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A B S T R A C T

Mesozooplankton are a crucial link between primary producers and higher trophic levels and play a vital role in
marine food webs, biological carbon pumps, and sustaining fishery resources. However, the global distribution of
mesozooplankton biomass and the relevant controlling mechanisms remain elusive. We compared four machine
learning algorithms (Boosted Regression Trees, Random Forest, Artificial Neural Network, and Support Vector
Machine) to model the spatiotemporal distributions of global mesozooplankton biomass. These algorithms were
trained on a compiled dataset of published mesozooplankton biomass observations with corresponding envi-
ronmental predictors from contemporaneous satellite observations (temperature, chlorophyll, salinity, and
mixed layer depth). We found that Random Forest achieved the best predictive accuracy with R2 and RMSE (Root
Mean Standard Error) of 0.57 and 0.39, respectively. Also, the global distribution of mesozooplankton biomass
predicted by the Random Forest model was more consistent with the observational data than other models. We
used the Random Forest model to create a global map of mesozooplankton biomass which serves as a reference
for validating process-based ecosystem models. The model outputs confirm that environmental factors, especially
surface Chl a, a proxy for prey availability, significantly correlate with the spatiotemporal distribution of mes-
ozooplankton biomass. The scaling relationship between the mesozooplankton biomass and Chl a can be used as
an emergent constraint for model validation and development. Moreover, our model predicts that the global total
mesozooplankton biomass will decrease by 3% by the end of this century under the “business-as-usual” scenarios,
potentially reducing fishery production and carbon sequestration. Our study contributes to predicting global
mesozooplankton biomass and provides deep insights into the underlying environmental impacts on the distri-
bution of mesozooplankton biomass.

1. Introduction

Mesozooplankton, defined as zooplankton with a size range of
0.2–20 mm (Sieburth et al., 1978), mainly consist of crustacean
plankton such as copepods (Sommer & Stibor, 2002). They prey on
microzooplankton (< 200 μm), large phytoplankton, and detritus, acting
as a vital link between the microbial food web and the classic food chain
that transfers energy and materials from primary producers to higher
trophic levels (Ikeda, 1985; Steinberg & Landry, 2017). Meso-
zooplankton play a crucial role in marine biological carbon pumps
because their faecal pellets account for a large part of passive carbon
export (i.e., gravitational carbon pump), and their migration drives
active transport of carbon that also contributes to the total carbon export

(Nowicki et al., 2022). In addition to the central biogeochemical and
ecological roles, mesozooplankton have socio-economic interests, as
they are essential food sources for commercial fishes (Lehodey et al.,
2006). In light of this, mesozooplankton gradually become an important
component in many biogeochemical and ecological models (Yool et al.,
2013; Lovato et al., 2022). However, the magnitude and spatiotemporal
distribution pattern of mesozooplankton biomass remains highly un-
certain, which constrains the development and validation of models and
hinders deeper insights into mesozooplankton’s ecological and biogeo-
chemical role.

The global distribution of mesozooplankton biomass has been
revealed by a global dataset, which roughly depicts the latitudinal pat-
terns of mesozooplankton biomass with higher values north of 55◦N and

* Corresponding author.
E-mail address: bingzhang.chen@strath.ac.uk (B. Chen).

Contents lists available at ScienceDirect

Progress in Oceanography

journal homepage: www.elsevier.com/locate/pocean

https://doi.org/10.1016/j.pocean.2024.103371
Received 20 September 2023; Received in revised form 2 October 2024; Accepted 21 October 2024

Progress in Oceanography 229 (2024) 103371 

Available online 28 October 2024 
0079-6611/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:bingzhang.chen@strath.ac.uk
www.sciencedirect.com/science/journal/00796611
https://www.elsevier.com/locate/pocean
https://doi.org/10.1016/j.pocean.2024.103371
https://doi.org/10.1016/j.pocean.2024.103371
https://doi.org/10.1016/j.pocean.2024.103371
http://creativecommons.org/licenses/by/4.0/


south of 55◦S and intermediate values around the equator (Moriarty &
O’Brien, 2013; Hatton et al., 2021). However, the high heterogeneity of
sampling methods, dates, times, depths, and measurement approaches
hinders the direct comparison among various data sources (Moriarty &
O’Brien, 2013; Petrik et al., 2022). Moreover, the uneven distributions
and sampling frequencies of observations (e.g., no data in the Weddell
Sea or no data in the harsh winter of some regions) make it challenging
to accurately estimate global mesozooplankton biomass. One way to
circumvent the above issues is to develop data-driven statistical models
that allow large-scale biomass estimates.

Machine learning techniques have been increasingly applied in
ecological and geoscience studies partially due to their superiority in
capturing complex nonlinear regressions over traditional linear or sim-
ple nonlinear regression models (Bergen et al., 2019). For instance,
machine learning techniques have been used in modelling phyto-
plankton abundance and biomass (Llope et al., 2009; Flombaum et al.,
2013; Chen et al., 2020), primary production (Huang et al., 2021),
partial pressure of CO2 (Chen et al., 2019). They have also been used to
study mesozooplankton communities and biomass at regional scales
(Pinkerton et al., 2010; Mazzocchi et al., 2014). A recent study applied a
boosted regression trees (BRT) model to extrapolate the observations of
mesozooplankton biomass to the global ocean (Drago et al., 2022).
However, the model was constructed based on the Underwater Vision
Profiler (UVP) data, which did not include the extensive data from
traditional trawls. Moreover, it did not account for the temporal vari-
ability. Therefore, more machine-learning approaches should be
exploited to make good use of the extensive data (Moriarty & O’Brien,
2013) for more accurate estimates of mesozooplankton biomass.

Although machine learning has been thought as a “black box”, it can
infer the underlying controlling mechanisms through statistical in-
ferences (Roshan & DeVries, 2017; Chen et al., 2020; Lucas, 2020). It is
well known that mesozooplankton are sensitive to environmental con-
ditions, and their distribution is shaped by physical (e.g., temperature
and currents), chemical (e.g., oxygen), and biological factors (e.g., prey
concentration and quality) (Steinberg& Landry, 2017; Ratnarajah et al.,
2023). Nevertheless, we still lack insights of how these environmental
factors affect the mesozooplankton biomass at global scales, which
hinders accurate predictions of how mesozooplankton will respond to
climate changes. After constructing a best-predictive model with input
of environmental variables, quantification of each input variable’s
relative importance and evaluation of their individual effects help un-
derstand the complex relationships between environmental variables
and response variables (Elith & Leathwick, 2009; Chen et al., 2020;
Lucas, 2020), which can be used for inferring the environmental con-
trolling mechanisms underlying the distribution of mesozooplankton
biomass.

In this study, we compared four widely-used machine learning al-
gorithms, including Boosted Regression Trees (BRT), Random Forests
(RF), Support Vector Machine (SVM), and Artificial Neural Network
(ANN), to model mesozooplankton biomass based on the dataset
expanded from Moriarty & O’Brien (2013). The model with the best
prediction accuracy was then used to produce climatology maps and
predictions of mesozooplankton biomass in the global ocean and
examine the partial effects of each preditor to infer the underlying
mechanisms controlling mesozooplankton biomass. We address the
following questions: (1) What are the spatial and temporal distributions
of mesozooplankton biomass in the global ocean? (2) How do environ-
mental factors affect the spatiotemporal distributions of meso-
zooplankton biomass? (3) How will the distributions of
mesozooplankton biomass change in future oceans under climate
changes? Addressing these questions will not only improve our under-
standing of mesozooplankton but also benefit the development and
assessment of marine biogeochemical and ecological models.

2. Material and methods

2.1. Data sources and transformation

2.1.1. Mesozooplankton biomass data sources and processing
We extended the dataset in Moriarty and O’Brien (2013) with newly

published data (Hannides et al., 2015; Stevens et al., 2015; Décima et al.,
2016; Landry et al., 2020; McEnnulty et al., 2020; Landry& Swalethorp,
2021; Dvoretsky & Dvoretsky, 2022). Moriarty and O’Brien (2013)
presented a global dataset on mesozooplankton biomass extracted from
the Coastal and Oceanic Plankton Ecology, Production, and Observation
Database (COPEPOD, https://www.st.nmfs.noaa.gov/copepod). As the
COPEPOD database contains a wide variety of sources with various
formats, Moriarty and O’Brien (2013) quality-controlled the data
following O’Brien (2010) (https://www.st.nmfs.noaa.gov/copepo
d/2010), and we also pre-processed the newly-added data using the
same criterion. Firstly, total carbon biomass was selected as the meso-
zooplankton biomass proxy because it has been widely used in energy
flows and food webs, and it is the most commonly used proxy for
plankton biomass (Harris et al., 2000). The four types of biomass mea-
surements (dry mass, wet mass, displacement volume, and settled vol-
ume) were converted to total carbon biomass (μgC L-1) based on
empirical conversion equations (Table S1). To further restrict the data to
the total biomass of bulk mesozooplankton samples, we excluded the
data collected by the Optical Plankton Counter (OPC) and the Laser
Optical Plankton Counter (LOPC), which usually measured the total
biomass by summing up the individual/taxon biomass values. The
Continuous Plankton Recorder (CPR) was also excluded because the
data were all sampled from surface waters. Secondly, the data from
mesh sizes 140 to 650 μm were selected according to the size definition
of mesozooplankton following O’Brien (2010). Thirdly, as the majority
of mesozooplankton data was sampled with a single net towed over a
single depth interval from a target depth to the surface (e.g., 0–50 m,
0–100 m, 0–200 m, etc.), we then converted the other data to the form of
single depth interval by summing the biomass from different layers
when multiple depth intervals were recorded. Therefore, a sampling
depth of 100m in our dataset means the data collected from 100m to the
surface with an interval depth of 100 m. The data collected from specific
depths with 0 m intervals (e.g., 200 m) and without depth intervals to
surface water (e.g., only 100–200 m were recorded) were excluded.

After data quality control and pre-processing, we obtained a global
dataset that contains 158,200 mesozooplankton biomass measurements,
including 5,037 newly added data points. Our dataset has extensive
spatial and temporal coverage, which contains data sampled from 1932
to 2019 covering 12 months and 24 h (Fig. 1, Fig. S1). The meso-
zooplankton were collected by various mesh sizes, measured by four
methods, and sampled from various depth intervals (Fig. S1).

2.1.2. Environmental data collection
We used a suite of environmental variables as predictors for

modelling mesozooplankton biomass. These predictors were extracted
from satellite observations or reanalysis products (Table 1). The
monthly climatologies of sea surface temperature (SST, ◦C) and satellite
sea surface chlorophyll a (SSChl, μg L-1) measurements were obtained
from MODIS-Aqua (Moderate Resolution Imaging Spectroradiometer
aboard the Aqua spacecraft, average over 2002–2016, 9.2 km resolu-
tion) and SeaWiFS (average over 1997–2010, Level 3-binned, 9.2 km
resolution), respectively (https://oceancolor.gsfc.nasa.gov/l3/). Ba-
thymetry data were sourced from NOAA with a spatial resolution of 5
min and re-gridded to a 1◦ grid (ETOPO5; NOAA National Centers for
Environmental Information). The monthly climatologies of sea surface
salinity (SSS), surface dissolved oxygen (DO, μmol kg− 1), nitrate (NO3,
μmol/L), phosphate (PO4, μmol/L), and mixed layer depth (MLD, m)
were selected from the World Ocean Atlas (WOA) with 1◦ spatial reso-
lution (Garcia et al., 2019). The missing values in the WOA dataset were
filled using the k-nearest neighbour classification method via the
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function ‘knn’ in the R package ‘class’ (https://cran.r-project.org/
web/packages/class/class.pdf). As most mesozooplankton migrate
vertically (usually migrate to the surface at dusk and return to subsur-
face waters near dawn), the depth-resolved environmental variables are
closer to the environments they experience than the surface values.
However, the sampling depth usually does not represent their migration
or dwelling depth, which also varies among mesozooplankton species.

