could cause 

downtime or loss of the asset [9]. By maximizing the 

RUL of an asset, preventative maintenance activities 

reduce the need for additional resources to be used in the 

constant manufacture of new assets, making the 

production and lifetime of that asset more sustainable [9]. 

Predictive maintenance is a subset of preventative 

maintenance which enables operators to forecast the 

maintenance needs of their assets using techniques like 

statistical analysis or machine learning [10]. This is 

discussed in further detail in Section 6.1. Corrective 

maintenance seeks to repair or restore an asset after a 

fault has developed. Corrective maintenance is often 

more disruptive, costly, and complex than preventative 

maintenance. It also may not extend the RUL beyond the 

original estimate, instead enabling the asset to continue 

useful production until its original end date, adding 

minimal benefit in terms of sustainability [10]. Industries 

such as aviation have long incorporated maintenance 

activities into their lifecycle design to meet necessary 

safety requirements [11]. Effective maintenance 

strategies not only enhance sustainability but also 

increase the financial Return on Investment (ROI) by 

enhancing the asset’s productive capacity. This further 

incentivizes an optimization of maintenance schedules 

and to prioritize preventative maintenance during the 

operational lifetime of a satellite [12, 13]. 

 

2.1 Factors Affecting Satellite Operability 

Satellites are complex systems composed of multiple 

subsystems and components. Key subsystems include 

Attitude and Orbit Control Systems (AOCS), power 

supply systems, and communication interfaces with 

ground stations. The space environment, characterized 

by extreme temperature variations and exposure to 

ionizing radiation, poses significant challenges to these 

components. Over a satellite’s mission lifetime, these 

environmental factors lead to varying levels of 

degradation in each component [14]. The most 

significant factors affecting satellite operability include 

radiation exposure, thermal cycling, and micrometeoroid 

impacts. Each of these stressors progressively degrades 

satellite components, impacting their functionality and 

reducing their operational lifespan. [15, 16] 

 

2.2 Satellite Component Degradation 

A comprehensive study conducted by Tafazoli [17] 

analyzed 156 spacecraft failures and highlighted the 

importance and vulnerability of the AOCS and power 

subsystem. 59% of all failures in this study were caused 

by degradation of these subsystems. Within the AOCS, 

gyroscopes, momentum wheels and thrusters were 

particularly prone to failure, accounting for 17% and 

14% of AOCS-related issues, respectively. Most failures 

within the AOCS were mechanical in nature, including 

lubrication losses and metal abrasion of momentum 

wheels. Other studies corroborate these findings, 

indicating that mechanical failures are more prevalent 

than other types of failure within the AOCS [18]. In 

addition to wear-out failures, the AOCS also experiences 

a high rate of failure within the first year of orbital 

operation, which can be attributed to design flaws and 

manufacturing defects [17, 18]. This highlights the 

crucial importance of robust design and manufacturing 

processes in the development of spacecraft hardware. 

Furthermore, literature suggests that the AOCS may 

become the limiting factor as satellite operators seek to 

increase and maximize mission lifetimes [18], aligning 

with circular economy principles focused on slowing the 
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product lifecycle. In the power subsystem, the solar array 

and battery were the most failure-prone components, 

with the solar array being the leading cause of functional 

failures across all missions and contributing to 49% of 

power subsystem failures. The solar array, often the most 

exposed component on a satellite, is subject to constant 

wear and degradation, directly impacting the satellite's 

power generation capacity, leading to cascading effects 

on other subsystems. These findings are further 

corroborated by other studies on specific spacecraft 

failures [18-21] which consistently emphasize the 

criticality of the AOCS and power subsystem in 

maintaining satellite functionality. Unlike other 

subsystems, which often incorporate redundancy 

measures or backups, the power subsystem and AOCS 

present unique challenges. Solar arrays typically lack 

physical backups, and alternative power sources are 

usually unavailable [17]. Implementing redundancy in 

the AOCS is also challenging. Launching a satellite with 

a back-up momentum wheel would be costly, not only 

with the additional part manufacture but of increased 

launch costs due to the extra mass. Moreover, 

implementing low-level redundancy for components like 

bearings or lubricant is impractical [18]. Therefore, 

minimizing degradation of these subsystems before 

launch is essential for maximizing the satellite’s 

operational lifetime. Whilst some data on spacecraft 

failures is available for analysis, the details regarding 

failure causes are often incomplete, and the data may not 

be regularly updated or maintained. This limitation 

complicates the prediction of degradation based on 

historical data and underscores the importance of 

optimizing component design and manufacturing 

processes to protect against the most critical failure risks 

identified [22]. 

 

3. Maintenance Activities in Other Industries 

Industries such as aviation, robotics, and energy 

production make use of similar components as used in 

satellites, such as stabilizing systems, solar panels, and 

optical instruments. These sectors are already employing 

preventative and predictive maintenance techniques to 

maximize their RUL and optimize their design life.  

