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The task of scheduling satellite operations is inher-
ently complex and highly sensitive to alterations, a chal-
lenge compounded by the increasing number of satel-
lites in orbit. The escalating risks and complexities have
prompted organizations to explore automated solutions to
replace traditional manual processes. However, concerns
about the trustworthiness and transparency of automated
systems prevent their widespread adoption.

eXplainable Artificial Intelligence (XAI) is an emerg-
ing field that aims to address these reservations by en-
abling Artificial Intelligence (AI) systems to provide
explanations for their decisions, thereby eliminating
opaqueness in understanding their reasoning. Within
XAI, the use of computational argumentation frameworks
has seen increasing utilisation. This approach quantifies
the supportability of decisions, offering system operators
enhanced understanding and justification for utilizing
automated services.

This paper expands on previous research by detailing a
method for generating a tripolar argumentation approach
for assessing actions based on an Earth Observation (EO)
satellite schedule. The method involves calculating and
presenting the weights of arguments that support or at-
tack the scheduled actions. The results illustrate the ef-
fectiveness of the approach in producing meaningful in-
sights into scheduling decisions, highlighting its poten-
tial for practical applications in real-world satellite oper-
ations.

1 Introduction

The capability and utility of autonomous systems
have grown exponentially in recent years and in-
evitably the applications for the space industry have
been investigated. Studies into the function of AI
for such areas as space exploration, earth observa-
tion, satellite telemetry, robotics, and space medicine
have shown potential for meaningful enhancements
to space mission design and operation [1–4]. However,
research into autonomous satellite scheduling is still
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being explored with only a small handful of papers
considering the possibilities and applications in re-
cent years [5–8].

One of the limiting factors in broad adoption is the
lack of trust teams and organisations have in the de-
cisions AI systems make, especially where there is no
means of understanding the reasoning behind a deci-
sion, often seen as an inherent challenge of designing
AI systems [9].

XAI aims to eliminate this problem by allowing in-
teraction between the user and systems to gain expla-
nations for the decisions being made and thereby pro-
viding insight into system operations [10]. The gained
knowledge will enable the growth of trust in the sys-
tem, either through validating the correct logic judge-
ment leading to decisions or by facilitating targeted
training and reconfiguration of a system to achieve the
desired outcome. XAI techniques presently include
such approaches as Machine Learning (ML), Linear
Regression, and Local Interpretable Model-agnostic
Explanations (LIME), each of which has the intent of
explaining the key factors that influenced the system
into making one decision over another [11, 12].

The process of analysing the selection of a decision
is known as argumentation [13], which has seen a
marked increase in association with XAI as the ap-
proach offers a highly detailed assessment of all avail-
able options in an argument [14]. Argumentation con-
siders all conditions that support, attack, or have a
neutral stance in an argument, known as conflicts.
Here a support is a condition that promotes the rea-
soning for a decision, an attack is a condition that
counters the reasoning for a decision, and a neutral
stance (sometimes referred to as a challenge or confu-
sion) does not add to or detract from any decision. It
is possible for the same condition to support or attack
an argument, depending on the specific circumstances
at the time of the assessment. The approach of deter-
mining these three argument conditions is known as
Tripolar Argumentation, which allows for more com-
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plex and relatable argument structures and is the ar-
gumentation used in this paper [15]. Argumentation
facilitates both a graphical and quantifiable represen-
tation of the decision-making process, allowing for
the examination of reasoning logic and is naturally ef-
fective as a means of explaining the reasoning for one
choosing one activity over another [16].

This paper explores the application of Tripolar Ar-
gumentation to XAI for an EO satellite schedule de-
rived from a Reinforcement Learning (RL) approach
[17], building on previously published work, to assess
the capability and potential for real-world challenges
for the operation of space missions. An outline of the
underlying satellite scheduling problem is provided
in Section 2, with the methodology detailed in Sec-
tion 3, which is followed by an examination of the
results in Section 4 and a discussion of the outcome
in Section 5.