We then assumed that the mesozooplankton live within the average
upper 200 m in the open ocean and calculated the depth-averaged (0 –
200 m) environmental variables, including temperature, salinity, dis-
solved oxygen, nitrate, and phosphate, based on the data of WOA
(Table 1). The depth-averaged environmental variables were calculated
from bottom to surface in the coastal waters.

The environmental variables were matched with the

Fig. 1. Global distribution of mesozooplankton biomass data sampled by towed nets with different size meshes (140–650 μm) from different depth intervals. Each
point represents a station where mesozooplankton biomass was recorded, and the colour of the point represents sampling frequency.

Table 1
Sampling information related to mesozooplankton biomass and environmental predictors used in the machine learning analyses.

Predictors Symbol Spatial
resolution

Temporal
resolution

Data transformation Resource

Mesozooplankton biomass (μgC/L) Biomass Log-transformed Sampling information
Mesh size (μm) Mesh ​
Sampling method Method ​
Longitude (◦E) Lon Periodic functions
Latitude (◦N) Lat
Month DOY Convert to day of year, Periodic

functions
Local Time (h) HOD Convert to 24-hr cycle and Periodic

functions
Sampling depth (m) SD Log-transformed
Sea Surface Temperature (◦C) SST 0.083◦ Monthly

climatology
​ MODIS-Aqua

Sea Surface Chl a
(μg/L)

SSChl 0.083◦ Monthly
climatology

Log-transformed SeaWiFS

Sea Surface salinity SSS 1◦ Monthly
climatology

​ World Ocean Atlas
2018

Mixed layer depth
(m)

MLD 1◦ Monthly
climatology

Log-transformed World Ocean Atlas
2018

Dissolved Oxygen (μmol/kg, surface/depth
averaged)

DO/Oxy_200m 1◦ Monthly
climatology

Log-transformed World Ocean Atlas
2018

Nitrate (μmol/L, surface/depth averaged) NO3/
NO3_200m

1◦ Monthly
climatology

Log-transformed World Ocean Atlas
2018

Phosphate (μmol/L, surface/depth averaged) PO4/
PO4_200m

1◦ Monthly
climatology

Log-transformed World Ocean Atlas
2018

Temperature (depth averaged) SST_200m 1◦ Monthly
climatology

​ World Ocean Atlas
2018

Salinity (depth average) Sal_200m 1◦ Monthly
climatology

​ World Ocean Atlas
2018

Bottom depth (m) BD 1◦ ​ Log-transformed ETOPO5 (NOAA)
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mesozooplankton biomass measurements according to the location and
sampling month.

2.1.3. Data processing
The mesozooplankton biomass and some environmental predictors,

including the SSChl, MLD, DO / oxy_200 m, NO3 / NO3_200 m, PO4 /
PO4_200 m, sampling depth, and bottom depth, were log-transformed to
achieve approximate normal distributions (Table 1).

The sampling date was converted to the day of year (DOY) and
standardised to the Northern Hemisphere to ensure that the DOY of
summer and winter was the same in both hemispheres. The local sam-
pling time was unified to the hour of day (HOD, 24-hr cycle). As the DOY
and HOD were cyclical, the data continuity was broken at the start and
end of a cycle. For instance, a cycle’s start (0th hour or 1st day) and the
end (24th hour or 365th day) are temporally close with the same
properties but are numerically far apart. The geographical distances in
coordinate space have the same issue. To address this issue, the sampling
coordinates and time (DOY and HOD) were transformed into periodic
functions using sine and cosine functions according to Gade (2010) and
Gregor et al. (2017) as follows:

DOY =

⎛

⎜
⎜
⎜
⎝

cos
(

DOY
2π
365

)

sin
(

DOY
2π
365

)

⎞

⎟
⎟
⎟
⎠

(1)

HOD =

⎛

⎜
⎜
⎜
⎝

cos
(

HOD
2π
24

)

sin
(

HOD
2π
24

)

⎞

⎟
⎟
⎟
⎠

(2)

coordinates =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sin
(
latitude

π
180

)

sin
(
longitude

π
180

)
cos

(
latitude

π
180

)

− cos
(
longitude

π
180

)
cos

(
latitude

π
180

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3)

2.1.4. Predictors selection
We first identified the collinear predictors according to the Pearson

correlation coefficient (r, |r|> 0.7) to select the model predictor vari-
ables. A classical threshold of maximum |r| of 0.7 has been suggested to
restrict collinearity-driven effects on species distribution models (Brun
et al., 2020; Dormann et al., 2013). Among all variables, oxygen con-
centration and temperature, nitrate and phosphate, and phosphate and
temperature were highly correlated (|r| > 0.7, Fig. S2); we kept one of
them for the models. After this procedure, we selected the five candidate
predictors: SSChl, SST, SSS, MLD, and NO3. As the depth-averaged
environmental variables were highly correlated with their correspond-
ing surface values, they cannot be put in the same models. We selected
another set of predictors (i.e., SSChl, SST_200 m, Sal_200 m, MLD, and
NO3_200 m) for further comparison. In addition, sampling information
(i.e., longitude, latitude, Date of the Year, and sampling time and depth)
was not highly correlated with environmental variables (|r| < 0.7,
Fig. S2), which were also the candidate predictors. The mesh size, one of
the sampling information, is correlated with longitude (|r| = 0.67,

Fig. S2). To avoid the potential collinearity-driven effects, we converted
the mesozooplankton biomass sampled by different mesh sizes to their
equivalent 333 μm values based on empirical conversion equations
(Table S2) following Moriarty and O’Brien (2013). Therefore, mesh size
was not considered the predictor variable in the following analysis.

To further determine the best predictor set for the models, we built a
set of models (M1–M9, Table S3) that used different combinations of
candidate predictors. We used the Random Forest algorithm to run all
models and calculated the coefficient of determination (R2) and the root
mean square error (RMSE) to compare the model performances (see
section 2.2). We found that the depth-averaged environmental variables
did not improve the model performance (M6 and M7) and decided to use
their corresponding surface values due to their easier access. Also, NO3
was removed from the predictor set as its marginal contribution to the
models (M1 and M5). Although the addition of static variables (i.e.,
longitude and latitude) remains controversial as they may conceal the
contribution of environmental variables to model explanatory power
(Pinkerton et al., 2020), they can capture the spatiotemporal effects that
environmental predictors cannot capture and significantly improves the
model performance (M1-M7 and M8-M9, Table S3; Chen et al., 2020;
Fletcher et al., 2019). Also, it has been suggested that both static and
dynamic variables be considered in the models when predicting marine
species distribution in a changing climate (Lambert et al., 2014; Becker
et al., 2019). As making predictions was one of our main objectives,
which requires good performance and high explanatory power of
models, we kept the coordinates in the final predictor set for models (i.
e., M2):

where the symbols are presented in Table 1.

2.2. Machine learning algorithms

We used four machine learning techniques, including BRT, RF, SVM,
and ANN, to derive empirical models of mesozooplankton biomass as a
function of the suite of environmental predictors (Eq. (4)).

2.2.1. Boosted regression trees (BRT)
BRT combines the strengths of regression trees (models that link a

response to predictors by recursive dichotomous separations) and
boosting (a method for incorporating many simple models to improve
model accuracy). The boosting algorithm is advantageous over other
related techniques (e.g., bagging) because it uses an iterative method to
develop a final model in a forward and stagewise fashion (De’ath, 2007;
Hastie et al., 2009). Trees are added progressively to the first regression
tree, which is constructed based on a randomly selected subset of the
dataset. Data is re-weighted to emphasise the observations poorly pre-
dicted by the previous trees (Leathwick et al., 2006; Elith et al., 2008).
At each iteration step, the tree could contain different variables and split
nodes compared with previous ones; the residuals are calculated and
compared until the deviance does not further decrease. Therefore, a final
BRT model can be understood as an ensemble regression model in which
each term is a simple regression tree (Friedman, 2002).

BRT can deal with several variables and accommodate different
predictors and missing values. It is less sensitive to the effect of extreme
outliers and the inclusion of irrelevant predictors. Also, it can be fitted
for interactions between predictors. Nevertheless, as with all prediction
problems, regularisation is required for BRT to minimise the overfitting
of training data, which reduces their generality. The regularisation of

log(Biomass) = f(coordinates,DOY,HOD, logSD, logBD, SST, SSS, logSSChl, logMLD) (4)
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BRT includes optimising the number of trees, learning rate, and tree
complexity, in which tree complexity (allowing interactions of the pre-
dictors) and learning rate (decreasing learning rate increases the number
of trees required) affects the optimal number of trees (Elith et al., 2008).
BRT was conducted using the function ‘gbm.step’ in the R package ‘dismo’
(Elith et al., 2008). We conducted a sparse grid search by running 15
models with 15 parameter combinations of three tree complexity (2, 10,
15) and 5 learning rates (0.002–0.01) to select the optimal parameters.
We found that the R2 was higher when the tree complexity was 10 and
15, and the R2 also slightly increased with the learning rate (Fig. S3).
Thus, we used the tree complexity of 15 and the learning rate of 0.01 for
the model.

2.2.2. Random Forest (RF)
RF is a widely used machine learning algorithm that uses an

ensemble of numerous decision trees and is usually trained with the
bagging method (Breiman, 2001; Rodriguez-Galiano et al., 2012). RF
builds a collection of regression trees that grow in randomly selected
data subspaces without pruning, selects the best split from a random
subset of variables at each node of the tree, and averages the results of all
individual regression trees to produce the final prediction. The predic-
tion accuracy depends on the strength of individual trees in the forest
and the correlation among these trees, which are involved in calculating
generalization errors for random forests (Breiman, 2001). To avoid the
correlation of the different trees, RF used the bagging technique to grow
the trees from different training data subsets, which allows some data to
be used more than once. Still, others might not be used in training,
which makes the model more stable and robust when facing variations
in input data and increases prediction accuracy. In addition, when
growing a regression tree, RF selects the best feature/split point from a
random subset of the variables at each node, which can decrease the
strength of individual trees and reduce the generalisation error. The
generalisation error converges when the number of trees becomes large
so that the RF does not overfit the data. Additionally, RF uses the “out-
of-bag” strategy to achieve an unbiased estimation of generalisation
error, strength, and correlation and to assess the relative importance of
input variables (Peters et al., 2007). Although RF has long been
considered a “black-box” technique as its structure cannot be easily
visualised, it has advantages in reducing the risk of overfitting and
determining feature importance. To evaluate the importance of each
predictor, RF can switch one of the predictors while keeping the rest
constant and measure the reduction in accuracy, which has taken place
through the out-of-bag error estimation.

We used the function ‘randomForest’ in the R package ‘randomForest’
(https://cran.r-project.org/web/packages/randomForest/randomFore
st.pdf) to construct the RF model (Liaw & Wiener, 2002). To test the
sensitivity of parameters in model construction, we run nine models
with nine combinations of three values of the number of variables
selected at each split (mtry = 3, 6, 9) and three values of the number of
trees (500, 1000, 2000). We did not observe significant differences
among these combinations (Fig. S4) and eventually used a group of
parameters (mtry = 6, number of trees = 1000) to construct the RF
model.

2.2.3. Support Vector Machine (SVM)
SVM is a supervised learning model that can be used for both clas-

sification and regression. It aims to search a hyperplane in the data space
that produces the largest minimummargin between the data points (i.e.,
observations) that belong to different classes (Vapnik, 2000; Noble,
2006). The hyperplane is mainly determined by the data points on the
edges of the margin (i.e., support vectors) rather than the difference in
class means like other classifiers. As such, new points entering the
dataset will not be affected by the hyperplane, and the hyperplane does
not allow the data from different classes to mix in most cases. Compared
with other supervised learning classifiers, such as logistic regression and
decision trees, SVM typically performs better with high-dimensional

datasets because they can increase class separation and reduce ex-
pected prediction error. SVM was implemented using the R package
‘e1071′ with the function of ‘svm’ (https://cran.r-project.org/web/pa
ckages/e1071/e1071.pdf). The kernel used in training and predicting
was set to radial basis, and the type was set to ‘eps-regression’. The ‘tune.
svm’ function was used to determine the optimal setting for gamma and
the cost of constraints violation (i.e., gamma = 0.001, cost = 100).