 

3.1 Stabilizing Systems in Aviation and Robotics 

Stabilizing systems, such as gyroscopes and 

momentum wheels, are critical components in aviation 

and robotics applications. These systems require precise 

maintenance to function correctly. Preventative 

maintenance, including regular lubrication checks, is 

vital to prevent wear and tear. Lubrication loss and metal 

abrasion are common issues that can significantly impair 

performance [23]. Software-based predictive 

maintenance techniques, such as vibration analysis and 

performance monitoring, are used to detect early signs 

of mechanical failure, allowing for timely intervention 

[24]. Additionally, regular calibration of gyroscopic 

instruments ensures accuracy, which is critical in 

aerospace engineering and robotic applications [25]. 

 

3.2 Power Subsystems: Solar Panels and Industrial 

Batteries 

Solar panels and industrial batteries are integral to 

power subsystems in renewable energy applications and 

industrial power supplies. Solar panels are subject to 

environmental factors that can lead to efficiency loss 

over time. Regular cleaning and inspection are essential 

to remove dust, debris, and other contaminants that may 

reduce power output [26]. Monitoring systems are often 

employed to track the performance of solar panels and 

detect any deviations from expected output, which can 

signal the need for maintenance [26]. Industrial batteries, 

particularly those used in uninterruptible power supplies 

(UPS) and electric vehicles, require rigorous 

maintenance to ensure they operate effectively. Capacity 

testing is a common practice to assess the battery’s 

ability to store and deliver power under various 

conditions [27]. Additionally, thermal management 

systems are crucial in preventing overheating during 

charging and discharging cycles, which can lead to 

premature failure [28].  Regular replacement schedules 

based on usage and environmental conditions are also 

implemented to maintain reliability [27]. 

  

3.3 Communication Networks: Telecommunication 

Systems and Data Networks 

Communication networks, including 

telecommunication systems and data networks, are 

critical for the seamless transmission of data and signals. 

These systems are vulnerable to signal degradation due 

to several factors such as noise, attenuation, and thermal 

stress [29]. Regular signal integrity tests are conducted 

to detect and rectify these issues, ensuring that 

communication remains reliable and efficient [30]. 

Furthermore, hardware upgrades are periodically 

performed to replace outdated components and enhance 

system capabilities, which is a widespread practice in 

data centers [31]. 

  

3.4 Thermal Control Systems: HVAC Systems in 

Industrial Buildings and Data Centers 

Thermal control systems are vital in maintaining 

optimal operating temperatures for various industrial 

applications. In industrial buildings and data centers, 
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HVAC (Heating, Ventilation, and Air Conditioning) 

systems are essential for regulating temperature and 

ensuring the smooth operation of critical systems [32].  

Regular coolant checks and replacement, as well as 

insulation maintenance, are common practices to prevent 

overheating or overcooling, which can lead to equipment 

failure. System diagnostics are also routinely conducted 

to monitor performance and make necessary adjustments 

to maintain efficiency [33]. 

  

3.5 Optical Instruments: Maintenance in Scientific 

Instruments and Cameras 

Optical instruments, such as lenses and sensors, are 

critical components in various scientific and industrial 

applications. These instruments require meticulous 

maintenance to ensure optimal performance. Regular 

cleaning and polishing of optical surfaces are essential 

to maintain clarity and prevent signal distortion [34]. 

Additionally, protective coatings are often applied to 

minimize the effects of environmental exposure, such as 

radiation or physical impacts, which can degrade the 

optical quality over time [27]. Periodic alignment checks 

are also necessary to ensure that optical components 

remain correctly positioned, which is crucial for 

maintaining accuracy in scientific measurements and 

imaging applications [35]. 

 

4. The Circular Economy in Space 

The space industry can greatly benefit from smart 

maintenance and strategies that are rooted in circular 

economy principles. The high cost of satellites, depletion 

of virgin materials and resources, and the environmental 

impact of space operations make it essential to 

investigate satellite lifecycle extensions, optimizing 

resource use, and to minimize overall waste. To 

gradually transition into a Circular Economy (CE) can 

represent a significant shift in both industrial operations 

and product design, moving away from the traditional 

linear approach of “take, make, dispose” a satellite, to a 

sustainable approach that prioritizes keeping satellites 

and the materials longer in operation. Foundational 

strategies like reusing, remanufacturing, or recycling 

satellites can be utilized to achieve these goals, along 

with applying more nuanced approaches to extend a 

satellites operational lifetime [36]. This transformation 

in the design and manufacturing of satellites is also 

driven by increasing environmental concerns and 

resource scarcity, and a growing economic motivation 

for reducing material costs and decreasing waste 

generation [8]. A main point of the digital transformation 

in manufacturing is to focus on product life cycle 

management. This focus encourages businesses to 

design products that are more durable, repairable, and 

upgradable [8]. This shifts the focus from merely 

improving end-of-life recycling processes to ensuring 

that products have a longer, more productive operational 

time and that components of the products can also be 

reused in new products. By integrating modularity and 

standardization into design, manufacturers can facilitate 

easier repairs and upgrades, thereby fostering innovation 

in sustainable product development [36]. Product design 

under a CE framework also aligns closely with the 

concept of “servitisation”, where companies move away 

from selling physical products to providing services 

based on the functionality those products offer [37]. This 

transformation from product ownership to product-as-a-

service (PaaS) not only promotes the use of durable, 

high-quality products but also offers businesses an 

ongoing revenue stream by maintaining and servicing 

the products they lease to customers [38]. As such, 

businesses are incentivized to ensure their products last 

longer and perform better over time, increasing the need 

for optimized and predictive maintenance capabilities. 

