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This paper presents an adaptive multiresolution strategy for multi-objective optimal control problems. The optimal

control problem is solved using a direct approach,with individualistic grid adaptation facilitated bya local error analysis

at element boundaries. Multiple objectives are considered using a dominance-based approach applying both local and

global search methods to a collaborative population of unique solutions. These aspects are simultaneously incorporated

via a novel application of evolutionary algorithms for adaptive optimal control problems. Together, this avoids the need

for a priori specification of the quantity and temporal location of element boundaries and the set of scalarization weights

defining themulti-objective descent directions. Solution fidelity can thus increase concurrentlywith the exploration of the

design space, which leads to increased numerical efficiencywhile propagating andmaintaining population diversity. The

benefits of the proposed approach over traditional uniform-grid implementations are demonstrated. Results show that

themultiresolutionapproach is capable of strikinganeffectivebalancebetweensolution fidelity, populationdiversity, and

computational cost unachievable using uniform grids.

I. Introduction

PARTICULARLY within the field of aerospace engineering,
many multidisciplinary design optimization (MDO) problems

include trajectory optimization and control as a primary discipline.
Such problems can be formulated as optimal control (OC) prob-
lems, describing systems where overall performance is comparably
dependent on the time-dependent (dynamic) control law by which
it must operate as it is on time-independent (static) system design
parameters.
Solving OC problems can become prohibitively expensive as com-

plexity increases. Most practical examples include some number of
state constraints, control constraints, and equality/inequality boundary
and/or path constraints. As a consequence, solutions may exhibit high
nonlinearity or discontinuities in state/control profiles and/or their
respective higher-order derivatives [1]. Furthermore, when control
variables are represented as linear functions within the system differ-
ential equations, bang-bang solutions can often be expected [2]. Con-
sidering direct transcription methods, solution accuracy can therefore
be highly dependent on the grid resolution of the discretization nodes
at which the system state and control variables are evaluated. If the
constraint functions are to be satisfied to within a strict tolerance (as is
often the case in MDO), a high-resolution (dense) grid is typically
required to capture this difficult behavior. However, the use of dense
grids may necessitate a high computational budget given the resulting
size of the nonlinear programming (NLP) problem and the associated
augmentation of search space dimensionality. Such a strategy may
therefore remain impractical for most applications, especially if the
NLP problem is not sparse [2,3]. Furthermore, as the number of grid
points increases, the chosen solver may become ill-conditioned and
exhibit poorer convergence characteristics, ultimately failing to accept-
ably converge at all [1].
Reducing the cost of OC problems can be approached via a

progressive nonuniform refinement of the grid resolution [2–7]. This
entails the adaptive addition, subtraction, or redistribution of dis-
cretization nodes to concentrate the grid around nonsmooth regions
(or, particular areas of the solution that dominate the overall accuracy),

while smooth regions remain relatively sparse.‡ In this manner, a
multiresolution grid may capture highly nonlinear or discontinuous
behavior within a significantly reduced computational budget.
Zhao and associates [1,8,9] present a multiresolution approach for

solving OC problems using direct collocation. Enabled by the work
of Jain and Tsiotras [3], the algorithm may start from any uniform
initial mesh with an odd number of grid points and refine the mesh at
locations where the interpolation error remains outside a specific
threshold. The resulting method is extended to generalized dyadic
grids. In a relatedwork, Zhao andLi [10] adapt and apply thismethod
to optimize the descent trajectory of a Mars reentry vehicle with
respect to various boundary and path constraints. A similar approach
is proposed by Li et al. [11], where a mesh refinement procedure and
trajectory optimization scheme are implemented in a nested, bilevel
structure. In the inner level, a convex optimization algorithm locally
solves the trajectory problem, with the solution subsequently passed
to the outer level for grid refinement. This approach is applied to solve
a trajectory planning problem for spacecraft relative motion.
Research in this area predominantly considers only single-objective

problems, with methods for multi-objective problems far more scarce.
This is likely due to one significant complicating factor: the orthogo-
nal objective solutions may exhibit nonlinear/nonsmooth behavior
within entirely different regions of the time domain. With reference to
the prescribed grid resolution problem, this implies that to properly
represent a multi-objective tradeoff in a numerically efficient manner,
individual solutions of a Pareto-optimal set must be separately dis-
cretized upon their own unique, nonuniform grids. Some authors have
attempted to navigate this complication through the application of
scalarization methods [12], reducing the multi-objective problem
into a (or series of) single-objective subproblem(s) [13–15]. Scala-
rization requires the specification of an overarching aggregate
objective function (or dimensionless utility function) that contains
the weighted contributions of each sub-objective (representing the
relative importance attributed to each objective [16]). Accordingly,
a single-weight vector produces a single solution, representing a
certain level of compromise between sub-objectives. Solutions
treated in isolation thus allow the simple incorporation of iterative
mesh refinement schemes. To represent a tradeoff surface, however,
a series of weights must be provided (as seen in [17]), and thus a
series of separate refinement proceduresmust follow. This approach
is seen in [13], where the authors use the Runge–Kutta discretiza-
tion method to transcribe the problem into an NLP problem with
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solution states and controls defined upon refinable dyadic grids.
The scalarized aggregate function is then solved using the local
optimization method.
However, itmay be difficult to assign appropriate values ofweights

a priori in order to give a well-spread representation of the Pareto
front. Put simply, a uniformly spread set ofweightsmay not result in a
similarly uniform spread of solutions in objective space. Further-
more, a particular set of weights may entirely miss many interesting
or relevant solutions or indeed give no feasible solutions at all. Ding
et al. [18] attempt to circumvent this particular issue by replacing the
weights-based approach with a physical programming method [19].
In this case, the overall cost function is determined by combining
each of the four included objectives using a series of preference
functions. Applying this method in conjunction with a hp-adaptive
pseudospectral method allows the optimizer to produce a number
of solutions, each defined on a unique nonuniform grid, equal to the
number of defined preference functions. This approach then is still
inherently limited in terms of the detail to which the Pareto front may
be represented.
This paper continues the philosophy of this research, presenting a