2.2.4. Artificial Neural network (ANN)
ANN is a computational model used to describe complicated in-

teractions between inputs and outputs or to discover patterns using
processes that were inspired by how biological neurons work (Guenther
& Fritsch, 2010). A neural network consists of layers of nodes or artifi-
cial neurons: an input layer, one or more hidden layers, and an output
layer. In each layer, the neurons perform nonlinear transformations, and
connections among these layers are made using weights. The input layer
comprises input neurons that receive and send the signals to hidden
neurons based on an activation function, which initiates the workflow.
The hidden neurons process the signals, generate output signals, and
transfer them to the output layer. Training of an ANN involves deter-
mining the weights associated with the connections between neurons.
The backpropagation algorithm is the commonly used training algo-
rithm for ANNs (Buscema,1998).

Training starts by initializing all the weights with random numbers,
and the network produces an output. A loss function is then calculated as
the squared difference between the output and the true value. The
backpropagation algorithm then adjusts the weights by finding the
steepest descent of the derivatives of the loss function against each
weight until a minimal loss function is reached.

ANN was implemented by the R package “neuralnet” with the default
“Resilient backpropagation” (Rprop) algorithm (Günther and Fritsch,
2010). To reduce the predictors’ dynamic, the input variables are con-
strained to the [0, 1] by a min–max normalisation: x’= (x-xmin)/(xmax-
xmin) in which xmin and xmax are the minimum and maximum values in
the data x , respectively (Rafter et al. 2019, Wang et al. 2020). The lo-
gistic function was used as the activation function for the hidden and
output layers. To determine the optimal setting for the ANN, we
compared four settings (i.e., 1 hidden layer with 1, 2, 5 and 10 neurons).
The results show no significant difference among the settings (Fig. S5).
The model performance was sensitive to data selection processes when
using one neuron for the model (i.e., the variance of R2was high), and R2

slightly increased when using 2 to 10 neurons. As such, We used one
hidden layer with 10 neurons for the model.

2.2.5. Model validation and comparisons
To evaluate the model performances, the dataset was randomly split

into a training subset and a test subset, which account for 70 % and 30 %
of the whole dataset, respectively. The coefficient of determination (R2)
represents howwell the models explain the variance of the observations,
the root mean square error (RMSE) indicates the spread of the mismatch
between model predictions and observations, and the mean bias of the
model predictions from the observations (MB) was calculated based on
the pairwise model predicted values and observed values of the test
dataset:

R2 =
∑n

i=1(ymi − yoi)
∑n

i=1(yoi − yo)
(5)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ymi − yoi)2

√

(6)

MB =
1
n
∑n

i=1
(yoi − ymi) (7)

in which n is the total number of samples, ymi is the ith modelled log-
transformed biomass, yoi is the ith observed log-transformed biomass,
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and yo is the mean value of observations. The mean and standard de-
viation of R2, RMSE, and MB were calculated based on a ten-fold cross
validation.

2.3. Model Inference

2.3.1. Global monthly and annual climatology of mesozooplankton biomass
Monthly climatology of mesozooplankton biomass was calculated

from the monthly climatologies of SST, SSChl, SSS, and MLD (Table 1).
DOY was assigned as the 15th of every month and HOD as the noontime
of the day. As the diel vertical migration (DVM) of mesozooplankton
could result in different biomass patterns between day and night, we
then examined such differences by setting the sampling time as midnight
and subtracting the results of the two models.

The mesozooplankton biomass concentration (mgC m− 3) at 1 m
depth intervals from the surface to 200 m was calculated by setting the
sampling depth from 0.5 m to 199.5 m with 1 m interval, which was
subsequently used to compute the depth-integrated mesozooplankton
biomass (mgC m− 2) (Petrik et al. 2022). We estimated the meso-
zooplankton biomass with an equivalent size larger than 333 μm in the
top 200 m of the water column, where the mesozooplankton samples
were most frequently collected (< 200 m, Fig. S1g). The meso-
zooplankton biomass was integrated from the surface to the bottom for
the coastal waters where bottom depths are less than 200 m. After
obtaining the monthly climatology of mesozooplankton biomass, we
calculated the 12-month mean for the annual climatology of meso-
zooplankton biomass.

A common issue for many machine learning models is their inability
to extrapolate to conditions outside the range of their training data due
to non-linear response curves (Bell & Schlaepfer, 2016; Elith et al.,
2010). Therefore, we conducted a Multivariate Environmental Similar-
ity Surfaces (MESS) analysis to evaluate whether environmental condi-
tions’ monthly and annual climatology lie within the range of the
training dataset (Elith et al., 2010). The MESS analysis estimates the
degree of similarity between a set of predictive variables under predic-
tion scenarios and the reference points in the training dataset. The
estimated MESS value is the minimum value of similarity relative to
each variable, that is, the most dissimilar variable (i.e., MoD). The
negative MESS values indicate that at least one variable value exceeds
the environmental range of the reference point in the training dataset,
where the predictions should be treated with caution. This analysis was
conducted using the R function “mess” in the “modEvA” package.

2.3.2. Relative importance and partial dependency of predictors
To assess the relative importance of environmental predictors for

predicting mesozooplankton biomass, we used model-specific ap-
proaches to measure feature importance for RF, BRT, and ANN via the R
function “vip”. For instance, the IncNodePurity (i.e., increase in node
purity), which calculated the difference between the Residual Sum of
Squares (RSS) before and after each split in regression trees and sum-
ming all splits over all trees for a specific variable, was calculated for
every variable based on RF. As the increase in node purity means a
decrease in RSS, the higher IncNodePurity indicates the greater impor-
tance of the variable in the model (Breiman, 2001). In addition, for SVM,
we used a model-agnostic approach based on the permutation feature
importance measurement by calculating the increase of the model’s
prediction error after permuting the feature (Breiman, 2001). The
feature should be important if the model performance degrades when
the feature is permuted (https://bradleyboehmke.github.io/HOML/iml.
html). The permutation approach for SVM was implemented by the R
function “vip” (method = “permute”).

Partial dependence quantitatively depicts the functional relationship
between predictors and responses (Friedman, 2001; Lucas, 2020). We
assessed the partial dependence of all environmental predictors to
visualize the effect of each predictor on mesozooplankton biomass. For a
given predictor, the effect was quantified when accounting for the

average effect of all other predictors in the model. The partial depen-
dence plots based on RF and BRT were generated using the R function
‘partial’ in ‘pdp’ packages. However, this function does not work for ANN
and requires a high time cost for SVM. Therefore, we did not generate
the partial dependence plots based on ANN and SVM. In addition, to
assess the combined effects of two predictors (e.g., SSChl and SST/bot-
tom depth; SST and bottom depth; sampling depth and time/day), a 2-D
surface was generated by holding other predictors at their average levels
based on RF. For the effect of longitude and latitude, we calculated the
response variable for each grid at a spatial resolution of 1◦×1◦ when
accounting for the average effect of other predictors based on RF to
generate a 2-D map with the residuals explained only by geographical
location. Moreover, the interaction between variables was measured
based on H-statistics (Friedman & Popescu, 2008) through the R pack-
age ‘iml’. The overall interaction strength illustrates the interactions of
each predictor with all other predictors, examining whether and to what
extent two predictors interact with each other and influence the varia-
tions of response variables.

2.3.3. Prediction based on CMIP6 outputs
We predicted the future changes in mesozooplankton biomass based

on our RF model. The monthly SSChl, SST, SSS, and MLD under the
“business as usual” scenario (i.e., SSP5-8.5) were extracted from the
outputs of the Community Earth System Model (CESM2) in the CMIP6
project (https://esgf-node.llnl.gov/search/cmip6/) and input to the RF
model as environmental predictors. As in Section 2.3.1, the sampling
date and time were set to 15th and noontime, respectively. The depth-
integrated (0–200 m for the basin and 0 m-bottom for the coastal wa-
ters) mesozooplankton biomass was estimated at a spatial resolution of
1◦×1◦ and the globally averaged mesozooplankton biomass was calcu-
lated for each estimated year from 2015 to 2100. The difference in
mesozooplankton biomass between 2015 and 2100 was then calculated
to evaluate the possible response of mesozooplankton biomass to the
projected ocean changes. The MESS analysis was conducted to examine
whether the environmental conditions under the “business as usual”
scenario were outside the training dataset and affected the extrapolation
of models.

3. Results

3.1. Patterns of raw data

The dataset contains over 150,000 mesozooplankton biomass mea-
surements sampled by traditional towed nets, covering most areas of the
ocean (Fig. 1). The number of mesozooplankton biomass measurements
increased dramatically from 1950, while slightly decreased from 2000
when in situ methods based on imaging and video instruments, such as
Underwater Vision Profiler (UVP) were developed and gradually come
into widespread use (Fig. S1c). Overall, the northern hemisphere
(139,835) contains more measurements than the southern hemisphere
(18,365), and the measurements in the northern hemisphere are mainly
located in temperate regions (Fig. S1b, d, e). The sampling time covered
all day (0–24 h), while the measurements sampled at midnight (17,744)
were more numerous than at any other time (Fig. S1f). The meso-
zooplankton were mainly sampled at 0–100 m, 0–150 m, and 0–200 m,
with 132,262 sampled from these depth intervals (Fig. S1g). The ma-
jority of samples were collected by meshes with a size of about 333 μm
(Fig. S1h) and measured by displacement volume (Fig. S1i).

Following Moriarty and O’Brien (2013), we grouped the meso-
zooplankton biomass data into 11 depth categories, in which the lower
depths can be varied by ± 25 m (Table S4). Based on this grouping, we
roughly calculated the mean mesozooplankton biomass. In the top 200
m of the global ocean, the global mesozooplankton biomass had a mean
of 5.93 mgC m− 3, with a standard deviation of 9.72 mgC m− 3, and a
median of 2.42 mgC m− 3 (Table S4).

The bivariate plots of Fig. 2 show the relationships between
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mesozooplankton biomass and environmental and spatiotemporal var-
iables, though the mesozooplankton biomass was sampled and
measured in various ways and has not been uniformized. All environ-
mental and spatiotemporal variables were significantly correlated with
mesozooplankton biomass (Spearman correlation, p < 0.001 for all
variables), implying their impacts on the global distribution of meso-
zooplankton biomass. We find a robust and interesting trend between
mesozooplankton biomass and SSChl with a regression slope (0.61 ±

0.004) close to, but not identical to, the general predator–prey scaling
exponent (0.75; Fig. 2a; Hatton et al., 2015; Liu et al., 2021). By

contrast, no clear patterns were observed between mesozooplankton
biomass and other environmental variables (i.e., SST, SSS, MLD, and
DO) (Fig. 2b-e). For spatiotemporal variables, the relationship between
mesozooplankton biomass and bottom depth reflects a decreasing trend
from nearshore to offshore waters (Fig. 2g). The relationship between
mesozooplankton biomass and sampling date appeared unimodal,
indicating a seasonal pattern with higher mesozooplankton biomass in
summer while lower biomass in winter (Fig. 2i). No clear patterns be-
tween mesozooplankton biomass and sampling depth intervals, sam-
pling time, latitude, and longitude were observed (Fig. 2f, h, j, and k).