2 The satellite schedule problem

The satellite schedule derived by an RL technique con-
siders a predefined set of locations (N ) on Earth where
a set of observations needs to be taken, processed and
downlinked. The number of observations depends on
the predefined goals for the mission [17].

Each scheduled action was influenced by two voice
agents within the ML architecture. In this context,
"voice" refers to distinct decision-making entities that
guide the scheduling process. Each voice agent is fo-
cused on fulfilling independently the mission goals
of the overall predefined subsets of target observa-
tions. Every action was subject to a combination of
environmental and internal constraints, all of which
were determined based on the satellite’s coordinates
and operational circumstances. The actions are:

• Image-taking (ati) - can only take place when the
satellite is within light range (LR), has visibility
of the target (T ), and has enough onboard mem-
ory (M).

• Analyse (aan) - can only take place when there is
an unprocessed image in memory (Imem).

• Downlinking (adn) - occurs when access to the
ground station (GS) is possible and there is an
analysed image (Anmem) in memory.

• Idle (ai) - has no constraints, and only occurs
when no other action can be scheduled.

These actions utilise onboard power (P ) and require
time to complete with the exception of the idle action,
which allows for power to be restored. These sched-
ule principles were used to develop an argumentation

layer to assist in explaining the supportive and restric-
tive conditions experienced by each action throughout
the schedule.

3 Methodology

In developing an argumentation layer for this prob-
lem, all factors must be considered, to develop the
support ′+′ and attack ′−′ conditions for each action
scheduled at each time interval. This is known as a
binary attack as defined by [18]. For this specific prob-
lem, an additional consideration, such as power con-
sumption, is included with the constraints of the avail-
ability of onboard memory and the satellite’s coordi-
nates.

The argumentation layer is derived from consider-
ing the possibility of every action (a), of all targets, to
be scheduled at every time instance throughout the
schedule. Still, as only one action can be scheduled
per time interval, an argument is formulated by con-
sidering the weights that have been assigned between
each action. Therefore, to assess what other action can
replace the scheduled action at any time t, only the
conditions at time t are analysed.

For example, if an image-taking action for a spec-
ified observation target (T ) is scheduled at time t, it
is necessary to assess all the attack conditions to the
target T and of the actions related to the all the other
observation targets, to discern why the decision maker
has assigned the action of observing T . This involves
evaluating attacks from N − 1 other image-taking ac-
tions (one for each target that is not T ), all other N ac-
tions (processing, downlinking, and idle), along with
their environmental conditions and the environmen-
tal condition of T .

An overview of the structure of supports and at-
tacks is represented in Figure 1, illustrating the in-
terconnected nature of the actions and the associated
conditions. Each action shares a goal (G) relationship
that details how many images are requested for the n-
th observation target Tn. Additionally, P R represents
the probability of any action determined by the de-
cision makers’ output, reflecting the influence of the
voices for the specific actions and targets impacting
the scheduled action.

In calculating the weighted values for any image-
taking action ati , the following calculations are used:

WM = 1−
(

M
Tota

)
(1)

WT _n ∈ {−5,1}t (2)

WLR ∈ {−5,1}t (3)
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Figure 1: An overview of the argumentation structure for supports and attacks for all actions within the schedule.

Equation 1 represents the weight WM of the argu-
ment between ati and the available memory onboard
(M) where T ota represents the total number of actions.
The weights, WT _n in Expression 2, and WLR in Ex-
pression 3, define whether the n-th target is visible, or
light is within range for any instance of time t. Note
that -5 is used to negate all positive supports as the
action cannot execute without these conditions, and 1
is applied where the conditions have been met.

The weight between aan and Imem is calculated by:

WI_mem ∈ {−1,1}t (4)

While the weights between adn and it’s specific con-
ditions Anmem and GS are as follows:

WAn_mem ∈ {−1,1}t (5)

WGS ∈ {−5,1}t (6)

WI_mem in Expression 4 represents the presence of
the specified target image in memory which can either
support or prevent the action from being scheduled
at any time t. Meaning, if the image of one target is
in memory, and the processing of the image related
to another target is being considered to be scheduled,
this won’t be possible, thus -1 is applied.