Moreover, the CE transformation is inextricably linked 

to the rise of new business models. Companies adopting 

CE principles are shifting towards models that are based 

on value retention, including leasing, sharing, and take-

back schemes, where products or their components can 

be reintroduced into the production cycle after use [39]. 

These business models not only reduce the 

environmental impact by lowering material input and 

waste, but also create new opportunities for customer 

engagement and brand loyalty through enhanced service 

offerings [36]. In this way, CE is transforming the 

fundamental logic of business operations, encouraging 

firms to explore innovative ways of creating value while 

mitigating their environmental footprint [8]. In contrast 

to traditional recycling approaches, which tend to focus 

on managing waste after products have reached the end 

of their life, the CE framework promotes a more 

comprehensive approach to sustainability that prioritizes 

proactive strategies for extending product life. This shift 

towards life extension can include practices such as 

preventive maintenance, product refurbishment, and 

remanufacturing, all of which contribute to reduced 

resource consumption and a slower turnover of goods 

[8]. Consequently, the CE is not merely about improving 

waste management, but about fundamentally rethinking 

how products are designed, used, and eventually 

reintegrated into the economy. The CE transformation is 

more than just a set of strategies; it represents a new 

economic model that integrates sustainability into the 

core of manufacturing, product design, and business 

practices. By extending product life, promoting 
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servitisation, and adopting innovative business models, 

CE offers a pathway for industries to achieve long-term 

economic and environmental resilience [8, 36]. 

Investigating how to apply circular economy principles 

and the aforementioned strategies to satellites can 

benefit the space industry by promoting extended 

lifespans of satellites, reduced overall mission cost, and 

a decreased environmental impact on Earth and in space. 

 

4.1 Integrating Circular Economy Techniques into 

Satellite Operations: A Business Model Perspective 

As the space industry evolves, integrating circular 

economy principles becomes essential for sustainable 

growth. This section discusses how the repurposing, 

reusing, and previously detailed business models can be 

effectively applied to satellite operations, creating 

sustainable and economically viable solutions. 

 

4.1.1 Repurposing Satellites in Operation 

The repurposing of satellites involves extending their 

RUL by assigning them new missions once their original 

functions can no longer be performed effectively. 

Business models that support this technique include 

Lifecycle Extension Services, where companies can 

offer services that assess and reconfigure satellites to 

take on new roles, extending their operational life and 

deferring the environmental cost of deorbiting and 

launching new satellites; and Flexible Use Licensing, 

where satellite operators can offer flexible licensing 

models that allow users to switch satellite roles, 

facilitating a dynamic use of space assets based on 

demand and satellite capability. 

 

4.1.2 Reusing Satellite Components 

Reusing components from decommissioned satellites 

or those nearing the end of their operational life is 

another approach. This involves designing satellites so 

that certain components, such as sensors or propulsion 

units, can be easily transferred to other satellites or 

platforms. Business models here include Component 

Leasing, where companies specialize in leasing satellite 

components, which can be swapped in and out of 

different satellites as needed, like the automotive 

industry’s parts leasing; and encouraging the design of 

modular satellites where components are standardized 

and interchangeable across different systems. This 

would promote a “plug-and-play” approach to satellite 

construction and maintenance. 

 

4.1.3 Circular Supply Chains 

Building circular supply chains in the satellite 

industry involves establishing systems that facilitate the 

return, refurbishment, and reuse of satellite components. 

Business models that promote circular supply chains 

include Reverse Logistics Services, where companies 

that specialize in the recovery and refurbishment of 

satellite components from space, which are then either 

reused or recycled; and Sustainability Certifications that 

are offered to satellite operators that adhere to circular 

economy principles, enhancing brand reputation and 

consumer trust. To support these operations, sustainable 

business practices must be integrated into every level of 

organizational strategy. Businesses could implement 

subscription-based models, where satellite services are 

offered under a service agreement that includes 

maintenance, upgrades, and eventual repurposing or 

recycling. Another option is investigating partnerships 

and collaborations between governments, commercial 

enterprises, and NGOs to share knowledge, resources, 

and technologies that facilitate the circular use of 

satellites. Implementing circular economy principles in 

satellite operations requires innovative business models 

that promote sustainability and resource efficiency.  

 

4.1.4 Satellite-as-a-Service (SaaS) 

The Satellite-as-a-Service model transforms satellite 

operations from a product-based to a service-based 

approach. Operators lease satellite capabilities rather 

than owning the satellites outright. This model 

encourages manufacturers to design satellites that are 

more durable and easier to maintain, as the responsibility 

for the satellite's performance and longevity remains 

with the service provider. This service-based approach 

aligns with the service-dominant logic in marketing, 

which views the value of a product as the service it 

provides rather than the physical good itself. Vargo and 

Lusch [40] discuss this in their work on service-

dominant logic, highlighting how it fosters longer 

product life cycles and sustainability. 