Fig. 2. Relationship between log-transformed mesozooplankton biomass (log10 Biomass) and environmental variables including (a) sea surface Chl a concentration
(log10 Chl a), (b) sea surface temperature (SST), (c) sea surface salinity (SSS), (d) mixed layer depth (log10 MLD), (e) Oxygen concentration (log10 O2), (g) bottom
depth (log10 bottom depth); and spatiotemporal variables including (f) sampling depth (log10 sampling depth), (h) sampling time, (i) sampling date (Day of the year),
(j) latitude, and (k) longitude. The colour of the point represents the density of data. The line in (a) is derived from the ordinary least square regression, and smooth
lines in other figures are derived from the general additive model (“gam”) smooth with formula = y ~ s(x, bs = “cs”) and method = “REML”.
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Fig. 3. Comparison of observed and predicted mesozooplankton biomass for the test dataset using (a) Boosted Regression Trees (BRT), (b) Random Forest (RF), (c)
Support Vector Machines (SVM), and (d) Artificial Neural Network (ANN) with data points colour-coded for density of observations.

Fig. 4. Global distribution of annual mean mesozooplankton biomass (mgC m− 2) predicted by (a) RF, (b) BRT, (c) SVM, and (d) ANN. The colour bar denotes the
predicted mesozooplankton biomass (mgC m− 2). The white colour means no data is available.
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3.2. Comparisons of four machine learning algorithm performances

RF performs the best with the highest R2 and lowest RMSE among the
four machine learning algorithms (i.e., 0.57 and 0.39, respectively;
Fig. 3). The R2 for BRT, SVM, and ANN were 0.55, 0.49, and 0.42,
respectively, and the RMSE for the three models were 0.40, 0.42, and
0.45, respectively (Fig. 3). Although all four algorithms can deal with
nonlinear complex functions and interactions, the tree-based techniques
(i.e., RF and BRT) outperformed SVM and ANN. This could be because
the RF and BRT are not restricted to simulated smooth functions be-
tween input and output, such as ANN. Nevertheless, the relative supe-
riority of one algorithm depends on the data’s structures and features
and varies case by case. In previous studies with algorithmic compari-
sons, RF performed better than ANN and SVM for modelling the global
distribution of dissolved iron (Huang et al., 2022) and the partial pres-
sure CO2 in the Gulf of Mexico (Chen et al., 2019). RF and BRT were also
used to model zooplankton taxa and total biomass on global and
regional scales, although they were not compared with other algorithms
before application (Drago et al., 2022; Pinkerton et al., 2022; Petrik
et al., 2023).

3.3. Predicted monthly and annual climatology of mesozooplankton
biomass

The annual mean mesozooplankton biomass concentration in global
oceans was predicted by the four models (Fig. 4). The MESS analysis
revealed that extrapolation of models performs well in most of the
projection modelling areas with only 1 % negative MESS values (i.e.,
mainly located in Baltic Sea and Caspian Sea; Fig. S6). All models pre-
dicted relatively high mesozooplankton biomass in the regions of 40-
90◦N (Table S5). For instance, RF predicted a mean value of 3.05 ± 1.22
mg C m− 3 for these regions, including the coastal waters of the Baffin
Bay and the Labrador Sea, the Greenland Sea, the Gulf of Alaska, the
Bering Sea, and the Sea of Okhotsk (Fig. 4a). The biomass decreased
south of these regions except for the hot spot in the upwelling regions off
California (Fig. 4). There were mesozooplankton hot spots with rela-
tively high biomass (i.e., 1.85 ± 1.27 mg C m− 3 based on RF model) in
the equatorial areas (15◦N-15◦S), including the Eastern Equatorial Pa-
cific associated with upwelling off the West coast of the Americas, the
Atlantic Ocean associated with upwellings off the West coast of Africa
(from Cape Verde to Angola), and the Arabian Sea of Indian Ocean
(Fig. 4). This pattern was predicted by RF, BRT, and SVM but not by
ANN. In both RF and BRT models, the highest biomass was predicted in
the Laccadive Sea of the Indian Ocean (Fig. 4a, b), while in SVM model,

Fig. 5. Predicted monthly climatology of mesozooplankton biomass (mgC m− 2) based on RF model with 0–200 m sampling depth interval (0 m to bottom for coastal
waters). The sampling date and time were set to the 15th of the month and noon time, respectively. The colour bar denotes the predicted mesozooplankton biomass
(mgC m− 2). The white colour means no data is available.
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the highest biomass was predicted in theWest coast of Africa (Fig. 4c). In
addition, a band of high mesozooplankton biomass was predicted south
of 55◦S mainly including the Southern Ocean (Table S5), although some
regions (e.g., Weddell Sea) cannot be predicted due to data scarcity
(Fig. 4). However, this biomass band was not predicted by ANN
(Fig. 4d). In comparison with these high-biomass regions, the annual
mean mesozooplankton biomass was very low in the oceanic gyres, such
as the North/South Pacific Gyre and Indian Ocean Gyre (Fig. 4).

Overall, the patterns of annual mean mesozooplankton biomass
predicted by RF and BRT were more consistent with the observations
concluded by Moriarty and O’Brien (2013). As the model performance
of RF was better than BRT, our following analysis focused on RF. Based
on RF, the global total mesozooplankton carbon biomass in the top 200
m of the ocean was estimated at 0.12 ± 0.07 Pg C following the calcu-
lation in Moriarty and O’Brien (2013): the mean mesozooplankton
biomass concentration (1.74 ± 1.19 mgC m− 3) × the area of the global
ocean (3.56 × 1014 m2) × the upper 200 m surface layer (200 m) × 1 ×

10-18 Pg mg− 1. The estimated value was close to the total global biomass
calculated by observations (0–200 m, 0.19 Pg C, Moriarty & O’Brien,
2013) but lower than the value predicted by the BRTmodel based on the
UVP dataset (0.229 Pg C, Drago et al., 2022). The higher total biomass
predicted by Drago et al. (2022) could be because they estimated the
mesozooplankton biomass between 0 and 500 m.

Based on the RF model, we further investigated the monthly and
seasonal variations of mesozooplankton biomass in global oceans
(Fig. 5, Fig. S7). The seasonality was more significant at middle to high
latitudes (i.e., north of 40◦N and south of 55◦S) than other regions
(Fig. 5, Fig. S5). In the regions north of 40◦N, mesozooplankton biomass
was low in winter (1.31 ± 0.10 mgC m− 3) and peaked in summer (3.53
± 0.68 mgC m− 3). From spring, when the sea ice melts, the ice-covered
areas experience a rapid increase in mesozooplankton biomass. In the
northern hemisphere summer, the mesozooplankton biomass in these
regions was higher than in other regions except in some equatorial hot-
spot areas (Fig. 5). The mesozooplankton biomass started to decrease in
August and remained low in the fall and winter. Likewise, meso-
zooplankton biomass in the Southern Ocean (south of 55◦S) has a pro-
nounced seasonality, with the highest biomass in the austral summer (i.
e., December, January, and February). By contrast, the seasonality in
equatorial bands (15◦N-15◦S) was not as pronounced as in high lat-
itudinal regions (Fig. S7), but monthly variations occurred in some hot-
spot areas, such as the upwelling regions off the West coast of the
Americas (Fig. 5).

3.4. Relative importance and partial effects of each predictor

To reveal the mechanisms controlling the spatiotemporal distribu-
tion of mesozooplankton biomass, the relative importance of each pre-
dictor and their partial effects were analyzed based on four models
(Fig. 6, Fig. S8). The relative importance of each predictor was ranked by
four models, in which the results of RF, BRT, and SVM were similar but
different from those of ANN (Fig. 6, Fig. S8). Based on the ANN model,
the spatiotemporal predictors (i.e., latitude, longitude, sampling date
and time) were more important than any environmental predictors,
which made the model less interpretable. Hence, the ANN models with
spatiotemporal predictors were not recommended for species distribu-
tion models (SDMs) that emphasized the effects of environmental factors
(Brun et al., 2016). By contrast, the importance of environmental pre-
dictors was not masked by the spatiotemporal predictors in the other
three models (Fig. 6a, Fig. S8), allowing us to evaluate the relative
contribution of environmental factors to the spatiotemporal distribution
of mesozooplankton biomass.

Based on RF, BRT, and SVM models, the SSChl was the most critical
predictor determining the spatiotemporal distribution of meso-
zooplankton biomass (Fig. 6a, Fig. S8). The log-transformed meso-
zooplankton biomass increased approximately linearly with increasing
log-transformed SSChl until about 10 µg L-1 and saturated afterwards

(Fig. 6b). The partial effect plot depicts the relationship between mes-
ozooplankton biomass and SSChl more clearly than the raw pattern
(Fig. 2a), confirming that phytoplankton biomass is an important pre-
dictor for zooplankton biomass. Nevertheless, the SSChl has the highest
relative interaction effect with all other variables, although the inter-
action effects between variables were weak overall (Fig. S9). The
interaction between SSChl and sampling depth was substantial, which
explained about 15% of variations that were not explained by the sum of
these two variables’ partial dependence functions (Fig. S9). While the
interactive effects of SSChl and bottom depth were more significant
when SSChl was low, mesozooplankton biomass did not vary with bot-
tom depth at high SSChl levels (Fig. 6i).

The sampling depth and bottom depth were the second and third
most important environmental predictors based on RF and BRT models
(Fig. 6a, Fig. S8). The partial effects of bottom depth and sampling depth
reflect the spatial pattern of mesozooplankton with biomass decreasing
from nearshore to offshore waters (Fig. 6c, d). The relationship between
mesozooplankton biomass and sampling depth appeared unimodal, with
a peak at about 60–70 m, which also reflects the abundant meso-
zooplankton biomass in nearshore waters because the sampling depths
in offshore waters were usually set to 100–200 m (Fig. 6d). Also, the
mesozooplankton biomass was low when sampling within the depth
interval of 0 m to 10 ~ 20 m as many mesozooplankton usually inhabit
deep waters in the euphotic zone.

The SST also affected the distribution of mesozooplankton biomass,
although its importance ranked after the sampling depth and bottom
depth based on RF and BRT models (Fig. 6a, Fig. S6). While in the SVM
model, SST was ranked as the second most important environmental
predictor (Fig. S6c). When controlling the other factors, the relationship
between mesozooplankton biomass and SST shows a U-shaped curve
with the lowest biomass appearing at around 15–20 ◦C (Fig. 6e). This
partial effect plot mainly reflects the latitudinal distribution of meso-
zooplankton biomass as the SST has a relatively strong interaction with
geographic coordinates (Fig. S9c). The mesozooplankton biomass was
highest in the polar and subpolar regions, where temperature is usually
below 10 ◦C and high in tropical regions with high temperatures. By
contrast, the mesozooplankton biomass was low in subtropical and
temperate waters, especially in oligotrophic gyres. The two-predictors
partial plots (Fig. 6j, k) show that the lowest mesozooplankton
biomass occurred in low Chl a and deep bottom depth regions where SST
was 20 ◦C, pointing to subtropical oligotrophic gyres such as North
Pacific subtropical gyre. At low SSChl concentrations, we observed an
unimodal pattern between mesozooplankton biomass and temperature
(Fig. 6j), which reflects the seasonal variation in low-Chl a regions such
as subtropical gyres. This unimodal pattern disappeared as SSChl
increased, and the mesozooplankton biomass did not vary with tem-
perature when SSChl reached a high level (Fig. 6j), confirming the
central role of SSChl in controlling mesozooplankton biomass.

The SSS and MLD contributed less to explaining the variation of
mesozooplankton biomass (Fig. 6a, Fig. S8). The partial effects of SSS
and MLD reflected the spatial distribution of mesozooplankton biomass:
higher in nearshore but lower in the open ocean with high salinity and
deep mixed layer (Fig. 6f, g). The mesozooplankton biomass was rela-
tively high in low-salinity waters, such as estuaries and gulfs, where
nutrient-rich freshwater inputs not only lower salinity but also stimulate
productivity.