Furthermore, WAn_mem in Expression 5, relies on
whether there is an analysed image of the target in
memory that is ready to be downloaded, while WGS
in Expression 6 represents if the ground station at any
time t is accessible for downlinking. The value of -5 is
used to negate all the positive supports if there is no

ground station (as this would make the action impos-
sible, similar to Expressions 2 and 3).

For idle, there are two weights to be calculated:

WG_i = −
(

1
T ota

)
(7)

WP _i = 1−
(P − 1

100

)
(8)

WG_i and WP _i in Equations 7 and 8 represent the
weights between the idle action, the mission goal G,
and power (P ), respectively, where the weight for idle
increases with the decrease in P .

The common weight calculations across all actions
a (namely ati , aan, and adn), excluding idle, are:

WP _a = P −
(PC ∗ tad

100

)
(9)

WG_a ∈ {−1,1} (10)

WP _a in Equation 9 represents the weight of the ar-
gument between P and any a, where PC is the power
consumption with respect to the duration required to
complete the action tad . Additionally, Expression 10
represents the weight between the goal and any ac-
tion WG_a based on the specified goal requirement of
images to be retrieved.

These weight values are summed to generate a
total weight value representing an action’s overall
state within the schedule at time t. Table 1 shows an
overview of the combined attack variations of actions
and their environmental conditions.
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Action Action and Condition Attacks

adn Pa Ga PR ANmem GS adn
1-N ati

1-N aan
1-N aai

aan Pa Ga PR Imem aan
1-N ati

1-N adn
1-N aai

ati Pa Ga PR M Ti LR ati
1-N aan

1-N adn
1-N aai

ai Pi Gi PR aan
1-N ati

1-N adn
1-N

Table 1: An overview of each action and condition attack
required for every action type

The P R values from the decision maker were used
for calculating attacks from the other actions a includ-
ing idle. The direction of attacks and representative
weight value WP R_a, was determined by the action be-
ing attacked at time t. With respect to the unsched-
uled actions attacking each other, the larger weight
value determines the direction of attack. Noting that
without the P R values, computing the total argument
value of every alternative action would cause expo-
nential growth in the required calculations. Hence,
the calculated P R reduced the use of computational
resources to generate the results for this study.

4 Results

Exploring the results following the procedure in Sec-
tion 3, each action for each time interval was calcu-
lated and assessed to determine the accuracy of the de-
rived schedule representation. As the full schedule to-
tals 9000 scheduled actions and time intervals, a sam-
ple of 3 scheduled actions, one of each type (exclud-
ing Idle), was selected to represent the results gener-
ated, with their resulting calculations shown in Table
2. Here, the closest alternative action, based on prob-
ability and total argument weight, has been added
to provide context. The table highlights the time of
the scheduled action and the action scheduled that
were assessed with the weight values for each argu-
ment condition, using the outline in Table 1. As each
action has 10 targets (except Idle), for the simplicity
of displaying the data, only the total attack value for
each action type was used as over 3500 calculations
are required for each time interval of this problem.

At time 208, adn4 (downlink action of observation
target 4) was scheduled, with a total argument weight
value of 4.0126, influenced by the high probability
and the support of Anmem and GS conditions. The
closest alternative action was adn7, which has a sig-
nificantly smaller P R score, resulting in a total argu-
ment weight of 2.1247, which is much less than the
scheduled action, meaning the decision maker made
a justifiable decision to schedule adn4.

For time 480, aan1 (the analyse action of observa-
tion target 1) was scheduled, having a total argument

weight value of 3.9029, chosen due to the high P R
score returned by the decision maker. The next best
option was aan2 which also had a target image in mem-
ory, but had a significantly lower P R score and, there-
fore, total weight value (1.9901), the decision maker
again made a justified selection for scheduling action
aan1.

Looking at time 696, action ati7 (the take image ac-
tion of observation target 7) was scheduled to execute,
shown with a total argument weight value of 5.4893.
This was again due to the high P R score, coupled with
the environmental conditions supporting the schedul-
ing of the action (LR and T7). By comparison, the next
best alternative action would have been ati10, which
only accumulated a total argument weight value of
1.4927, as the target was not available for this image
at the time.