 

4.2 Challenges and Opportunities in Transitioning to 

Circular Economy Practices in Satellite Operations 

 

4.2.1 Challenges 

The adaptation of circular economy principles to the 

satellite industry faces significant technological 

challenges, particularly in designing satellites that are 

modular and capable of being repurposed or having 

components reused. Overcoming these barriers requires 

advances in material science and engineering to develop 

components that can withstand multiple missions and 

harsh space environments [41]. Transitioning to a 

circular economy model also requires substantial upfront 

investment in research and development, as well as in 
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the restructuring of existing production lines to 

accommodate new designs and processes. There is also 

the challenge of proving the economic viability of these 

new models to stakeholders and investors [42]. Finally, 

the lack of specific regulations that support the circular 

economy in space activities can hinder the adoption of 

these practices. Effective policy frameworks are 

essential to facilitate recycling, repurposing, and the safe 

deorbiting of satellites [43]. 

 

4.2.2 Opportunities 

By implementing circular economy practices, the 

satellite industry can significantly reduce its 

environmental impact, decreasing both space debris and 

the carbon footprint associated with manufacturing and 

launching new satellites [44].  Circular economy models 

can lead to substantial economic benefits through cost 

savings in materials and waste management, as well as 

by creating new revenue streams from services such as 

on-orbit servicing and component leasing [43]. The shift 

towards circular economy practices can spur innovation 

in satellite design and operations, leading to innovative 

technologies and methods that offer competitive 

advantages in the global market. This can also foster 

collaborations across industries, expanding the 

technological frontier [45]. Satellite components and 

production systems share several commonalities in their 

design and operational needs. Both rely on the 

integration of complex systems that require meticulous 

maintenance, continuous monitoring, and efficiency 

optimization. Understanding these similarities is crucial 

for exploring how circular economy techniques 

developed on Earth can be adapted for use in space-

based systems. 

 

5. Software-Based Maintenance 

Degradation of computational power, machine 

overload, and process bottlenecks in production lines are 

common challenges that can reduce overall system 

efficiency, increase downtime, and lead to significant 

financial and resource waste. Fortunately, several 

software-based solutions can mitigate these issues, 

leveraging optimization, resource-sharing strategies, and 

outsourcing of critical processes. Software-based 

solutions such as optimization algorithms, resource 

sharing, and outsourcing offer effective ways to address 

the challenges of computational power degradation, 

machine overload, and process bottlenecks in production 

systems. By leveraging load balancing, machine 

learning for predictive optimization, cloud-based 

computation, and distributed manufacturing, companies 

can optimize their workflows, maintain efficiency, and 

support circular economy goals. These solutions allow 

for flexible, scalable, and sustainable approaches to 

managing production and computational systems under 

stress. Below is an analysis of potential solutions. 

 

5.1 Optimization Techniques 

Optimization algorithms can be implemented to 

improve the overall efficiency of machines and 

computational systems. These algorithms ensure that 

resources are allocated effectively, and that systems are 

not unnecessarily overburdened. 

5.1.1 Load Balancing Algorithms 

Load balancing involves distributing tasks across 

multiple machines or computational resources to prevent 

overload on any single entity. In computational systems, 

load balancing can distribute processing tasks across 

servers or processors, ensuring no single CPU becomes 

a bottleneck. This strategy is particularly effective in 

cloud computing environments, where tasks are shared 

across multiple servers [46]. In production systems, load 

balancing can be used to distribute manufacturing tasks 

across machines on the production line. For example, 

automated manufacturing plants often use optimization 

algorithms to distribute workloads evenly across robots 

or machines to prevent any one station from becoming 

overloaded [46]. 

 

5.1.2 Machine Learning for Predictive Optimization 

Machine learning (ML) models can optimize 

resource use by predicting when machines are likely to 

become overloaded or when computational power will 

degrade. Predictive algorithms analyze historical 

performance data and real-time inputs to adjust resource 

allocation dynamically. For example, ML algorithms 

can predict when a machine is likely to overheat or 

require maintenance and shift workloads to other 

machines preemptively [47]. In cloud computing, 

predictive ML can be used to allocate more processing 

power to tasks expected to demand more resources, 

preventing computational degradation [48]. 

 

5.1.3 Process Optimization 

In production systems, software can optimize entire 

processes by identifying bottlenecks and redistributing 

tasks accordingly. Software solutions such as enterprise 

resource planning (ERP) systems can track production 

flow and identify stations where work piles up due to 

inefficiencies. For example, in a factory where one 

station slows down due to mechanical issues, software 

can reallocate tasks to other stations or adjust schedules 

to prevent delays [49]. 
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5.2 Resource Sharing and Virtualization 

Resource sharing is another key solution to address 

machine overload and computational degradation. By 

enabling multiple machines or systems to share 

resources, companies can reduce the strain on individual 

components and optimize the use of available capacity. 