method of reducing the computational burden associated with multi-
objective optimal control problems (MOCPs) in engineering design.
The method focuses on adaptively increasing the resolution at which
a set of discretized control solutions, each representing a particular
balance between the problem objectives, may be evaluated. This is
achieved by concentrating computational resources (in the form of
discretization nodes/grid points) around areas of high complexity
independently for each solution.
A novel aspect of the proposed approach is the simultaneous

handling of variousgrid resolutionswithin an evolutionary framework,
allowing solutions to independently evolve concurrent with their
propagation throughobjective space.This is achieved through aunique
social operator designed to facilitate collaborative action between
solutions of variable vector lengths. A complete MOCP may thus be
treated as an open-ended evolutionary design problem. This ultimately
facilitates a more complete, higher-fidelity representation of the trade-
off surface in a more numerically efficient manner. The advantages of
this approach are summarized as follows:
1) Nonsmooth/discontinuous regions within each solution are

automatically detected, and thus the a priori specification of both
the number and distribution of discretization elements (as in [5,6]) is
not required.
2) In reference to the previous point, this implies that each agent

may be initialized with only one single element, representing a
relatively small NLP and thus computationally inexpensive to evalu-
ate, allowing greater initial global exploration capability. From this
initialization, the progressive refinement of solutions thus implies
greater numerical efficiency relative to employing uniformly discre-
tized and/or refined solutions.
3) The criterion for deciding the region(s) in which to introduce

new grid points is based on the relative local error evaluated at
element boundaries. This avoids the need for any secondary optimi-
zation, as in [2,20,21].
4) Accordingly, this approach does not require any costly integra-

tions, such as the highly accurate Romberg quadratures employed in
[20], which can be particularly expensive for nonlinear dynamics [3].
5) Due to the multilevel nature of dyadic grid structures, existing

nodes remain fixed across successive iterations, which benefits the
overall convergence characteristics [3].
6) User specification of multi-objective scalarization weights or

preference functions is not required, as a population of multiresolu-
tion solutions can be concurrently advanced toward the Pareto front
via cooperative social actions designed to promote population diver-
sity [22].
7) Solution-specific nonlinear/discontinuous behavior may be

efficiently captured during an evolutionary process. This ultimately
allows a more accurate representation of the multi-objective tradeoff
for reduced computational effort relative to traditional uniform-grid
approaches.
The remainder of this paper is organized as follows: Section II

outlines the general formulation of the proposed methods, including

the nonuniform grid refinement and a collaborative evolutionary
operator capable of handling solutions of variable grid resolution.
Section III presents an overview of the complete optimization proc-
ess, incorporating each of the newly proposed methods within an
established algorithm structure. Section IV presents the application
of the proposedmethods to two demonstrativeMOCPs. Performance
is analyzed with respect to computational cost and solution accuracy
compared with a traditional uniform-grid approach. Section V dis-
cusses the presented results, and Sec. VI offers conclusions and
recommendations.

II. Methodology

The following section details the general formulation of the
proposed approach. This includes the nonuniform refinement pro-
cedure for discretized finite-element grids and a variable-length
social operator that allows their incorporation into a global evolu-
tionary algorithm.

A. Discretization

In this study, continuous OC problems are transcribed into finite-
dimensional NLP problems using direct finite elements in time
(DFET) [23] for the nonlinear system state and control functions.
Bernstein polynomials of a fixed order n are employed as basis
functions of the general form:

Bv;n�t� � n
v

tv�1 − t�n−v 0 ≤ v ≤ n; 0 ≤ t ≤ 1 (1)

where t is time. The reader is referred to [24] for a detailed description
of this approach, including the practical advantages of Bernstein
polynomials that support their use in this application.

B. Mesh Refinement

The collection of discretization nodes τ that represent the interface
between each finite element D of a solution vector x over a normal-
ized time interval may be considered a uniform dyadic mesh Vj;N

conforming to the general form:

Vj;N � τj;k ∈ �0; 1�∶τj;k �
k

2jN
; 0 ≤ k ≤ 2jN; 0 ≤ j ≤ Jmax

(2)

where τj;k are the time coordinates of the interface nodes with corre-
sponding spatial index k. The positive integers j and Jmax represent
the current and maximum allowable resolution level and N is the
number of elements present in the initial uniform mesh discretization.
By definition, a dyadic grid is obtained by successively subdividing
a uniform initial grid such that Wj;N denotes the set of grid points
belonging to Vj�1;N but not Vj;N ; i.e.,

Wj;N � τ̂j;k ∈ �0; 1�∶τ̂j;k �
2k� 1

2j�1N
;

0 ≤ k ≤ 2jN − 1; 0 ≤ j ≤ �Jmax − 1�
(3)

Hence, τj�1;k ∈ Vj�1;N if

τj�1;k �
τj;k∕2; k is even

τ̂j;�k−1�∕2 otherwise
(4)

N can be any positive integer for the generalized dyadic grid, which
is more convenient for optimization.§ An example of a uniform
dyadic grid withN � 1 and Jmax � 7 is shown in Fig. 1, where only
the nodes corresponding to V0;N andWj;N; 0 ≤ j ≤ �Jmax − 1� have
been included for clarity.

§Throughout this work, however, N � 1.
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The subspaces Vj;N are nested:

V0;N ⊂ V1;N ⊂ · · ·⊂ VJmax ;N (5)

with

lim
Jmax→∞

VJmax ;N � �0; 1� (6)

The sequenceof subspacesWj;N satisfies thepropertyWj;N ∩ Wl;N �
∅ for all j ≠ l. If element subdivision is performed in a nonuniform
manner, Eq. (2) can be modified to represent the resulting nonuniform
grid:

G � fτji;ki ∈ �0; 1�∶0 ≤ ki ≤ 2jig
Jmin ≤ ji ≤ Jmax for i � 1; : : : ; R

τji;ki < τji�1;ki�1
for i � 1; : : : ; R − 1

(7)

where G ⊂ VJmax;N and R represents the number of available resolution
levels. Of note, working with dyadic grids is essentially equivalent to
using interpolating wavelets for the analysis of the underlying function
[3] and retains one of the major benefits of wavelet-based analyses:
multiresolution functional representations [25,26].
Grid adaptation is accomplished by first assessing the mesh quality.