Besides environmental predictors, spatiotemporal predictors (i.e.,
time and location) also play important roles in affecting the distribution
of mesozooplankton biomass, and they are ranked high on the impor-
tance list based on all models (Fig. 6a, Fig. S8). The sampling date and
depth interactive partial plot revealed the seasonal pattern of meso-
zooplankton biomass with high biomass in late spring and summer and
low biomass in winter (Fig. 6l). More abundant mesozooplankton were
observed in upper layers in spring, which could be caused by the
“overwinter” seasonal vertical migration of mesozooplankton (Fig. 6l).
Also, the sampling time and depth interactive partial plot indicated the
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Fig. 6. (a) The relative importance of the environmental (orange) and spatiotemporal (grey) predictors based on the RF model. latlon1, latlon2, and latlon3 are the
transformation of coordinates (latitude and longitude) based on Eq. (3); hDoy1 and hDoy2 are the transformations of day of the year (DOY) based on Eq.1; hTime1
and hTime2 are the transformations of sampling time based on Eq. (2). (b-g) the partial effects of each environmental predictor on mesozooplankton biomass
estimated by RF (blue lines) and BRT (black line) models. (i-m) the joint effect of two predictors on mesozooplankton biomass estimated by RF models: (i) Chl a and
bottom depth; (j) Chl a and temperature; (k) temperature and bottom depth; (l) sampling depth and DOY; (m) sampling depth and sampling time. (n) the partial
effects of longitude and latitude on mesozooplankton biomass estimated by setting all environmental predictors to median values.
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diel vertical migration of mesozooplankton with high biomass at night
but low biomass in the daytime, especially in upper layers (Fig. 6m). The
partial dependence of mesozooplankton biomass on longitude and lati-
tude reveals the spatial residues not explained by environmental pre-
dictors and sampling time, suggesting some unknown factors (e.g.,
inherent stochasticity) not included in our models. The residuals of
mesozooplankton biomass were relatively high in the subarctic Pacific,
eastern equatorial Pacific, and the Atlantic Ocean (Fig. 6n), suggesting
some unknown factors limiting the mesozooplankton biomass in other
regions.

3.5. Predicted future changes in mesozooplankton biomass

Based on the outputs of CMIP6 CESM2models, our RFmodel predicts
a significant decline in the annually area-weighted mean of meso-
zooplankton biomass (i.e., from 320 to 310 mgC m− 2) under the
“business as usual” scenarios (i.e., SSP5-8.5; Fig. 7a; p < 0.001 for the
linear regression of annual mean mesozooplankton biomass against
year). According to the model’s prediction, the global total meso-
zooplankton carbon biomass may decrease by 3 % by the end of this
century. In the northern hemisphere, the monthly area-weighted mean
of mesozooplankton biomass would decrease by 2 ~ 4 % in the summer
and early fall months and decrease 6 % in December by 2100 (Fig. 7b).
By contrast, the monthly area-weighted mean of mesozooplankton
biomass in the southern hemisphere will not change significantly from
2015 to 2100 (Fig. 7b). The decline of mesozooplankton biomass will
mainly occur in the regions where high mesozooplankton biomass was
predicted, including the high-latitude regions (e.g., the Baffin Bay and
the Labrador Sea, the Greenland Sea, the Gulf of Alaska, the Bering Sea,
and the Sea of Okhotsk), the high-productivity upwellings off the West

coast of Africa and America, and the Arabian Sea (Fig. 7c). Moreover,
mesozooplankton biomass will also decrease a bit in some areas of North
Atlantic Gyre and North Pacific Gyre (Fig. 7c). Nevertheless, meso-
zooplankton biomass may increase slightly in some areas of Southern
Ocean by 2100 (Fig. 7c). The MESS plots revealed that our model would
perform well when extrapolating to the most areas of global oceans
under the “business as usual” scenarios except some coastal regions with
negative MESS values (Fig. S10).

4. Discussion

While the global distribution of mesozooplankton biomass is crucial
for developing and validating Earth System Models (ESMs), we still lack
an unambiguous understanding of its magnitude and general pattern.
Our study circumvents such issues by applying machine learning tech-
niques to estimate mesozooplankton biomass based on environmental
and spatiotemporal predictors. By comparing four machine learning
algorithms, we found that RF performs better than other algorithms with
the highest R2 and lowest RMSE (Fig. 3). Also, the global distribution of
mesozooplankton biomass predicted by the RF model was closer to the
observed patterns in previous studies (Fig. 4; Moriarty&O’Brien, 2013).
Further analyses on the relative importance of environmental and
spatiotemporal predictors and their partial dependences provide deep
insights into environmental controlling mechanisms underlying the
spatial and temporal distribution of global mesozooplankton biomass,
which advances our understanding of mesozooplankton and facilitates
the validation of ESMs. Below, we will discuss the limitations and ad-
vantages of the machine learning technique and provide more details on
the spatiotemporal distributions of global mesozooplankton biomass.
Then, we will discuss the ecological insights that emerge from the results

Fig. 7. Globally averaged mesozooplankton biomass in 2015, 2020, and future decades estimated based on the outputs of CMIP6 Community Earth System Model
(CESM2) simulated under the “business as usual” scenario (ssp585). (a) Estimated annually area-weighted means of mesozooplankton biomass and Chl a concen-
tration over future decades. (b) Monthly area-weighted means of mesozooplankton biomass for the Northern and Southern Hemisphere in the estimated years. (c)
Changes in mesozooplankton biomass between 2015 and 2100; the colour bar denotes the mesozooplankton biomass (mgC m− 2).
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and reveal the environmental effects on mesozooplankton biomass dis-
tribution. Finally, based on our model, we will predict changes in mes-
ozooplankton biomass in future oceans.

4.1. Limitations of machine learning approaches

Machine learning works like a “black box”, lacking explicit ecolog-
ical mechanisms. As such, it is sensitive to the driving forces (i.e., input
variables) and the selection of the training dataset. The statistical rela-
tionship between predictors and responses could be changed by input-
ting different variables, especially using space and time as predictors
(Irwin & Finkel, 2008). Our study constructed the statistical model
based on a large global dataset covering most ocean areas. We con-
ducted an elaborate assessment of the covariances of all potential pre-
dictors prior to model constructions and tried as many combinations of
input variables as possible to select the model with the highest accuracy
(Table S3; Fig. S2). Also, the training dataset was randomly selected
more than ten times for model constructions to ensure the model was
stable with less fluctuant R2 and RMSE (Figs. S3-S5).

However, some limitations and caveats should be noticed. First, the
input environmental variables for the models carry uncertainties. As the
field measurements of environmental variables corresponding to mes-
ozooplankton biomass observations are scarce, we had to use satellite
data and reanalysis products (i.e., World Ocean Dataset 2018) that
might carry errors associated with spatial or temporal mismatch when
paired with mesozooplankton observations. One problem is that the
finer resolutions on an intra-month or intra-day basis had to be sacri-
ficed because the monthly climatologies of environmental data failed to
capture its variability. The same problem was with spatial resolutions.
Using paired local measurements of environmental variables is bound to
improve our model substantially. However, it was not achievable for the
current dataset and actually for most statistical model construction. In
this case, the monthly climatologies could be reasonable substitutions.
Previous regional studies have found no significant improvement for the
models using in-situ paired measurements rather than monthly clima-
tologies (Pinkerton et al., 2020).

Nevertheless, our model provides a baseline prediction of meso-
zooplankton biomass in the global ocean at the cost of sacrificing the
accuracy of finer details at more minor scales. Our model reproduced the
global map of mesozooplankton biomass consistent with previous
studies (Moriarty & O’Brien, 2013; Drago et al., 2022). Therefore, we
suggest using this model at coarse resolutions, especially at large/global
scales. At small/regional scales, more submesoscale processes, such as
turbulent mixing or eddy and local environment variables, should be
considered when predicting mesozooplankton distributions, which
needs more studies to test in the field.

Second, our model did not incorporate the effect of ocean currents,
which is also one of the challenges for most statistical models (Elith &
Leathwick, 2009). It could be more achievable for regional models by
defining indexes describing the strength and direction of certain cur-
rents, whereas it is far more complex for global models. We mitigated
this problem by inputting geographic coordinates as predictors for
capturing current effects. Meanwhile, we can safely assume that the
local biotic effects (e.g., prey concentration reflected by Chl a concen-
tration) can override the current effects in some areas; however, our
model based onmachine learning would have less predictive accuracy in
the regions with strong currents.

Third, it is also challenging to incorporate the behaviours of meso-
zooplankton into statistical models. For instance, diel vertical migration
(DVM) of mesozooplankton generates differences in mesozooplankton
biomass between day and night, which might affect the predictions of
mesozooplankton biomass (Brierley, 2014). While DVM varies among
zooplankton (i.e., between and within species) and changes seasonally
(Bandara et al., 2021), it cannot be directly incorporated into the ma-
chine learning model. We used sampling time as a predictor to capture
the variations caused by DVM from day to night. More mesozooplankton

in shallow waters during nighttime was revealed by the partial depen-
dence of mesozooplankton biomass on sampling time and depth
(Fig. 6m). Also, we compared the differences in mesozooplankton
biomass between day and night by setting the sampling time as noon and
midnight, respectively when estimating the monthly climatology of
mesozooplankton biomass (Fig. S11). It is intriguing to observe that the
DVM of mesozooplankton from the mesopelagic zone to shallow waters
(< 200 m) was more intensive in summer at high latitudes in both the
northern and southern hemispheres (Fig. S11). In addition, the inter-
action of sampling depth and date may partially account for the seasonal
vertical migration of some mesozooplankton (Fig. 6l).

4.2. Advantages of machine learning approaches

Despite the limitations, there are attractive advantages of the ma-
chine learning technique. It has a relatively high tolerance for data with
high heterogeneity. The current dataset is compiled based on various
data sources without uniform sampling and measuring methods (e.g.,
various sampling depths), which makes it unlikely to make direct
comparisons and create a global map. The machine learning algorithms
allow inputting all potential factors to account for their effects and
contributions (Elith et al., 2008). For instance, the sampling depth and
time were input in the current study, and the variations of meso-
zooplankton biomass that arose from them were considered when
training the model (Fig. 6). Therefore, the machine learning technique
provides a valuable and timely avenue for integrating snapshots from
various data sources into complete and more robust pictures, which
facilitates the validation of ecosystem models.

Another advantage is that machine learning approaches require less
environmental information and computing resources to predict the
biological response variables. The mainstream process-based models
coupling biology with hydrodynamic models require multiple environ-
mental information, including physical forcing (e.g., ocean currents or
eddy diffusivity) and biological parameters (e.g., mesozooplankton
growth rates and predation rates) (Yool et al., 2013). Most process-based
models, especially at global scales, cannot be run without supercom-
puters, and their output is still unsatisfactory in terms of matching the
observations well (Kwiatkowski et al., 2020). By comparison, machine
learning approaches can achieve high prediction precision with less
environmental information, which is also easier to obtain. The envi-
ronmental variables input to the machine learning model can be ob-
tained from online datasets and match the response variable based on
time and space information, as in our studies (Table 1). Directly
assimilating the vast amount of observational data into process-based
3D models is challenging, if not impossible. Although potential bias
exists in such a method, as mentioned above, we can use more data to
train the statistical models via machine learning techniques, which may
increase the prediction accuracy of models.

4.3. Spatial and seasonal distribution of global mesozooplankton biomass

Our model predicted relatively high mesozooplankton biomass at
middle to high latitudes of both hemispheres, i.e., north of 40◦N and
south of 55◦S (Fig. 4), which was consistent with previous synthesis
studies (Ikeda, 1985; Moriarty & O’Brien, 2013; Drago et al., 2022) and
regional studies. For instance, the result of high mesozooplankton
biomass in the Southern Ocean aligned with the regional studies
(Pinkerton et al., 2020). Overall, the mean mesozooplankton biomass in
the tropical band (15◦N-15◦S) was lower (1.85 ± 1.27 mgC m− 3) than
the high latitudinal band (40-90◦N, 3.05 ± 1.22 mgC m− 3), which was
also the spatial patterns demonstrated by previous studies (Ikeda, 1985;
Moriarty & O’Brien, 2013; Drago et al., 2022). In addition, our model
predicted several hotspots for mesozooplankton biomass in the tropical
band (15◦N-15◦S), such as the upwelling regions of the West coast of the
Americas and Africa (Figs. 4, 5), where upwelling stimulates high pro-
ductivity supporting such high mesozooplankton biomass.
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Mesozooplankton in these regions serve as important material and en-
ergy sources for many economically important fish species, such as
Peruvian anchovies and sardines, playing a crucial role in the fishery
(van der Lingen et al., 2009). Our model also reproduced the high
mesozooplankton biomass in the Arabian Sea (Figs. 4, 5). The Arabian
Sea is one of the most productive areas of the world ocean, with high and
relatively constant mesozooplankton biomass throughout the year,
which is driven by the dramatic monsoonal reversals of surface currents
and upwellings (Bakun et al., 1998; Smith & Madhupratap, 2005;
Ezhilarasan et al., 2020). Such biomass hotspots are easily overlooked
by synthesis studies as they focus on the general pattern of global oceans
and may also be because of the lack of data in these areas (Ikeda, 1985;
Moriarty & O’Brien, 2013). Therefore, with machine learning tech-
niques, we can get a more comprehensive picture of mesozooplankton
biomass distribution, including general trends and regional details
(Fig. 4), which advanced our understanding of mesozooplankton.