 

5.2.1 Cloud Computing and Virtualization 

Virtualization technologies, particularly in cloud 

computing environments, enable companies to share 

computational resources efficiently. Virtualization 

allows physical resources to be divided into virtual 

machines (VMs) that can be dynamically allocated based 

on demand [50]. This means that when computational 

power begins to degrade or reach its limit, additional 

resources from other VMs or cloud infrastructure can be 

allocated to maintain performance levels. In production 

systems, resource-sharing solutions can involve sharing 

computing power between machines. For example, if 

one machine's onboard computing system is overloaded, 

nearby machines on the production line can take on some 

of the computational tasks. This distributed computing 

approach can prevent bottlenecks and ensure continued 

production flow. 

 

5.2.2 Shared Machine Usage in Manufacturing 

Resource sharing is not limited to computational 

systems. In manufacturing, machine-sharing strategies 

allow multiple processes or tasks to be allocated to 

different machines when the primary machine is 

overloaded. For example, if one CNC machine becomes 

overloaded with tasks, software can allocate part of the 

work to another machine that has available capacity, 

optimizing overall workflow [30]. 

 

5.3 Outsourcing Critical Processes 

When internal systems are no longer capable of 

handling certain workloads or processes due to 

computational degradation or production overload, 

outsourcing can be an effective solution. Outsourcing 

critical or resource-intensive processes to external 

partners allows companies to maintain efficiency 

without investing in additional internal capacity. 

 

5.3.1 Cloud-Based Computation Outsourcing 

In computational systems, outsourcing critical 

processes to cloud providers is a common solution when 

internal systems reach their limits. Cloud services like 

Amazon Web Services (AWS) and Microsoft Azure 

offer scalable computing resources that can be tapped 

into as needed [51]. For example, in the event of an 

overload in internal servers, companies can offload 

computational tasks to the cloud, ensuring continuity 

without requiring immediate hardware upgrades [52]. 

 

5.3.2 Outsourcing Manufacturing Processes 

In production systems, outsourcing certain high-

demand tasks to external manufacturers or 

subcontractors can help reduce overload. For example, 

companies facing capacity constraints might outsource 

part of their production line to specialized manufacturers 

during periods of peak demand. This approach ensures 

that production continues smoothly while avoiding the 

cost of investing in new machines [53]. For example, 

automotive manufacturers often outsource the 

production of specific components like electrical 

systems or transmission units during high-demand 

periods. 

 

5.4 Cloud-Based Manufacturing (CBM) and Distributed 

Manufacturing 

An emerging solution to computational and 

production overload is the adoption of Cloud-Based 

Manufacturing (CBM), which integrates cloud 

computing into manufacturing processes. CBM allows 

manufacturers to share resources such as design data, 

production capacity, and even machine availability 

across a network, reducing the likelihood of bottlenecks 

or overload in any single system [50]. 

 

5.4.1 CBM for Production Line Flexibility 

In CBM, machines across separate locations can be 

interconnected through the cloud to share workloads 

dynamically. If a particular machine or station in a 

factory experiences an overload or bottleneck, CBM 

software can allocate that task to a machine in a different 

location with available capacity [30]. This allows 

companies to dynamically optimize production lines and 

avoid inefficiencies caused by local constraints. 

 

5.4.2 CBM in Distributed Manufacturing 

Distributed manufacturing, enabled by CBM, allows 

manufacturers to decentralize production by outsourcing 

specific components of the manufacturing process to 

various locations. This strategy increases flexibility and 

reduces the strain on any one production line [54]. For 

instance, rather than concentrating all production tasks 

in a single factory, companies can leverage a network of 

smaller, geographically dispersed factories to handle 

specific tasks when one factory reaches its capacity.  

 

6. Smart Maintenance and Health Monitoring 

Smart maintenance and health monitoring plays a critical 

role in supporting circular production systems, lowering 
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downtime, extending asset life, optimizing resource use, 

and minimizing waste. By leveraging predictive 

analytics, machine learning, and adaptive algorithms, 

smart maintenance and health monitoring enhances 

production efficiency and aligns with circular economy 

principles by reducing the need for premature 

replacements and resource-intensive interventions. 

Table 1 summarizes how industrial smart maintenance 

practices relate to sustainable circular economy 

principles, and how these practices may translate into 

use in satellite networks vis software-based, smart 

interventions.  

 

6.1 Predictive Maintenance 

Predictive maintenance relies on real-time data and 

sensor technology to monitor machinery and predict 

potential failures before they happen. This approach 

reduces downtime, prevents sudden breakdowns, and 

allows for timely maintenance, extending the life of 

machinery and reducing waste [47]. For example, in 

automated manufacturing lines, predictive maintenance 

helps prevent failures that could disrupt production, 

leading to more sustainable operations and resource 

conservation [48]. In the automotive industry, 

manufacturers like BMW and Tesla use predictive 

maintenance to keep their production lines running 

efficiently by identifying equipment needing repair 

before failure occurs, avoiding unnecessary energy 

consumption and material waste [54]. 