Temporal finite elements exhibit spectral convergence of the boundary
values as the number of nodes increases and a slower convergence of
the discontinuity at the boundaries [23]. Hence, controlling the dis-
continuities at element boundaries guarantees control of the global
error. By defining the discontinuity at each interface node τ as

δτ � jxl − xrj (8)

where superscripts l and r denote the values to the left and right of the
interface node τ, respectively,¶ one can thus obtain the relative local
error as an indicator of grid quality:

ϵτ �
δτ

max�xUB − xLB; jxUBj; jxLBj�
(9)

where xUB and xLB are, respectively, the user-defined upper and lower
bounds of the state vector x.
Using this approach, one does not require any additional procedure

or integration, as sufficient information may be derived from the
discontinuities at the boundaries of each finite element. A given grid
may therefore be modified by inserting additional interface nodes at
the midpoints of all finite elements not satisfying ϵτ ≤ ϵtol, where ϵtol

is a user-specified tolerance. This then preserves the nonuniform
dyadic structure according to Eq. (7).
This refinement procedure requires the associated basis func-

tions spanning each temporal element to be split in the same
manner. A useful property of Bernstein polynomials in this regard
is that any Bézier curve (sequential collection of Bernstein poly-
nomials) can be exactly represented by two smaller subcurves
of the same order, as depicted graphically in Fig. 2. Alternative
basis functions, such as Chebyshev polynomials, would have to be
refitted after each grid adaptation step. In this study, a vectorized,
nondestructive, recursive subdivision scheme [27] is employed
that uses linear algebra to define the coordinate points of such
subcurves.
As an example, Fig. 3 depicts two extremal solutions to a classic

MOCP sourced from the literature [2,3,28], solved using the multi-
resolution refinement approach of this paper. In each case, it can
be seen that grid nodes have been successfully concentrated to an
appropriate degree within different areas of the time domain.

C. Multiresolution MACS

For the purposes of this study, the proposed grid refinement
approach is used to augment the multi-agent collaborative search
(MACS) algorithm, a dominance-based memetic solver for multi-
objective optimization (MOO) problems under development at the
University of Strathclyde [29].
MACS initializes a population of virtual agents at random loca-

tions in the search space, where an “agent” comprises an OC solution
vector and corresponding objective function and constraint function
values. Every agent in turn explores its local neighborhood through
a series of individualistic actions. The population as a whole then
performs a set of collaborative, social actions to concurrently advance
toward a complete representation of the Pareto front. At every user-
specified number of iterations (and again at the final iteration), a
gradient-based local optimization utilizing Pascoletti–Serafini scala-
rization [30] is performed on each agent.
The MACS algorithm has been extensively described in the

following works [22,29,31]. However, the current formulation of
MACS assumes that all solution vectors conform to a predetermined
structure of fixed length, and thus it is incompatible with adaptive
problems. In order for the proposed grid refinement procedure to be
integrated into MACS, a new social operation, one that allows the
handling of variable-length discretization grids and therefore enables
open-ended evolution, is required.
The individualistic actions within MACS operate in isolation

for each member of the current population and thus need only
minimal modification to incorporate continuously adapting solu-
tions. However, considering the collaborative actions (operations
that combine information from multiple members of a population,
e.g., memetic crossover), accounting for open-ended evolution
implies the need to identify common points or sequences bet-
ween two individuals without assuming one-to-one correspon-
dence between vector components. This type of identification is
utilized within variable-length-chromosome genetic algorithms
(VLC-GAs) [32,33], a subclass within the wider field of genetic
algorithms [34]. Munetomo et al. [35] present a crossover mecha-
nism for VLC-GAs called same-point crossover, involving two
operators: one-point (1P) and two-point (2P) crossover. Partial

Fig. 1 A uniform dyadic grid conforming to Eqs. (2) and (3), where
N � 1 and Jmax � 7.

Fig. 2 The Bézier curve defined by nodes ABCD may be perfectly
bisected into the curves AEHK and KJGD.

¶In other words, xl represents the final value of the state basis function
corresponding to the element immediately preceding τ, and xr represents the
initial value of the state basis function corresponding to the element following τ.
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chromosomes** are thus exchanged at the loci of identical genes
between both parent chromosomes. This mechanism has since been
inherited by most (if not all) subsequent VLC-GAs. Among other
well-known methods for variable-length crossover are Goldberg’s
messy GA [36], species adaptation genetic algorithms [37], synapsing
variable-length crossover [38], the virtual virus method [39], and the
more recently proposed same-adjacency crossover [40].
Representing a novel application of VLCmethodology, this work

proposes to leverage the imposed dyadic grid structures described
in Sec. II.B to quickly identify common vector components bet-
ween multiresolution OC solutions, i.e., using the nodal intersec-
tion between two or more unique nonuniform grids to effectively
facilitate direct comparison and/or recombination. The precise
manner in which this may be performed is now discussed.

1. One-Point Crossover

Consider two individual solution vectors of respective lengths
L and K, x � �x0; x1; : : : ; xi; : : : ; xL� and x� � �x�0 ; x�1 ; : : : ;
x�j ; : : : ; x

�
K �, with corresponding multiresolution grids G�x� and

G�x��. Given that each agent within the population is initialized upon
an identical uniform grid discretization, i.e., N�x� � N�x��, and that
individual grid elements can only be perfectly bisected, the inter-
section between x and x� will include at least one intermediate
node (excluding the trivial case of common initial and final nodes)
such that

G�x� ∩ G�x�� ≠ ∅; 2 ≤ R�x;x�� ≤ 2Jmax (10)

The simplest variable-length social action that can thus be considered
is that of classical one-point (1P) crossover. In this case, a single

intersection node is selected at random, xi � x�j , with all components
following xi and x�j exchanged between the parent solutions to create
two new individuals (see Fig. 4a). This is functionally equivalent to
the cut and splice operations introduced in Goldberg’s messy
GA [36].