In Figure 2, the complete support (single ar-
row), attack (double-headed arrow), and neutral (bi-
directional arrow) node map, with the relevant calcu-
lated values, was displayed for the action scheduled
at time 208 (adn4). Each action’s highest total argu-
ment weight value was 4.0126 for adn4, -4.0636 for
ati1, 0.4025 for aan10, and -1.4734 for aai . This again
highlights that the decision maker made the correct
choice, while also providing insight to the contribut-
ing supports that make this the right decision. No-
tably, for the unscheduled actions (ati1, aan10, and aai),
ati1 was impacted due to the unavailability of light
and observation target T1 that are critical require-
ments needed for the action to execute despite the
memory, goal and power being available. For aan10, an
image of observation target 10 was not available in
memory, therefore negatively influences the decision
to schedule the action when compared to adn4 despite
having enough power, goal and a supporting proba-
bility. This concept applies to aai and across all other
actions at this time, representing the reasons why they
have not been scheduled instead of adn4.

5 Discussion

The results prove that argumentation can help calcu-
late, visualise, explain and validate autonomous sys-
tems’ decisions by assessing all the conditions that
contribute to determining the outcome. The satellite
scheduling problem contained a broad number of vari-
ables that required calculating to evaluate the deci-
sions made by the decision maker, and the approach
performed very well at capturing the relevant infor-
mation and completing the necessary calculations,
making it clear how and why the scheduled action was
correctly chosen and why others were not selected.

This can benefit users by understanding what fac-

Powell, C., & Riccardi, A. (2024). Explaining AI decisions in autonomous satellite scheduling via computational argumentation. 
Paper presented at SPAICE , Oxford, United Kingdom.



Time (s) Action Action and Condition Attacks Total

adn P G PR Anmem GS adn* ati* aan* aai
208 adn4 0.7300 1.0000 0.9715 1.0000 1.0000 -0.0273 -0.0000 -0.6614 -6.5974e-05 4.0126
208 adn7 0.7300 1.0000 0.0276 1.0000 1.0000 -0.9715 -0.0000 -0.6614 -6.5974e-05 2.1247

aan P G PR Imem aan ati* adn* aai
480 aan1 0.9500 1.0000 0.9764 1.0000 -0.0235 -0.0000 -0.0000 -5.2090e-08 3.9029
480 aan2 0.9500 1.0000 0.0200 1.0000 -0.9799 -0.0000 -0.0000 -5.2090e-08 1.9901

ati P G PR M T LR ati aan* adn* aai
696 ati7 0.7250 1.0000 0.9983 0.7667 1.0000 1.0000 -0.0000 -0.0001 -0.0000 -0.0006 5.4893
696 ati10 0.7250 1.0000 0.0000 0.7667 -1.0000 1.0000 -0.9983 -0.0001 -0.0000 -0.0006 1.4927

Table 2: Example calculations of argumentation weights for each action type and the closest probable alternative, except
Idle. *Please note, the total of all attacking actions are presented here

Figure 2: A Tripolar argumentation representation of argu-
ments between 4 main actions (aan10, adn4, aai , ati1) and
environmental conditions at time t = 208s.

tors influence decisions, allowing for informed re-
sponses to modify system behaviour to generate the
desired outcome, and validating the system’s effective-
ness. Care must be taken when designing and imple-
menting argumentation, however, as datasets with a
large number of variable conditions can require a very
high number of calculations to generate results, as
well as considering the appropriate values for each
condition, which could be a limiting factor in some
cases for the time needed to perform the calculations,
as well as the computing resource necessary.

Further work and research should be conducted
to assess the scalability of the approach outlined
here. This would involve utilising more computing
resources and allowing for more time to generate re-
sults. In addition, the opportunities for integrating
argumentation into other decision-making systems,
such as autonomous navigation guidance systems or
robotics, should be explored.
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