The seasonal patterns of global mesozooplankton biomass were
conspicuous. Our model captured the seasonal variations and depicted
the summer increase in mesozooplankton biomass at the middle to high
latitudes of both hemispheres (Fig. 5), in accordance with previous
regional studies (Atkinson, 1998; Gislason & Astthorsson, 1998; Kam-
burska & Fonda-Umani, 2009; Pinkerton et al., 2020). For instance, the
mesozooplankton was most abundant from December to February and
significantly declined in March in the Southern Ocean (Fig. 5). It is
worth noting that the seasonal variations do not include the situations
occurring in ice-covered waters because no mesozooplankton and
environmental data are available under such conditions. The seasonal
patterns of mesozooplankton biomass at high latitudes could arise from
the various life cycles of mesozooplankton, especially copepods, which
allows them to survive in unfavourable conditions (i.e., low food
availability) and flourish when primary productivity dramatically in-
creases during summer (Atkinson, 1998; Pinkerton et al., 2020). The
progression of reproductive cohorts of copepods with 1- or 2-year cycles
or seasonal vertical migrations could also contribute to the summer in-
crease of mesozooplankton biomass, shaping the seasonal patterns
(Atkinson, 1998; Pinkerton et al., 2020).

Another remarkable seasonal pattern revealed by the monthly
climatology of mesozooplankton biomass was in the Arabian Sea, where
mesozooplankton was relatively abundant throughout the year with
higher biomass in winter and summer (Fig. 5). Intensive studies have
been conducted in the Arabian Sea to unveil the paradox of high mes-
ozooplankton biomass (Baars, 1999; Smith & Madhupratap, 2005;
Jyothibabu et al., 2010). It was believed that the upwelling due to the
Southwest Monsoon in summer and the convective mixing caused by the
Northeast Monsoon in winter (November-March) drive the Arabian Sea
to remain productive over 8–9 months, providing suitable food condi-
tions to support high mesozooplankton biomass. The remaining months,
influenced by spring and fall intermonsoon, show relatively low meso-
zooplankton biomass (Smith & Madhupratap, 2005). Our results have
portrayed the distinctive monthly variations of mesozooplankton
biomass in this region, highlighting its seasonal characteristics, which
were also not highlighted by previous synthesis and modelling studies
(Ikeda, 1985; Moriarty & O’Brien, 2013; Drago et al., 2022).

To summarise, our model can capture the spatial and seasonal pat-
terns of global mesozooplankton biomass, revealing the distribution
characteristics of particular regions (Figs. 4, 5). Our results can serve as
an excellent baseline for both empirical ecologists and modellers, and
the current algorithm can improve the ability to predict meso-
zooplankton biomass in the global ocean.

4.4. Ecological insights: Environmental effects on global mesozooplankton
biomass

The spatiotemporal variations of global mesozooplankton biomass
were regulated by several environmental variables such as Chl a, tem-
perature, and salinity (Figs. 2, 6). Among these environmental variables,

Chl a plays a dominant role in affecting the distribution of meso-
zooplankton biomass, revealed by its top rank on the importance list of
predictors with the highest IncNodePurity (Fig. 6a, Fig. S6). Chl a usu-
ally serves as a proxy for phytoplankton biomass (Brewin et al., 2015),
which, to some extent, indicates the food availability for meso-
zooplankton. As such, the effect of Chl a on mesozooplankton biomass
was expected to be positive (Richardson & Schoeman, 2004), as
confirmed by our results at a global scale (Fig. 6b).

However, mesozooplankton biomass does not increase further with
Chl a at its high concentrations (Fig. 6b). Such situations usually occur in
high-productivity coastal areas, where abundant phytoplankton serving
as food sources are adequate for mesozooplankton growth, but meso-
zooplankton suffer more from the top-down control of their predators (e.
g., small pelagic planktivorous fish), which suppresses their biomass
(Irigoien et al., 2004; Yuan& Pollard, 2018). For instance, the predatory
top-down effects have recently been proven to be one of the main
driving factors in regulating zooplankton biomass variations in Japan’s
Coastal Seas (Kodama et al., 2022). In addition, negative relationships
between mesozooplankton biomass and Chl a could be observed in some
regions and predicted by some ESMs, such as the UKESM1-0-LL model
(Petrik et al., 2022). One possible explanation is that the decrease in
SSChl in these regions may not necessarily indicate the decrease in
phytoplankton biomass; it could arise from a shift of the phytoplankton
community towards smaller ones (Finkel et al., 2010). Small phyto-
plankton are more favourable to microzooplankton (i.e., zooplankton
smaller than 200 μm), leading to more active microbial loops. Micro-
zooplankton and dissolved organic carbon resulting from active micro-
bial loops can also serve as an important food source for
mesozooplankton, eventually increasing their biomass (Smith & Mad-
hupratap, 2005). Nevertheless, more possible mechanisms for explain-
ing the deviations from a positive relationship between
mesozooplankton biomass and Chl a require more studies in certain
regions.

At a global scale, the relationship betweenmesozooplankton biomass
and Chl awas positive and can be described by a linear regression model
on a log–log scale with a scaling exponent of 0.61 (Fig. 2a). Our model
reproduced this relationship with a log–log slope of 0.55 for the
regression between annual mean mesozooplankton biomass and Chl a
(Fig. S10). Using Chl a as a proxy for prey concentration, the biomass-
Chl a scaling relationship could indicate the relationship of predator
and prey biomass that has been found to follow a general scaling law
with an exponent near 0.75 (Hatton et al., 2015; Liu et al., 2021). If we
exclude the high Chl a data (i.e., platform in Fig. 6b), which decoupled
with mesozooplankton as discussed above, the log–log slope for the
regression between mesozooplankton biomass and Chl a was 0.71,
closer to the predator–prey ¾ power law. This result suggests that when
Chl a are more related to prey concentration for mesozooplankton, their
log–log slope may be closer to 0.75 to reveal the biomass relationship
between predictor and prey. As such, the monthly variations of the
log–log slope ranging from 0.47 to 0.64 may imply that the bottom-up
effects of Chl a on mesozooplankton biomass would vary over months
(Fig. S12).

Therefore, the strong biomass-Chl a scaling relationship can serve as
an emergent constraint for validating and adjusting global climate
models (Luo et al., 2022; Petrik et al., 2022). Petrik et al. (2022)
examined several ESMs and found that only three ESMs can reproduce
the relationship between mesozooplankton biomass and Chl a with
scaling exponent fell within the observational bound. Nonetheless, as
more models add mesozooplankton as an explicit group and the increase
in mesozooplankton observations, this emergent constraint will be
increasingly needed for model development and validation efforts.

In addition to Chl a, temperature also influences the distribution of
mesozooplankton biomass. In contrast to the direct and unambiguous
effects on mesozooplankton metabolisms (Rose & Caron, 2007),
phenology (Richardson, 2008), and body size (Campbell et al., 2021),
the effects of temperature on mesozooplankton biomass and abundance
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are indirect and complex (Richardson, 2008). Assuming that their
temperature-dependent growth determines mesozooplankton biomass,
the biomass is expected to decrease with increasing temperature under
constant prey concentration, according to the theoretical derivation
from the Metabolic Theory of Ecology (Brown et al., 2004; Liu et al.,
2021). For instance, it has been reported that microzooplankton biomass
generally decreases with increasing temperature (Chen et al., 2012).
However, temperature affects not only mesozooplankton growth but
also life cycles and migration (Simoncelli et al., 2019), resulting in a
more intricate biomass-temperature relationship. Moreover, such
biomass-temperature relationships are usually region-specific. For
instance, the zooplankton biomass decreased with increasing tempera-
ture in the California Current (Roemmich & McGowan, 1995), whereas
the inverse pattern was observed in the subtropical coastal waters (Du
et al., 2020). In our study, the partial plot of temperature presented a U-
shape relationship at a global scale: mesozooplankton biomass decreases
with increasing temperature generally but starts to increase from 20◦C,
illustrating region-specific biomass-temperature relationship (Fig. 6e).
This U-shape pattern was consistent with the latitudinal pattern with
high biomass at high latitudes and tropical regions (15◦N-15◦S, Fig. 4).

Based on the changes of decisive environmental predictors, our
model predicted that there would be about 3 % decline in global total
mesozooplankton biomass by the end of this century under the “business
as usual” scenarios, though the changes in mesozooplankton biomass
varied among regions (Fig. 7). Remarkable declines in mesozooplankton
biomass were observed in productive regions where are usually impor-
tant fishing grounds, such as the West coast of South America in South
East Pacific (Fig. 7c). Such declines in mesozooplankton biomass would
negatively impact global fisheries productions. In addition, the declines
in mesozooplankton biomass may also exert deleterious effects on the
biological carbon pump by reducing sinking faeces or dead bodies,
which could further provide positive feedback to climate change
(Pörtner et al., 2019).

5. Conclusions

We compared four machine-learning algorithms to model the global
distribution of mesozooplankton biomass and found that RF performed
the best with the highest predictive accuracy, supporting the application
of RF in mesozooplankton biomass modelling. Our study created a more
complete global map of mesozooplankton biomass and reproduced their
seasonal and spatial patterns (Moriarty & O’Brien, 2013; Drago et al.,
2022). These spatiotemporal patterns will help validate and optimize
process-based marine ecosystem models. The RF model outputs suggest
that the environmental factors, including SSChl, SST, and SSS, strongly
influence the distribution of mesozooplankton biomass. Particularly, Chl
a plays a dominant role and positively correlates with mesozooplankton
biomass. Such a robust mesozooplankton biomass − Chl a scaling rela-
tionship could be a promising emergent constraint for model develop-
ment and validation. In addition, our data-driven model forecasts about
3 % decrease in global total mesozooplankton biomass with regional
variations by the end of this century under the “business-as-usual” sce-
nario. Such a decline might result in a series of consequences, such as
reductions in fishery production and weakening of the ocean’s capacity
to sequester carbon.

Our study serves as one of the robust examples of the application of
machine learning in oceanographic studies, and our modelling pipeline
can serve as a reference for modelling other types of quantitative data.
Nevertheless, future work can be further conducted to improve the
predictive accuracy of the models. This includes collecting more data,
especially from areas less explored, incorporating more relevant pa-
rameters (e.g., parameters indicating ocean currents, etc.), and
improving the machine learning algorithms, for instance, developing
deep learning algorithms (Christin et al., 2019). Incorporating ecolog-
ical principles into machine learning algorithms is also suggested to
make the model more explanatory (Hanson et al., 2020).