2. Two-Point Crossover

One-point crossover has the feature that solution vector compo-
nents nearer the extremes of each individual are much more likely to
be separated than components nearer the middle [37]. Intuitively,
then, two-point (2P) crossovermay avoid this inherent bias by instead
randomly selecting two intermediate nodes from the set of inter-
sections between x and x�, exchanging the enclosed subsequence
(see Fig. 4b). In this case, grid point intersections conform to

G�x� ∩ G�x�� ≥ 2; 2 ≤ R�x;x�� ≤ 2Jmax (11)

3. Dyadic Crossover

A known flaw within both preceding methods is the potential for
lack of offspring diversity should the crossover point(s) be chosen
too close to the initial and/or final nodes [40]. In such cases, this is
equivalent to saying that the length of the exchanged segment is
comparable to the lengths of the parent vectors themselves. An
interesting consideration within the context of this study is that, as
the population is progressively evolved, the number of intersections
between similar solutions is likely to increase. This therefore allows
a progressively finer level of crossover to occur between similar
solutions, thus reducing the overall difference between agents com-
prising successive generations, which itself has implications for
the convergence characteristics of the algorithm as a whole.
However, while the potential for smoother social cooperation is

introduced, crossover points are still only selected at random; thus,
there is no guarantee that crossover at a higher level of resolution will

Fig. 3 Extremal multi-objective solutions (including corresponding grid distributions) to the problem presented in [2,3,28].

**In this context, “chromosome” is taken as equivalent to the problem
solution vector.
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actually occur. Indeed, Harvey [37] provides a modification to
classical two-point crossover in order to choose the second point
such that the similarity between the exchanged segments is maxi-
mized. “Similarity” in this sense is measured according to the longest
common subsequence, defined as the “longest uninterrupted match-
ing substring of gene values (alleles) found between two strings of
arbitrary length” [37].
In this study, a bias is introduced weighted toward the exchange of

higher-resolution segments. In this manner, as the number of inter-
section points between solutions increases, information exchange
will occur at as high a resolution level as is possible. This aims to
minimize the potential disruptive effects caused by blind exchange of
larger subsequences (a not uncommon feature of unbiased 1P/2P
crossover) and thus promotes a more gradual convergence in objec-
tive space. Furthermore, if the selection of crossover points is allowed
to include either the initial or final nodes, the biased crossover
operation (referred to now as dyadic crossover) can effectively switch
freely between 1P and 2P classifications, guided by the resolution of
the parent individuals.

4. VL Differential Evolution

A final consideration must be given to the use of differential
evolution (DE) [41], one of the default social operations within the
original MACS algorithm. When a particular agent xp is selected for
DE, a displacement vector dxp is defined through combination with
three randomly selected individuals, xp1

, xp2
, and xp3

, from the
population:

dxp � αe��xp−xp1
� � F�xp2

−xp3
�� (12)

where α is a random number between 0 and 1, F is a user-specified
constant, and e is amaskvector of elements of either 0 or 1 according to

ej �
1; if α2 < CR

0; otherwise
(13)

whereα2 is another randomnumberbetween0 and1, and the crossover
ratioCR is another user-specified constant. The resulting trial position
thus reads

xtrial � xp � dxp (14)

To ensure that xtrial lies within the search domain, some components
of dxp are suppressed while α is reduced. If xtrial is determined to

represent an improvement with respect to the problem objectives, it is
included into the population.
When considering that the agents xp, xp1

, xp2
, and xp3

may have
inconsistent vector lengths, it is clear that Eq. (12) cannot be directly
evaluated. Instead, the grid intersection between all individuals is
evaluated and used to construct directly comparable segments of
constant vector length, to which Eq. (12) may then be successfully
applied. In principle then, Eq. (12) is applied only to masked sub-
sequences of the selected individuals representing mutually shared
segments, identified via the computation of dyadic grid point inter-
sections in normalized time. Similarly as for the crossover operators,
this modification implies that the effects of the newDE operationwill
naturally strengthen proportionally to the level of nodal intersection
observed between solutions.

III. Algorithm

The components introduced in this work, namely, the dyadic grid
refinement and the variable-length crossover operations, are applied
as an extension to the existing MACS algorithm. The methods
themselves are relatively general, and thus MACS is here used
primarily as a convenient test bed with which to demonstrate their
usability.
Figure 5 illustrates the complete process flow, with the proposed

modifications to the existing MACS algorithm structure indicated
with red-dotted boxes. The complete algorithm operates as follows:
A population of agents is initialized, where each represents a solution
to an MOCP discretized upon a uniform initial grid using DFET
[23,24]. Each agent is first modified in isolation using the individu-
alistic actions of the original algorithm. Next, each agent is modified
further using the proposed variable-length crossover action, using
grid-point intersections as a basis for selecting suitable crossover
points. The bilevel optimization structure [31] of the original
algorithm is retained, where solutions produced by both the indi-
vidualistic and social operations (i.e., the outer level) are initially con-
sidered only candidate solutions and passed to an inner-level local
optimization step to enforce feasibility. If the resulting solution then
represents an improvement, it is included in the current population,
otherwise discarded. At every user-specified number of iterations,
the gradient-based step of the original algorithm is performed and
immediately supplemented by the proposed dyadic grid refinement
step. By doing so, local optimality may be guaranteed before the
mesh refinement step. Given the useful properties of Bernstein basis
functions described in Sec. II.B, no further treatment of the popu-
lation is necessary following grid refinement. This whole process

Fig. 5 Simplified process flowchart of the modified multiresolution MACS algorithm.

Fig. 4 Crossover performed using a) one and b) two point-pairs between parent vectors.
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repeats until either amaximumbudget of function evaluations or total
iterations is met.
By integrating these new steps into the original algorithm, the

population is allowed to evolve into a set of multiresolution solutions
defined upon independent nonuniform discretization grids. This then
allows complex, nonlinear/discontinuous behavior otherwise unique
to any particular solution to be efficiently identified and captured as
part of an evolutionary process.

IV. Test Cases

This section presents two test cases intended to demonstrate the
usability of the proposed multiresolution refinement procedure for
MOCPs. For each examined case, the proposed approach is com-
pared with a traditional uniform grid approach at successive levels
of resolution. Algorithm performance is measured by tracking the
mean and standard deviation of the maximum relative local error,
overall execution time, number of function evaluations, and mini-
mum achieved objective function values at each iteration. Addition-
ally, the quality and spread of the final Pareto-front approximation in
each case is assessed against a reference Pareto-optimal set of sol-
utions via the inverted generational distance (IGD) and averaged
Hausdorff distance (AHD) metrics. As remarked by Schütze et al.
[42], the IGD metric is sensitive to the number of elements in the
reference Pareto front and in the computed one, hence the inclusion of
the AHD in the presented comparisons.
All computations were performed using the ARCHIE-WeSt

High Performance Computer. Individual runs utilized a single Intel
Xeon Gold 6138 20-core 2.0 GHz CPU, where 40 nodes comprise a
standard compute node (on Lenovo SD30 servers) of 192 GB RAM
per node. All results for each case are averaged over 10 independent
analyses.