 

6.2 Load Balancing and Optimization 

Smart maintenance systems optimize resource usage 

by employing load balancing techniques. These systems 

distribute tasks evenly across machinery, preventing the 

overuse of specific assets and ensuring smoother 

operation, reducing the wear on individual machines 

[46]. This load optimization not only enhances 

productivity but also prolongs machinery life, 

contributing to a circular approach by avoiding the need 

for frequent replacements. For example, in 

semiconductor manufacturing, load-balancing 

algorithms optimize machine utilization to maintain 

consistent production rates, reducing both downtime and 

energy consumption [30]. 

 

 

 

 

6.3 Repurposing and Asset Management 

Smart maintenance enables the repurposing of 

degraded machinery for less demanding tasks, thus 

extending the lifecycle of assets. Machines that may no 

longer be suitable for high-precision tasks can be 

reallocated to perform simpler functions, such as 

packaging or inspection, thus preventing premature 

disposal [53]. This approach fits into circular economy 

strategies by maximizing the use of available resources 

and minimizing waste. For example, older industrial 

robots may be repurposed to perform non-critical tasks 

once their precision capabilities decline. This prevents 

early retirement of expensive equipment and reduces the 

environmental impact of manufacturing new machines 

[46]. 

 

6.4 Outsourcing High-Demand Processes 

When internal systems are strained during high-

demand periods, outsourcing can help reduce the load on 

production assets, extending their operational life. 

Outsourcing specific, resource-intensive processes to 

external suppliers allows internal resources to be focused 

on core production tasks, reducing wear and preventing 

overloading [53]. For instance, electronics 

manufacturers often outsource the production of 

complex components such as circuit boards to 

specialized suppliers during peak production periods, 

relieving their in-house systems from potential overload 

and reducing downtime [51]. 

 

7. Smart Maintenance for Satellites: A Case Study 

Some aspects of satellite deterioration are age-related 

and well understood through analysis of historical data 

and statistical modelling. However, this modelling is 

only possible when sufficient data is available. Satellite 

constellations are typically built in smaller groups that 

are launched in waves and consist of different hardware 

and software specifications, making traditional 

statistical modelling less effective at making 

deterioration predictions [54]. Additionally, many 

potential faults are related to environmental factors 

rather than its age exclusively. The probability of these 

factors resulting in faults often does not strongly 

correlate with how long the asset’s time is in service, 

making the scheduling and execution of preventative 

maintenance challenging [8]. These failure modes 

correlate with other measurable variables, such as 

radiation exposure or physical damage caused by space 
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 Table 1. Summary of how industrial smart maintenance practices relate to the circular economy and satellite network 

debris, which can be used to predict an asset’s future 

maintenance needs using predictive maintenance [56, 

57]. If data on these variables can be collected in a timely 

manner, for example by using smart technologies such 

as digital sensors, it can be used as the basis for 

predictions needed for planning preventative 

maintenance. Instead of relying exclusively on statistical 

analysis for predictions, this data can be used as training 

data for ML models, which significantly improves the 

accuracy of these predictions. ML models can learn from 

large datasets and evolve over the asset’s operational life, 

continually optimizing its maintenance schedule [12]. 

This reduces the risk of failure from under-maintenance 

and the risk of excessive spending from over-

maintenance [13], in addition to making the production 

and use of the asset more sustainable. This combination 

of using smart devices and ML for predictive 

maintenance is known as Smart Maintenance [12, 58]. 

Smart Maintenance makes use of ML models to predict 

the RUL for an asset, without the need for frequent 

human-led inspections, which can be costly and 

challenging [59]. The aviation and manufacturing 

sectors have recently begun to implement Smart 

Maintenance techniques to enhance the efficiency of its 

predictive maintenance activities and improve the 

sustainability of their product lifecycles [12, 13].  

 

7.1 Distributed Machine Learning  

Once trained on data from ground-based test 

campaigns, ML models consume real data to establish 

patterns that can be used for predictive maintenance. 

This data, gathered from on-board sensors, is likely to 

contain proprietary and sensitive information about 

equipment performance and configurations. Secure data 

Industrial Smart 

Maintenance 

Practices 

Description Circular 

Economy 

Principle 

Application on Satellites 

Predictive 

Maintenance 

Uses real-time data and AI to predict 

machinery failures and perform 
proactive maintenance 

Rethink, 

Reduce 

Use AI-driven predictive maintenance to monitor critical 

components like batteries and solar panels, adjusting 
operational parameters to avoid failures and extend life. 

Load Balancing and 

Resource 

Optimization 

Distributes workloads across machines 

to prevent overloading and optimize 
resource use 

Reduce, 

Rethink 

Share computational resources between satellites in a 

constellation, dynamically shifting tasks to satellites with 
available capacity, optimizing energy and processing 

power. 

Adaptive Control 

Systems 

Machine learning systems that adjust 

machine operation (e.g., speed, load) 
based on real-time conditions 

Rethink, 

Reduce 

Implement adaptive control over mechanical parts (e.g., 

antennae, propulsion systems) to reduce wear and tear, 
extending satellite life by adjusting usage based on 

conditions. 