CRediT authorship contribution statement

Kailin Liu: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Methodology, Investi-
gation, Funding acquisition, Formal analysis, Data curation, Conceptu-
alization. Zhimeng Xu: Writing – review & editing, Validation, Formal
analysis. Xin Liu:Writing – review & editing, Resources, Data curation.
Bangqin Huang:Writing – review & editing, Funding acquisition, Data
curation. Hongbin Liu: Writing – review & editing, Software, Re-
sources, Data curation, Conceptualization. Bingzhang Chen: Writing –
review & editing, Writing – original draft, Supervision, Software, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We sincerely thank the two anonymous reviewers for their
constructive comments, which helped substantially improve our
manuscript. This study was supported by the National Natural Science
Foundation of China through grants (42130401, and 42141002,
42306103), a Leverhulme Trust Research, UK Project Grant (RPG-2020-
389), the Headmaster’s Faculty Fund/The Fundamental Research Funds
for the Central Universities (20720230060, 20720240036).

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.pocean.2024.103371.

Data availability

The Data and code used for the models and analyses are in the
GitHub repository https://github.com/CatherineKL/mesozoo-
modelling.

References

Atkinson, A., 1998. Life cycle strategies of epipelagic copepods in the Southern Ocean.
J. Mar. Syst. 15, 289–311. https://doi.org/10.1016/S0924-7963(97)00081-X.

Baars, M.A., 1999. On the paradox of high mesozooplankton biomass, throughout the
year in the western Arabian Sea: Re-analysis of IIOE data and comparison with
newer data. Indian J. Marine Sci. 28, 125–137. https://api.semanticscholar.or
g/CorpusID:86084859.

Bakun, A., Roy, C., Lluch-Cota, S., 1998. Coastal upwelling and other processes
regulating ecosystem productivity and fish production in the western Indian Ocean.
In: Sherman, K., Okemwa, E., Ntiba, M. (Eds.), Large Marine Ecosystems of the
Indian Ocean: Assessment, Sustainability and Management. Blackwell Science,
Malden, MA, pp. 103–141.

Bandara, K., Varpe, O., Wijewardene, L., Tverberg, V., Eiane, K., 2021. Two hundred
years of zooplankton vertical migration research. Biol. Rev. 96, 1547–1589. https://
doi.org/10.1111/brv.12715.

Bell, D.M., Schlaepfer, D.R., 2016. On the dangers of model complexity without
ecological justification in species distribution modeling. Ecol. Model. 330, 50–59.
https://doi.org/10.1016/j.ecolmodel.2016.03.012.

Bergen, K.J., Johnson, P.A., de Hoop, M.V., Beroza, G.C., 2019. Machine learning for
data-driven discovery in solid Earth geoscience. Science 363:1299-+. https://doi.
org/10.1126/science.aau0323.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/a:
1010933404324.

Brewin, R.J., Sathyendranath, S., Jackson, T., Barlow, R., Brotas, V., Airs, R., Lamont, T.,
2015. Influence of light in the mixed-layer on the parameters of a three-component
model of phytoplankton size class. Remote Sens. Environ. 168, 437–450. https://doi.
org/10.1016/j.rse.2015.07.004.

Brierley, A.S., 2014. Diel vertical migration. Curr. Biol. 24, R1074–R1076. https://doi.
org/10.1016/j.cub.2014.08.054.

K. Liu et al. Progress in Oceanography 229 (2024) 103371 

15 

https://doi.org/10.1016/j.pocean.2024.103371
https://doi.org/10.1016/j.pocean.2024.103371
https://doi.org/10.1016/S0924-7963(97)00081-X
https://api.semanticscholar.org/CorpusID%3a86084859
https://api.semanticscholar.org/CorpusID%3a86084859
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0020
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0020
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0020
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0020
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0020
https://doi.org/10.1111/brv.12715
https://doi.org/10.1111/brv.12715
https://doi.org/10.1016/j.ecolmodel.2016.03.012
https://doi.org/10.1126/science.aau0323
https://doi.org/10.1126/science.aau0323
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1016/j.rse.2015.07.004
https://doi.org/10.1016/j.rse.2015.07.004
https://doi.org/10.1016/j.cub.2014.08.054
https://doi.org/10.1016/j.cub.2014.08.054


Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a
metabolic theory of ecology. Ecology 85, 1771–1789. https://doi.org/10.1890/03-
9000.

Brun, P., Kiørboe, T., Licandro, P., Payne, M.R., 2016. The predictive skill of species
distribution models for plankton in a changing climate. Glob. Chang. Biol. 22 (9),
3170–3181. https://doi.org/10.1111/gcb.13274.

Campbell, M.D., Schoeman, D.S., Venables, W., Abu-Alhaija, R., Batten, S.D., Chiba, S.,
Coman, F., Davies, C.H., Edwards, M., Eriksen, R.S., Everett, J.D., Fukai, Y.,
Fukuchi, M., Esquivel Garrote, O., Hosie, G., Huggett, J.A., Johns, D.G., Kitchener, J.
A., Koubbi, P., McEnnulty, F.R., Muxagata, E., Ostle, C., Robinson, K.V.,
Slotwinski, A., Swadling, K.M., Takahashi, K.T., Tonks, M., Uribe-Palomino, J.,
Verheye, H.M., Wilson, W.H., Worship, M.M., Yamaguchi, A., Zhang, W.,
Richardson, A.J., 2021. Testing Bergmann’s rule in marine copepods. Ecography 44,
1283–1295. https://doi.org/10.1111/ecog.05545.

Chen, S.L., Hu, C.M., Barnes, B.B., Wanninkhof, R., Cai, W.J., Barbero, L., Pierrot, D.,
2019. A machine learning approach to estimate surface ocean pCO(2) from satellite
measurements. Remote Sens. Environ. 228, 203–226. https://doi.org/10.1016/j.
rse.2019.04.019.

Chen, B., Landry, M.R., Huang, B., Liu, H., 2012. Does warming enhance the effect of
microzooplankton grazing on marine phytoplankton in the ocean? Limnol.
Oceanogr. 57, 519–526. https://doi.org/10.4319/lo.2012.57.2.0519.

Chen, B., Liu, H., Xiao, W., Wang, L., Huang, B., 2020. A machine-learning approach to
modeling picophytoplankton abundances in the South China Sea. Prog. Oceanogr.
189, 102456. https://doi.org/10.1016/j.pocean.2020.102456.

Christin, S., Hervet, ’E., Lecomte, N., 2019. Applications for deep learning in ecology.
Meth. Ecol. Evol. 10 (10), 1632–1644.

De’ath, G., 2007. Boosted trees for ecological modeling and prediction. Ecology 88,
243–251. https://doi.org/10.1890/0012-9658(2007)88[243:Btfema]2.0.Co;2.

Décima, M., Landry, M.R., Stukel, M.R., Lopez-Lopez, L., Krause, J.W., 2016.
Mesozooplankton biomass and grazing in the Costa Rica Dome: amplifying
variability through the plankton food web. J. Plankton Res. 38, 317–330. https://
doi.org/10.1093/plankt/fbv091.

Drago, L., Panaiotis, T., Irisson, J.O., Babin, M., Biard, T., Carlotti, F., Coppola, L.,
Guidi, L., Hauss, H., Karp-Boss, L., Lombard, F., McDonnell, A.M.P., Picheral, M.,
Rogge, A., Waite, A.M., Stemmann, L., Kiko, R., 2022. Global distribution of
zooplankton biomass estimated by in situ imaging and machine learning. Front. Mar.
Sci. 9. https://doi.org/10.3389/fmars.2022.894372.

Du, P., Jiang, Z.B., Zhu, Y.L., Tang, Y.B., Liao, Y.B., Chen, Q.Z., Zeng, J.N., Shou, L.,
2020. What factors control the variations in abundance, biomass, and size of
Mesozooplankton in a subtropical eutrophic bay? Estuar. Coasts 43, 2128–2140.
https://doi.org/10.1007/s12237-020-00747-8.

Dvoretsky, V.G., Dvoretsky, A.G., 2022. Coastal mesozooplankton assemblages during
spring bloom in the eastern Barents Sea. Biology 11, 204. https://doi.org/10.3390/
biology11020204.

Elith, J., Kearney, M., Phillips, S., 2010. The art of modelling range-shifting species.
Methods in Ecology and Evolution 1 (4), 330–342. https://doi.org/10.1111/j.2041-
210X.2010.00036.x.

Elith, J., Leathwick, J.R., 2009. Species distribution models: ecological explanation and
prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697. https://
doi.org/10.1146/annurev.ecolsys.110308.120159.

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees.
J. Anim. Ecol. 77, 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x.

Ezhilarasan, P., Kanuri, V.V., Kumar, P.S., Kumaraswami, M., Rao, G.D., Patra, S.,
Dash, S.K., Rao, V.R., Ramu, K., Murthy, M.V.R., 2020. Influence of environmental
variables on the distribution and community structure of mesozooplankton in the
coastal waters of the eastern Arabian Sea. Reg. Stud. Mar. Sci. 39. https://doi.org/
10.1016/j.rsma.2020.101480.

Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V., Raven, J.A., 2010.
Phytoplankton in a changing world: cell size and elemental stoichiometry.
J. Plankton Res. 32, 119–137. https://doi.org/10.1093/plankt/fbp098.

Flombaum, P., Gallegos, J.L., Gordillo, R.A., Rincon, J., Zabala, L.L., Jiao, N.A.Z., Karl, D.
M., Li, W.K.W., Lomas, M.W., Veneziano, D., Vera, C.S., Vrugt, J.A., Martiny, A.C.,
2013. Present and future global distributions of the marine Cyanobacteria
Prochlorococcus and Synechococcus. PNAS 110, 9824–9829. https://doi.org/
10.1073/pnas.1307701110.

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine.
Ann. Stat. 29, 1189–1232. https://doi.org/10.1214/aos/1013203451.

Friedman, J.H., 2002. Stochastic gradient boosting. Comput. Stat. Data Anal. 38,
367–378. https://doi.org/10.1016/s0167-9473(01)00065-2.

Friedman, J.H., Popescu, B.E., 2008. Predictive learning via rule ensembles. Ann. Appl.
Stat. 2 (3), 916–954. https://doi.org/10.1214/07-AOAS148.

Gade, K., 2010. A non-singular horizontal position representation. J. Navig. 63, 395–417.
https://doi.org/10.1017/s0373463309990415.

Garcia, H. E., Boyer, T.P., Baranova, O. K., Locarnini, R. A., Mishonov, A.V., Grodsky, A.,
et al., 2019. World Ocean Atlas 2018: Product Documentation. A. Mishonov,
Technical Editor.

Gislason, A., Astthorsson, O.S., 1998. Seasonal variations in biomass, abundance and
composition of zooplankton in the subarctic waters north of Iceland. Polar Biol. 20,
85–94. https://doi.org/10.1007/s003000050280.

Gregor, L., Kok, S., Monteiro, P.M.S., 2017. Empirical methods for the estimation of
Southern Ocean CO2: support vector and random forest regression. Biogeosciences
14, 5551–5569. https://doi.org/10.5194/bg-14-5551-2017.

Guenther, F., Fritsch, S., 2010. neuralnet: training of neural networks. R Journal 2,
30–38.

Hannides, C., Siokou, I., Zervoudakid, S., Frangoulis, C., Lange, M., 2015.
Mesozooplankton biomass and abundance in Cyprus coastal waters and comparison

with the Aegean Sea (Eastern Mediterranean). Mediterr. Mar. Sci. 16, 373–384.
https://doi.org/10.12681/mms.1171.

Hanson, P.C., Stillman, A.B., Jia, X., Karpatne, A., Dugan, H.A., Carey, C.C., Stachelek, J.,
Ward, N.K., Zhang, Y., Read, J.S., Kumar, V., 2020. Predicting lake surface water
phosphorus dynamics using process-guided machine learning. Ecol. Mod. 430,
109136.

Harris, R. P., Wiebe, P. H., Lenz, J., Skjldal, H. R., and Huntley, M.: ICES Zooplankton
Methodology Manual, Academic Press, 684 pp., 2000.

Hastie, T., Tibshirani, R., Friedman, J., 2009. Unsupervised learning. In: The Elements of
Statistical Learning. Springer, New York, pp. 485–585.