A. Moon Lander

The followingMOCPproblem represents the controlled descent of
a lunar landing vehicle [43], based on the formulation presented by
Darby et al. [7] and Feng et al. [44]. The problem is to determine the
control law u that minimizes the total impulse acting on the vehicle
while also minimizing the maximum allowable control force:

min
tf ;u

�J1; J2�T �
tf

t0

u dt; umax

T

(15)

The system state dynamics are given by

_h � v (16)

_v � −g� u (17)

where h is altitude, v is velocity, g is the gravity force, and u is
the upward control force. Boundary conditions are taken from [7,44]
as h�0� � h0 � 100 ft, v�0� � v0 � −10 ft=s, h�tf� � hf � 0 ft,
and v�tf� � vf � 0 ft=s. A path constraint on the control force is
similarly defined as

0 ≤ u ≤ umax

The gravity of the moon is taken as g � 5.315 ft∕s2, the final time
tf is free, and the maximum control force is an optimizable static
parameter umax ∈ �0; 12�. The values of all boundary conditions,
gravity force, and maximum control force were chosen to coincide
with the works [7,44] such that solutions could be directly validated
and compared.
The optimal solution(s) may be represented analytically using

h��t� �
−
3

4
t2 � v0t� h0; t < s

3

4
t2 � �−3 s� v0�t�

3

2
s2 � h0; t ≥ s

(18)

v��t� �
−
3

2
t� v0; t < s

3

2
t� �−3 s� v0�; t ≥ s

(19)

u��t� � 0; t < s

umax; t ≥ s
(20)

where the temporal location of the control discontinuity, s, is given by

s � tf
2
� v0

3
(21)

with

tf � 2

3
v0 �

4

3

1

2
v20 �

3

2
h0 (22)

System state and control profiles are represented by element-
specific second-order Bernstein polynomials. A population of 10
individual agents was initially discretized upon uniform grids of
resolution level Jmin � 0. The population was evolved according to
the proposed multiresolution modification to the MACS algorithm
(Sec. III). A relative local error tolerance of ϵtol ≤ 10−6 was imposed at
element boundaries,with amesh refinement frequencyof 10 iterations.
Inner-level optimization was completed using the MATLAB fmincon
solver with an Sequential Quadratic Programming (SQP) algorithm
where function, constraint violation, and step tolerances are set to
1e − 6; 1e − 12; and 1e − 9, respectively. The complete process
was terminated upon reaching a maximum number of iterations,
niter;max � 200.
Figure 6 shows the time histories of the state and control profiles

from an example set of solutions, including the locations of all
corresponding grid points (represented by circle markers) for each.
The color of each individual solution in Fig. 6a corresponds to all
profiles of the same color across Figs. 6b–6d. Additionally, Fig. 7
shows the dyadic distribution of grid points for both orthogonal
objective solutions with respect to resolution level J across the
normalized time domain. The proposed approach is seen to concen-
trate additional collocation points around the single control disconti-
nuity within each solution. The characteristic bang-bang behavior of
the control profile and the resultant effects on the system state are thus
more accurately captured. Extremal objective function values corre-
spond to those reported in [7,44], as well as the analytical solutions
obtained via Eqs. (18–20). Of note is the lack of constraint on the final
time tf. This means that the dyadic crossover procedure, operating
fundamentally using nodal intersections within a normalized time
domain, is primarily exchanging the form of the solution rather than
specific numeric values.
Table 1 presents the performance comparisons between the pro-

posed multiresolution approach and a globally dense uniform grid
approach, where the latter is separately repeated at increasing levels
of resolution. Reported are the 10-run average values, with corre-
sponding standard deviations included in parentheses. Intuitively, an
inverse correlation betweenmesh resolution and relative local error is
observed across the uniform grid cases. Furthermore, higher mesh
densities incur an exponential increase in computational costs given
the associated evolution of the NLP problem size. The multiresolu-
tion approach, on the other hand, is seen to temper this inherent
tradeoff, achieving competitive mesh error values in significantly
reduced execution times.As an example, to reach amaximum relative
local error lower than that achieved via the multiresolution method, a
dense grid of resolution level J � 7 is required as a minimum. By
comparison, the required CPU time of the multiresolution approach
is only 4.14% that of the J � 7 grid, respectively. Furthermore, there
seems to be no benefit to the dense grid approach even when con-
sidering the orthogonal objective function solutions, with in fact a
2.67 and 0.19% deterioration in J1 and J2, respectively.
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Considering the final approximation of the Pareto front in each case,
the mean and corresponding standard deviations of the IGD and AHD
metrics for each method are reported in Table 2. For this case, the

reference 10-point Pareto front is generated by solving Eqs. (18–20)
with umax increased in regular intervals between the minimum ana-
lytical value (where s � 0) and the prescribed upper bound.

Fig. 7 Dyadic distribution of collocation points for the orthogonal solutions to a) objective 1 and b) objective 2 of Problem IV.A (Moon Lander).

Table 1 Mean statistics for Problem IV.A (Moon Lander), recorded at niter � 200 (standard deviations included in parentheses).
Bold text indicates the best achieved value in each field

Resolution level Mesh error, No. function evaluations, Run time, Objective functions,
Jmin Jmax ϵmax nfeval s Jbest

3 3 9.27e−3 (2.35e−3) 9,845 (3.59e + 2) 689 (8.72e + 1) [46.433 (1.22e + 0), 5.845 (7.30e−2)]
4 4 4.66e−3 (1.77e−3) 11,663 (5.74e + 2) 1,446 (3.68e + 1) [46.814 (2.99e + 0), 5.858 (1.08e−1)]
5 5 2.48e−3 (1.13e−3) 13,874 (1.36e + 3) 3,298 (7.21e + 1) [45.980 (6.68e−1), 5.860 (1.35e−1)]
6 6 1.06e−3 (2.67e−4) 18,909 (2.39e + 3) 13,922 (7.00e + 2) [46.907 (2.72e + 0), 5.818 (1.20e––2)]
7 7 5.06e––4 (1.95e––4) 29,892 (5.38e + 3) 94,988 (5.40e + 3) [47.200 (2.03e + 0), 5.846 (7.32e−2)]
0 15 6.29e−4 (6.15e−4) 42,873 (4.90e + 3) 3,932 (8.61e + 2) [45.973 (3.12e––1), 5.835 (3.50e−2)]