Repurposing 

Degraded Assets 
Older machines are repurposed for less 
critical, non-core functions 

Reuse, 
Repurpose 

Repurpose satellites for lower-demand applications, such 
as educational purposes, scientific experiments, or less 

critical communication tasks after their primary mission 

is complete. 

Outsourcing High-

Demand Processes 
Offload resource-intensive tasks to 
external or third-party systems during 

peak demand 

Reuse, Reduce Offload computational tasks or communication 
processing to ground stations or nearby satellites when 

satellite resources are nearing limits, reducing energy 

consumption. 

Dynamic Energy 

Management 

Optimizes the energy consumption of 

machines by adjusting power use 

based on real-time needs 

Reduce, 

Rethink 

Use AI for dynamic energy management of solar panels 

and batteries, optimizing energy use based on real-time 

conditions like sunlight availability and power demand. 

Component Life 

Extension through 

Calibration 

Extends the life of components by 

frequently recalibrating them for 

optimal performance 

Extend, 

Reduce 

Recalibrate sensors, gyroscopes, and other sensitive 

equipment to ensure they remain accurate and function 

optimally, preventing premature failure and extending 
operational life. 

Virtualization and 

Cloud-Based 

Solutions 

Shares computational tasks and 

resources via virtualized platforms and 

cloud computing 

Reduce, Reuse Virtualize satellite computing power to share resources 

with other satellites in the network, preventing overload 

and ensuring resource-efficient task distribution. 

AI-Based 

Maintenance 

Optimization 

Uses AI to continuously learn from 

performance data to optimize 

maintenance schedules and machine 
operation 

Rethink, 

Extend 

Implement AI to continuously optimize satellite 

operations, adjust maintenance schedules, and predict 

energy or component failures, thus extending operational 
lifetimes. 

Repurposing 

Components for New 

Missions 

When machines degrade, components 

can be reused for new tasks or systems 

Reuse, 

Repurpose 

Repurpose specific satellite components, like 

communication systems or sensors, for low-energy, 

lower-demand missions or even pass them on to newer 
satellites for extended utility. 
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handling will be necessary to protect any private data 

consumed by the model as it continues to evolve and 

improve after being evaluated against validation datasets 

[6, 7, 60]. To improve data security and access to 

services such as smart contracts and device autonomy, 

integrating Distributed Ledger Technologies (DLTs), 

such as blockchain, into pre-existing smart ecosystems 

is being explored [61, 62]. DLTs offer robust and secure 

data storage, where encrypted copies of data are 

distributed across multiple devices. This decentralized 

approach mitigates the risk of data loss from a single 

point of failure in the system and reduces the likelihood 

of data interception or manipulation [7, 60, 63]. Using 

data parallelism, ML models can be trained on 

distributed datasets stored in Distributed Ledgers (DLs). 

Data is partitioned into smaller subsets to optimize 

storage across resource-constrained devices at the 

network’s edge, such as satellites. Following a 

Decentralized Federated Learning approach, each device 

trains the ML model on its local dataset, communicating 

and synchronizing model updates with other devices 

upon completion [64]. Since user-based validation 

opportunities are limited in the orbital environment, once 

a local model update has been validated and added to the 

ledger, smart contracts can be used for adaptive learning 

to improve the accuracy of the shared ML model. This 

automates decisions around learning rate adjustments, 

triggering additional training rounds and execution of a 

validation dataset to assess the model’s effectiveness 

against a predefined set of metrics [65, 66]. Whilst 

distributed ML at the edge allows the collected data to 

remain secure with its owner, that data has limited value 

to its owner as a standalone asset. By using a distributed 

ledger-based system, operators can monetize that data 

via payment of royalties, providing a financial incentive 

for both data collection and usage, in addition to the 

incentive of having a more reliable satellite. Smart 

contracts can facilitate this exchange of micropayments 

for use of data for model training, as well as enabling 

adaptive learning [63, 64]. An example of this 

architecture is shown in Fig. 1. 

 

7.2 Key Challenges 

Not all satellites are equipped with sufficient health 

monitoring equipment, making data collection for smart 

maintenance difficult. Addressing this issue requires the 

installation of additional hardware, such as processing 

chips or sensors, to facilitate effective data collection. 

This hardware could be integrated as an additional, 

modular sub-system on the spacecraft [7]. In addition, 

satellites typically have limited resources, such as 

processing power, memory, and energy, which 

constrains their ability to deploy computationally 

expensive and large ML models at the edge. Ongoing 

research into model compression technologies aims to 

mitigate this issue by reducing the size of deployed ML 

model, and advancements in edge computing are 

exploring how to optimize ML inference on resource-

constrained devices [64, 67]. 

 

8. The Future of Smart Maintenance in Satellites: 

Potentials and Business Models for a Circular 

Economy in Space 

The future of smart maintenance in satellites and 

leveraging circular economy principles in satellite 

technology offers promising potential, particularly 

through extending operational lifetimes, resource 

optimization and innovative circular business models. 