Hatton, I.A., McCann, K.S., Fryxell, J.M., Davies, T.J., Smerlak, M., Sinclair, A.R.E.,
Loreau, M., 2015. The predator-prey power law: Biomass scaling across terrestrial
and aquatic biomes. Science 349, 1070-+. https://doi.org/10.1126/science.
aac6284.

Hatton, I.A., Heneghan, R.F., Bar-On, Y.M., Galbraith, E.D., 2021. The global ocean size
spectrum from bacteria to whales. Sci. Adv. 7. https://doi.org/10.1126/sciadv.
abh3732.

Huang, Y., Nicholson, D., Huang, B.Q., Cassar, N., 2021. Global estimates of marine gross
primary production based on machine learning upscaling of field observations.
Global Biogeochem. Cycles 35. https://doi.org/10.1029/2020gb006718.

Huang, Y., Tagliabue, A., Cassar, N., 2022. Data-driven modeling of dissolved iron in the
global ocean. Front. Mar. Sci. 9, 837183. https://doi.org/10.3389/
fmars.2022.837183.

Ikeda, T., 1985. Metabolic rates of epipelagic marine zooplankton as a function of body-
mass and temperature. Mar. Biol. 85, 1–11. https://doi.org/10.1007/bf00396409.

Irigoien, X., Huisman, J., Harris, R.P., 2004. Global biodiversity patterns of marine
phytoplankton and zooplankton. Nature 429, 863–867. https://doi.org/10.1038/
nature02593.

Irwin, A.J., Finkel, Z.V., 2008. Mining a sea of data: deducing the environmental controls
of ocean chlorophyll. PLoS One 3 (11), e3836.

Jyothibabu, R., Madhu, N.V., Habeebrehman, H., Jayalakshmy, K.V., Nair, K.K.C.,
Achuthankutty, C.T., 2010. Re-evaluation of ’paradox of mesozooplankton’ in the
eastern Arabian Sea based on ship and satellite observations. J. Mar. Syst. 81,
235–251. https://doi.org/10.1016/j.jmarsys.2009.12.019.

Kamburska, L., Fonda-Umani, S., 2009. From seasonal to decadal inter-annual variability
of mesozooplankton biomass in the Northern Adriatic Sea (Gulf of Trieste). J. Mar.
Syst. 78, 490–504. https://doi.org/10.1016/j.jmarsys.2008.12.007.

Kodama, T., Igeta, Y., Iguchi, N., 2022. Long-term variation in Mesozooplankton biomass
caused by top-down effects: a case study in the Coastal Sea of Japan. Geophys. Res.
Lett. 49. https://doi.org/10.1029/2022GL099037 e2022GL099037.

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J.R.,
Dunne, J.P., Gehlen, M., Ilyina, T., John, J.G., 2020. Twenty-first century ocean
warming, acidification, deoxygenation, and upper-ocean nutrient and primary
production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470.
https://doi.org/10.5194/bg-17-3439-2020.

Landry, M.R., Hood, R.R., Davies, C.H., 2020. Mesozooplankton biomass and
temperature-enhanced grazing along a 110◦ E transect in the eastern Indian Ocean.
Mar. Ecol. Prog. Ser. 649, 1–19. https://doi.org/10.3354/meps13444.

Landry, M.R., Swalethorp, R., 2021. Mesozooplankton biomass, grazing and trophic
structure in the bluefin tuna spawning area of the oceanic Gulf of Mexico.
J. Plankton Res. https://doi.org/10.1093/plankt/fbab008.

Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T., Taylor, P., 2006. Variation in demersal
fish species richness in the oceans surrounding New Zealand: an analysis using
boosted regression trees. Mar. Ecol. Prog. Ser. 321, 267–281. https://doi.org/
10.3354/meps321267.

Lehodey, P., Alheit, J., Barange, M., Baumgartner, T., Beaugrand, G., Drinkwater, K.,
Fromentin, J.M., Hare, S.R., Ottersen, G., Perry, R.I., Roy, C., Van Der Lingen, C.D.,
Werner, F., 2006. Climate variability, fish, and fisheries. J. Clim. 19, 5009–5030.
https://doi.org/10.1175/jcli3898.1.

Liaw, A., Wiener, M., 2002. Classification and regression by random forest. R. News. 2,
18–22.

Liu, K., Chen, B., Zheng, L., Su, S., Huang, B., Chen, M., Liu, H., 2021. What controls
microzooplankton biomass and herbivory rate across marginal seas of China?
Limnol. Oceanogr. 66, 61–75. https://doi.org/10.1002/lno.11588.

Llope, M., Chan, K.S., Ciannelli, L., Reid, P.C., Stige, L.C., Stenseth, N.C., 2009. Effects of
environmental conditions on the seasonal distribution of phytoplankton biomass in
the North Sea. Limnol. Oceanogr. 54, 512–524. https://doi.org/10.4319/
lo.2009.54.2.0512.

Lovato, T., Peano, D., Butenschon, M., Materia, S., Iovino, D., Scoccimarro, E., Fogli, P.
G., Cherchi, A., Bellucci, A., Gualdi, S., Masina, S., Navarra, A., 2022. CMIP6
simulations with the CMCC earth system model (CMCC-ESM2). J. Adv. Model. Earth
Syst. 14. https://doi.org/10.1029/2021ms002814.

Lucas, T.C.D., 2020. A translucent box: interpretable machine learning in ecology. Ecol.
Monogr. 90, e01422.

Luo, Y.J., Stock, A.C., Henschke, N., Dunne, P.J., O’Brien, D.T., 2022. Global ecological
and biogeochemical impacts of pelagic tunicates. Prog. Oceanogr. 205. https://doi.
org/10.1016/j.pocean.2022.102822.

Mazzocchi, M.G., Siokou, I., Tirelli, V., Bandelj, V., de Puelles, M.L.F., Orek, Y.A., de
Olazabal, A., Gubanova, A., Kress, N., Protopapa, M., Solidoro, C., Taglialatela, S.,
Kurt, T.T., 2014. Regional and seasonal characteristics of epipelagic
mesozooplankton in the Mediterranean Sea based on an artificial neural network
analysis. J. Mar. Syst. 135, 64–80. https://doi.org/10.1016/j.jmarsys.2013.04.009.

McEnnulty, F.R., Davies, C.H., Armstrong, A.O., Atkins, N., Coman, F., Clementson, L.,
Edgar, S., Eriksen, R.S., Everett, J.D., Anthony Koslow, J., 2020. A database of
zooplankton biomass in Australian marine waters. Sci. Data 7, 1–9. https://doi.org/
10.1038/s41597-020-00625-9.

K. Liu et al. Progress in Oceanography 229 (2024) 103371 

16 

https://doi.org/10.1890/03-9000
https://doi.org/10.1890/03-9000
https://doi.org/10.1111/gcb.13274
https://doi.org/10.1111/ecog.05545
https://doi.org/10.1016/j.rse.2019.04.019
https://doi.org/10.1016/j.rse.2019.04.019
https://doi.org/10.4319/lo.2012.57.2.0519
https://doi.org/10.1016/j.pocean.2020.102456
https://doi.org/10.1890/0012-9658(2007)88[243:Btfema]2.0.Co;2
https://doi.org/10.1093/plankt/fbv091
https://doi.org/10.1093/plankt/fbv091
https://doi.org/10.3389/fmars.2022.894372
https://doi.org/10.1007/s12237-020-00747-8
https://doi.org/10.3390/biology11020204
https://doi.org/10.3390/biology11020204
https://doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1016/j.rsma.2020.101480
https://doi.org/10.1016/j.rsma.2020.101480
https://doi.org/10.1093/plankt/fbp098
https://doi.org/10.1073/pnas.1307701110
https://doi.org/10.1073/pnas.1307701110
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/s0167-9473(01)00065-2
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1017/s0373463309990415
https://doi.org/10.1007/s003000050280
https://doi.org/10.5194/bg-14-5551-2017
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0170
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0170
https://doi.org/10.12681/mms.1171
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0180
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0180
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0180
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0180
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0190
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0190
https://doi.org/10.1126/science.aac6284
https://doi.org/10.1126/science.aac6284
https://doi.org/10.1126/sciadv.abh3732
https://doi.org/10.1126/sciadv.abh3732
https://doi.org/10.1029/2020gb006718
https://doi.org/10.3389/fmars.2022.837183
https://doi.org/10.3389/fmars.2022.837183
https://doi.org/10.1007/bf00396409
https://doi.org/10.1038/nature02593
https://doi.org/10.1038/nature02593
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0230
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0230
https://doi.org/10.1016/j.jmarsys.2009.12.019
https://doi.org/10.1016/j.jmarsys.2008.12.007
https://doi.org/10.1029/2022GL099037
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.3354/meps13444
https://doi.org/10.1093/plankt/fbab008
https://doi.org/10.3354/meps321267
https://doi.org/10.3354/meps321267
https://doi.org/10.1175/jcli3898.1
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0280
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0280
https://doi.org/10.1002/lno.11588
https://doi.org/10.4319/lo.2009.54.2.0512
https://doi.org/10.4319/lo.2009.54.2.0512
https://doi.org/10.1029/2021ms002814
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0300
http://refhub.elsevier.com/S0079-6611(24)00177-0/h0300
https://doi.org/10.1016/j.pocean.2022.102822
https://doi.org/10.1016/j.pocean.2022.102822
https://doi.org/10.1016/j.jmarsys.2013.04.009
https://doi.org/10.1038/s41597-020-00625-9
https://doi.org/10.1038/s41597-020-00625-9


Moriarty, R., O’Brien, T., 2013. Distribution of mesozooplankton biomass in the global
ocean. Earth Syst. Sci. Data 5, 45–55. https://doi.org/10.5194/essd-5-45-2013.

NOAA National Centers for Environmental Information. 2022: ETOPO 2022 15 Arc-
Second Global Relief Model. NOAA National Centers for Environmental Information.
https://doi.org/10.25921/fd45-gt74. Accessed [date].

Noble, W.S., 2006. What is a support vector machine? Nat. Biotechnol. 24, 1565–1567.
https://doi.org/10.1038/nbt1206-1565.

Nowicki, M., DeVries, T., Siegel, D.A., 2022. Quantifying the carbon export and
sequestration pathways of the ocean’s biological carbon pump. Global Biogeochem.
Cycles 36. https://doi.org/10.1029/2021gb007083.

O’Brien, T. D.: COPEPOD: The Global Plankton Database. An overview of the 2010
database contents, processing methods, and access interface, US Dep. Commerce,
NOAA Tech. Memo NMFS-F/ST-36, 28 pp., 2010.

Peters, J., De Baets, B., Verhoest, N.E.C., Samson, R., Degroeve, S., De Becker, P.,
Huybrechts, W., 2007. Random forests as a tool for ecohydrological distribution
modelling. Ecol. Model. 207, 304–318. https://doi.org/10.1016/j.
ecolmodel.2007.05.011.

Petrik, C.M., Luo, J.Y., Heneghan, R.F., Everett, J.D., Harrison, C.S., Richardson, A.J.,
2022. Assessment and constraint of Mesozooplankton in CMIP6 earth system models.
Global Biogeochem. Cycles 36. https://doi.org/10.1029/2022gb007367.

Pinkerton, M.H., Smith, A.N.H., Raymond, B., Hosie, G.W., Sharp, B., Leathwick, J.R.,
Bradford-Grieve, J.M., 2010. Spatial and seasonal distribution of adult Oithona
similis in the Southern Ocean: Predictions using boosted regression trees. Deep-Sea
Res. Part I-Oceanographic Res. Papers 57, 469–485. https://doi.org/10.1016/j.
dsr.2009.12.010.

Pinkerton, M.H., Decima, M., Kitchener, J.A., Takahashi, K.T., Robinson, K.V.,
Stewart, R., Hosie, G.W., 2020. Zooplankton in the Southern Ocean from the
continuous plankton recorder: distributions and long-term change. Deep-Sea Res.
Part I-Oceanographic Res. Papers 162. https://doi.org/10.1016/j.dsr.2020.103303.
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