Fig. 6 Multi-objective solutions to Problem IV.A (Moon Lander), including a) Pareto front and corresponding b, c) state and d) control profiles.
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Reasonable agreement in IGD across each method is observed.
This may be due in part to the simplicity of the parent problem,
meaning that the final objective values are less dependent on the
accuracy with which the optimal state and control profiles can be
captured. Regardless, the IGD metric is seen to roughly increase
with mesh resolution, with the multiresolution approach achiev-
ing the lowest value and associated variance. The AHD metric
shows a somewhat similar relationship, though still retaining
reasonable parity across all resolutions. As stated by Schütze
et al. [42], AHD penalizes outliers to a greater degree than IGD,
thus acting more as a worst-case measure. Given the parity in
number of agents included in each method and the reference
Pareto front (thus avoiding any inherent IGD bias), it can be
suggested that the multiresolution approach suffers more from
outliers despite slight improvement in the overall approximation
of the Pareto front.
The usability of the proposed approach is fundamentally defined

by the tradeoff between achievable solution accuracy and com-
putational expense. Figure 8 shows the values of maximum relative
local error and AHD recorded at each iteration for each multi-/
uniform-resolution process. Firstly, a clear hierarchy can be seen in

the error values achievable via each level of mesh density. Corre-
sponding to the progressive refinement process, the multiresolution
method is seen to move down through each level rather than stagnate
at any particular limit. Secondly, the value of AHD associated with
the multiresolution approach is seen to reach relatively low values
markedly faster than the higher resolution uniform approaches,
suggesting that the algorithm is successfully achieving andmaintain-
ing a well-spread population from earlier stages in the optimization
process. This complimentary behavior, in accordancewith the results
presented in Tables 1 and 2, can be more explicitly depicted via the
combined metric shown in Fig. 8c.
Figure 9 shows the accumulation of total CPU time and function

evaluations for each method relative to the number of completed
iterations. While the multiresolution approach demonstrates effi-
ciency savings in CPU time relative to the hierarchy of uniform-
grid examples, a significant accumulation of objective function
evaluations is observed during later iterations. This rise can be seen
to occur primarily during the local search step, suggesting an increas-
ing difficulty for the gradient-based optimizer to converge on a
locally optimal solution following successive grid refinement. This
may be attributed to excessive growth of the associated NLP problem
(an acknowledged risk with variable-length representations in evolu-
tionary algorithms [45]). In this work, NLP bloat is treated only
indirectly through the user specification of mesh error tolerance.
That is, an appropriate tolerance value prevents the algorithm from
actively adding excessive new nodes. However, it is acknowledged
that this does not prevent heavily refined segments from being
relocated by the crossover mechanism to areas within the solution
vector that do not require such levels of detail. The explicit identi-
fication and removal of unnecessary nodes is a complex problem and
thus originally considered with the scope of this study, though it
remains an important subject of future work.
The open-ended evolution of the NLP problem size is shown in

Fig. 10. Of interest here is that even though the multiresolution
population contains elements at double the resolution level of the

Fig. 8 Relative mesh error and AHD metrics relative to the total execution time for Problem IV.A (Moon Lander).

Table 2 Mean values (standard deviations included in
parentheses) of IGD and AHD for all uniform and

multiresolution solutions to Problem IV.A (Moon Lander).
Bold text indicates the best achieved value in each field

Resolution level Inverted generational Averaged Hausdorff
Jmin Jmax distance (IGD) distance (AHD)

3 3 1.3086 (0.6455) 5.7792 (1.4925)
4 4 1.3854 (0.7940) 5.6274 (2.0465)
5 5 1.7463 (0.9165) 6.3041 (2.1602)
6 6 1.3214 (0.6192) 5.0238 (2.0216)
7 7 1.5167 (0.4960) 5.4606 (1.2809)
0 15 0.8557 (0.3078) 5.0446 (2.2234)
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densest uniform grid considered, the average solution vector size at
the final iteration is still relatively small in comparison. While most
likely due to the functionally simple nature of the state/control
profiles surrounding the discontinuity, this nevertheless demonstrates
the efficiency savings offered by the proposed approach.

B. Shuttle Reentry

This second problem, adapted from the classic test case by Betts
[21], considersmaximizing the cross-range distanceϕ�tf� of a space-
shuttle-like vehicle during atmospheric reentry while minimizing the
peak convective heat flux qU experienced during flight. The MOCP
may be expressed as

min
tf;u

�J1; J2�T � �−ϕ�tf�; qU�T (23)

subject to the following dynamics on the position vector r � �r; θ;ϕ�
and the velocity vector v � �v; γ;ψ �:

_r � _h � v sin γ (24)

_θ � v cos γ sinψ

r cosϕ
(25)

_ϕ � v cos γ cosψ

r
(26)

_v � −
D

m
− g sin γ (27)

_γ � L cos β

mv
−

g

v
−
v

r
cos γ (28)

_ψ � L sin β

mv cos γ
� v cos γ sinψ tanϕ

r
(29)

with altitude h, longitude θ, latitude ϕ, velocity v, flight path angle γ,
and heading angle ψ . Consistent with the problem definition in [2],
the boundary conditions at initial t0 and final tf times are specified
in Table 3.
Path constraints are given as

−90 deg ≤ α ≤ 90 deg

−89 deg ≤ β ≤ 1 deg

∣ _γ�t� ∣ ≤ 2 deg=s

∣ _ψ�t� ∣ ≤ 2 deg=s

q ≤ qU

(30)

where the control variables α and β are the angle of attack and bank
angle, respectively. The force of gravity is taken as

g � μ

r2
(31)

where r � Re � h and the Earth radius Re � 20;902;900 ft. The
aerodynamic forces acting on the vehicle are given by

L � 1

2
CLSρv

2 (32)

D � 1

2
CDSρv

2 (33)

where the coefficients of lift and drag (CL and CD, respectively) are
defined by the following fitted relationships:

Fig. 9 a) Total execution time and b) number of function evaluations of Problem IV.A (Moon Lander) relative to the number of completed iterations.