Just as industrial sectors have integrated practices such 

as predictive maintenance, load balancing, and adaptive 

systems to extend the life of assets and minimize waste, 

the satellite industry is beginning to explore similar 

pathways. Satellites, much like machines in industrial 

environments, face degradation over time. By 

implementing AI-driven smart maintenance, satellite 

operators can anticipate component failures -such as 

battery degradation or solar panel wear - and make 

proactive adjustments to extend their operational life. 

This practice aligns with the "Rethink" and "Reduce" 

circular economy principles, ensuring that satellites 

remain functional for longer periods, reducing the 

frequency of new launches and conserving resources. 

Business models based on service contracts for 

maintaining satellite constellations could emerge, where 

companies ensure operational longevity in exchange for 

continuous revenue streams. Resource-sharing models, 

such as load balancing, have become essential in cloud 

computing and manufacturing, preventing system 

overload, and optimizing energy use. In satellite 

constellations, a similar practice could allow satellites to 

share computational tasks or communication loads with 

neighboring satellites. This "Reduce" and "Reuse" 

strategy would ensure that satellites operate more 

efficiently, particularly during peak demand. Emerging 

cloud-based satellite platforms could monetize the 

sharing of computational resources between satellites, 

offering flexible pricing for bandwidth and processing 

power across constellations. 
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Figure 1. Architecture for distributed machine learning in a satellite network. Own graphic.

Just as industrial machines are repurposed for less 

demanding tasks as they age, satellites could be 

repurposed for lower-demand applications once their 

primary mission ends. A satellite designed for high-

demand communication could, for instance, be 

reassigned to environmental monitoring or educational 

purposes. This practice taps into "Reuse" and 

"Repurpose" principles, ensuring that valuable hardware 

is not wasted and extends its functional life. Business 

models around "satellite leasing" could emerge, where 

older satellites are rented out for secondary purposes, 

creating a revenue stream from assets that would 

otherwise be decommissioned. Efficient energy use is 

critical in satellite operations, especially as solar panels 

and batteries degrade over time. AI-driven dynamic 

energy management could optimize how satellites 

harness solar energy, adjusting operations based on real-

time conditions to ensure maximum longevity. This 

aligns with "Reduce" principles, making satellites more 

energy-efficient and sustainable. Satellite operators can 

adopt pay-per-use models, where users are charged 

based on the satellite's optimized energy consumption, 

promoting sustainability and long-term use of space 

assets. The satellite industry has promising potential for 

adopting circular business models that focus on 

extending asset life and optimizing resource use. These 

new models can include following examples: 

Satellite-as-a-Service (SaaS): Offering satellites or 

satellite functions as a service rather than selling them 

outright. This model incentivizes operators to ensure the 

longest possible operational life for satellites, aligning 

with circular principles. 

Satellite Refurbishment and Upcycling: Similar to 

refurbishing industrial machines, satellite operators 

could refurbish or upgrade older satellites for new 

missions, reducing the need for new materials and 

launches. Companies could monetize the refurbishment 

process by selling upcycled satellites for lower-cost 

missions. 

Shared Satellite Networks: Creating shared satellite 

networks where multiple stakeholders can access a 

single satellite’s resources (computational power, 

communication bandwidth) under a subscription model. 

This would maximize the utility of each satellite and 

prevent resource overuse. 

On-Orbit Servicing, Assembly, and Manufacturing 

(OSAM): OSAM models extend satellite lifespans by 

performing maintenance, repairs, or upgrades directly in 

orbit. This model reduces the need to launch new 

satellites and directly supports sustainability by 

prolonging the service life of existing assets. The 

theoretical foundation for OSAM includes resource-

based theory, which emphasizes the competitive 

advantage of maintaining and enhancing resources (such 

as satellites) in their operational environment [68]. 

 

9. Conclusion 

Satellite manufacturers and operators can apply 

smart maintenance strategies by leveraging 

advancements in software and technology to increase the 

sustainability of their activities. This paper demonstrated 

that much of the necessary technology is already 

available and successfully utilized in comparable 

products and other industries. Implementing smarter 

maintenance solutions can increase space sustainability 

and also opens new avenues to generate revenue. These 

solutions can help reduce manufacturing costs, increase 

the overall revenue per satellite, and enables the 
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collection of detailed satellite health data, which can be 

used to further optimize manufacturing and maintenance 

activities. With significant advancements in machine 

learning and IoT sensor technologies, satellite operators 

can access more detailed information about their assets 

and use it to make better operational decisions. Research 

in the areas of distributed machine learning and edge 

computing can further enhance these processes and 

potentially enable a new approach to smart maintenance 

for satellites. Future research should investigate 

effective practices for adopting smart maintenance 

strategies from industries such as aviation to enhance 

satellite health operations. Additionally, long-term space 

missions, especially those involving human presence, 

introduce unprecedented challenges and new set of 

requirements for maintenance operations that need to be 

explored. Furthermore, investigating the requirements to 

establish a circular economy in space seems vital for 

safeguarding a sustainable and long-term use of space as 

a critical resource. 
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