Fig. 10 NLP problem size across the included population relative to
the number of completed iterations of Problem IV.A (Moon Lander).

Table 3 Initial and final conditions for Problem IV.B
(Shuttle Reentry)

Variable

Initial (t � 0) Final (t � tf)

Symbol Value Symbol Value

Altitude (h), ft h�0� � h0 260,000 h�tf� � hf 80,000

Longitude (θ), deg θ�0� � θ0 0 θ�tf� � θf Free

Latitude (ϕ), deg ϕ�0� � ϕ0 0 ϕ�tf� � ϕf Free

Velocity (v), ft∕s v�0� � v0 25,600 v�tf� � vf 2500

Flight path angle (γ), deg γ�0� � γ0 −1 γ�tf� � γf −5
Heading angle ψ , deg ψ�0� � ψ0 90 ψ�tf� � ψf Free
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CL � a0 � a1α̂ (34)

CD � b0 � b1α̂� b1α̂
2 (35)

where α̂ is the angle of attack in radians and the constant values
a0 � −0.20704, a1 � 0.029244, b0 � 0.07854, b1 � −0.61592 ×
10−2, and b2 � 0.621408 × 10−3. Atmospheric density ρ is de-
fined by

ρ � ρ0 exp�−h∕hr� (36)

where the sea-level density is ρ0 � 0.002378 lb∕ft2 and reference
altitude hr � 23;800 ft. The convective heat flux at the vehicle nose,
q, is calculated using

q � qaqr (37)

where

qa � c0 � c1α̂� c2α̂
2 � c3α̂

3 (38)

qr � 17700 ρ
p �0.0001v�3.07 (39)

and is constrained by a maximum peak value qU ∈ �0; 70�, itself
a static parameter. The constant values are c0 � 0.0672181,
c1 � −0.19213774 × 10−1, c2 � 0.21286289 × 10−3, and c3 �
−0.10117249 × 10−5. The reentry trajectory begins at an altitude
where the aerodynamic forces are small, with a vehicle weight
of m � 203;000 lb.
This problem is solved in the same manner as for the previous

problem, with largely the same numerical settings. In this case,
however, seventh-order Bernstein polynomials are used to represent
the state and control profiles, and the function, constraint violation,
and step tolerances of the inner-level optimization step were set
to 1e − 6; 1e − 12; and 1e − 9, respectively. Lastly, the maximum
number of allowable iterations for this casewas set to niter;max � 120.
Figure 11 shows the spacing of an example set of solutions in

objective space, with Figs. 12 and 13 displaying the corresponding
color-coded time histories of selected states and controls. Addition-
ally, Fig. 14 shows the dyadic distribution of grid points for both
orthogonal objective solutions. This example features complex state
and control profiles with no apparent discontinuity (though including
distinct areas of rapid change). However, the similarity in form
between solutions across the population can be clearly seen. Impor-
tantly, this demonstrates that important areas are being discovered,
preserved, and propagated throughout the optimization process.
Objective function values correspond to those reported in [2,46].

Fig. 11 Multi-objective Pareto front for Problem IV.B (Shuttle
Reentry).

Fig. 12 Multi-objective state profiles for Problem IV.B (Shuttle Reentry).

Fig. 13 Multi-objective control profiles for Problem IV.B (Shuttle Reentry).
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Table 4 presents the performance comparisons between the multi-
resolution approach and the series of globally dense uniform grids. In
a similar manner to the previous cases, the multiresolution approach
achieves a favorable balance between solution accuracy and compu-
tational cost relative to the uniform grid examples. For example, the
highest level of dense grid considered here, J � 5, was unable to
reach the same level of maximum relative mesh integration error as
the multiresolution approach within the set number of iterations,
despite the latter terminating with 12.7% of the computational cost.
Furthermore, as in the previous example, there seems to be no
significant benefit to the dense grid approach when considering the
orthogonal objective function solutions, with a 1.02% improvement
and a 17.7% deterioration in J1 and J2, respectively, relative to the
multiresolution approach.
The mean values and corresponding standard deviations of IGD

and AHD for each method are reported in Table 5, where the
reference Pareto front is taken directly from [2,46]. In this case,
the multiresolution approach achieves superior values for mean and
variance according to both metrics. This may be due to a number of
reasons. At lower mesh resolutions, the optimizer may not be able to
capture the finer features of the state/control profiles, and thus, while
easily achieving a well-spread population, the approximation accu-
racy of the Pareto front and mesh errors remains relatively poor. On
the other hand, higher mesh densities may more capably capture
detailed behavior, but the resulting size of the NLP problem (e.g.,
2057 total variables for the J � 5 grid) and the inherent existence of
overrefined areas hinder the spreading of the population in objective
space, as indicated by the lower IGD values relative to AHD. The
ability of the multiresolution approach to efficiently manage the
gradual refinement of the population so as to maintain global explor-
atory capability can also be seen in Fig. 15.
Figure 16 shows the accumulation of total CPU time and objective

function evaluations, respectively, relative to the number of com-
pleted iterations. Of interest in this case is the more rapid accumu-
lation of CPU time at earlier stages of the multiresolution process.
This suggests a difficulty for the optimizer to produce feasible
solutions at lower levels of refinement. This is further supported
by Fig. 17, showing that the evolution of NLP problem size pro-
gresses in almost a uniform manner until around 50 iterations

(or above resolution level J � 3). As in the previous example,
excessive numbers of objective function evaluations are prevalent
during later (>70) iterations, though Fig. 17 at least indicates that true
NLP bloat is being tempered given the apparent convergence of
average NLP size. This could possibly be attributed to the indirect
nature of solution growth mentioned earlier, in that refinement will
not occur indefinitely without the mesh error continuously failing to
meet the required tolerance.

V. Discussion

The examples presented in Sec. IV illustrate the efficiency of the
proposed multiresolution approach compared to a more traditional
uniform-grid approach for MOCPs. Test case IV.A (Moon Lander)
incorporates simple state dynamics with a single control discontinuity.
The solutions display a sharp, bang-bang-type control profile that is
effectively captured by the proposed approach throughout the popu-
lation of MO solutions. Of interest is the demonstration that, given a
free final time, refined areas may be propagated across the population
via the exchange of normalized time segments. Test case IV.B (Shuttle
Reentry) includesmultiple control variables and complex state/control
profiles with areas of high nonlinearity, though with no clear disconti-
nuities. In this case, the multiresolution approach is seen to preserve
the form of the optimal trajectory throughout the population, with
individualistic refinement applied where appropriate. This case again

Fig. 14 Dyadic distribution of collocation points for the orthogonal solutions to a) objective 1 and b) objective 2 for Problem IV.B (Shuttle Reentry).

Table 4 Mean statistics for Problem IV.B (Shuttle Reentry), recorded at niter � 120 (standard deviations included in parentheses). Bold text
indicates the best achieved value in each field

Resolution level Mesh error, No. function evaluations, Run time, Objective functions,
Jmin Jmax ϵmax nfeval s Jbest

2 2 5.15e−3 (1.71e−3) 27,578 (3.75e + 3) 10,330 (4.28e + 3) [−0.506 (5.65e−2), 22.16 (1.32e + 0)]
3 3 3.66e−4 (1.78e−5) 39,967 (6.70e + 3) 43,108 (1.98e + 4) [−0.530 (9.12e−3), 21.95 (4.16e−2)]
4 4 1.43e−4 (9.85e−6) 50,818 (1.14e + 4) 116,624 (1.91e + 4) [−0.529 (8.00e−3), 27.95 (1.09e + 1)]
5 5 5.26e−5 (5.33e––6) 63,374 (1.02e + 4) 640,130 (8.63e + 4) [−0.534 (5.10e––4), 26.39 (7.50e + 0)]
0 8 4.11e–5 (4.50e−5) 84,834 (3.05e + 4) 81,155 (1.19e + 4) [−0.529 (8.56e−3), 22.42 (2.36e––2)]

Table 5 Mean values (standard deviations included in
parentheses) for IGD and AHD for all uniform and

multiresolution solutions to Problem IV.B (Shuttle Reentry).
Bold text indicates the best achieved value in each field

Resolution level Inverted generational Averaged Hausdorff
Jmin Jmax distance (IGD) distance (AHD)

2 2 1.44 (1.27) 4.76 (3.87)
3 3 0.93 (0.29) 3.27 (0.81)
4 4 1.66 (1.00) 5.26 (3.17)
5 5 1.02 (0.54) 3.42 (1.57)
0 8 0.59 (0.05) 2.51 (0.27)
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demonstrates cost savings over a uniform-grid approach for the same
level of accuracy.
Common to both cases then is the reduction in computational cost

required to reach specified levels of relative local error compared to
selected uniform grid resolutions (themselves chosen in order to
remain within practical computational bounds). However, a greater
reliance on objective function evaluations is observed, particularly
in later iterations when the multiresolution populations begin to
converge. While potentially merely a symptom of the periodic local
refinement procedure requiring more intensive computation given
the increased NLP problem size, this may also correspond to the
inherent probability of retaining/propagating overrefined segments,
thus introducing unnecessary computational burden through excessive
NLP bloat. Such behavior may form as a result of particular areas of a
solution undergoing refinement during earlier stages of the process,
later becoming unnecessary as the population develops. An additional
factor could be the propagation of overrefined segments purely by

Fig. 15 Problem IV.B (Shuttle Reentry) mesh error and AHD relative to the total CPU time.

Fig. 16 a) Total execution time and b) number of function evaluations of Problem IV.B (Shuttle Reentry) relative to the number of completed iterations.

Fig. 17 NLP problem size across the included population relative to the
number of completed iterations of Problem IV.B (Shuttle Reentry).
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association with a favorable subsequence (i.e., one that improves the
objective function values of a solution when inserted via crossover,
despite containing segments of unnecessarily high resolution). This
issue is in large introduced by considering that the removal of over-
refined segments is only at this stage performed in an indirect manner.
More specifically, an overrefined segment can only be removed if it
fails to propagate across successive generations, either via substitution
during social action or by the parent(s) being removed from the current
archive.An issue here is that such occurrences are only possible if there
exists a solution with superior fitness despite the absence of that
particular segment. If an overrefined solution exists but is sufficiently
dominant within the population, it shall remain undisturbed. Clearly
then an additional step introduced to validate each individual, identi-
fying and removing overrefined segments, would be a valid subject of
futurework.Of note is that this behavior seems less pronounced for the
Shuttle Reentry test case, possibly suggesting an overly strict value of
relative local error tolerance ϵtol for the Moon Lander example.
Adapting the degree of the polynomial basis functions, thus ena-

bling full hp-adaptivity, was initially determined with the scope of
this work, though it remains an interesting subject for future study.
For example, thework [47], in reference to the problem reproduced in
Sec. IV.B, suggests a positive effect in solution accuracy and cost by
increasing the polynomial degree (within user-defined applicability
bounds) as opposed to the number of mesh elements.

VI. Conclusions

This paper presents an adaptive mesh refinement approach for
solving direct MOCPs within an evolutionary architecture. Each
individual solution is discretized upon an independent nonuniform
dyadic grid using DFET. New grid points may be added at each
iteration according to a criteria based on simple local errors evaluated
at element boundaries. The transcribed problem is solved using a new
version of the MACS algorithm, where the original formulation
has been modified to incorporate adaptive, multiresolution solution
vectors. This includes both the proposed dyadic mesh refinement
procedure and new social operators to enable collaborative action
between solutions of inconsistent grid resolution. Concerning the
latter, common segments between unique individuals are identified
using the nodal intersections of their associated discretization grids.
Next, a biased variable-length crossover technique that prioritizes the
exchange of higher resolution segments is applied to create entirely
new candidate solutions.
The proposed approaches are applied to two demonstrative test

cases, where in each the associated MOCP is treated as an open-
ended evolutionary design problem. As the primary motivation of
this work was a desire to increase the achievable fidelity of MOCP
solutions as well as the numerical efficiency, the computational cost,
achievable solution accuracy, and population spread/diversity were
measured for each case and compared against a traditional uniform-
grid approach. An order of magnitude reduction in computational
cost required to reach a desired level of mesh integration error was
observed for both cases. Furthermore, the progressive nature of
population refinement was shown to facilitate a more complete and
diverse representation of the Pareto front.
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