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A B S T R A C T

This study proposes a compact deep learning (DL) architecture and a highly parallelized computing hardware 
platform to reconstruct the blood flow index (BFi) in diffuse correlation spectroscopy (DCS). We leveraged a 
rigorous analytical model to generate autocorrelation functions (ACFs) to train the DL network. We assessed the 
accuracy of the proposed DL using simulated and milk phantom data. Compared to convolutional neural net
works (CNN), our lightweight DL architecture achieves 66.7% and 18.5% improvement in MSE for BFi and the 
coherence factor β, using synthetic data evaluation. The accuracy of rBFi over different algorithms was also 
investigated. We further simplified the DL computing primitives using subtraction for feature extraction, 
considering further hardware implementation. We extensively explored computing parallelism and fixed-point 
quantization within the DL architecture. With the DL model’s compact size, we employed unrolling and pipe
lining optimizations for computation-intensive for-loops in the DL model while storing all learned parameters in 
on-chip BRAMs. We also achieved pixel-wise parallelism, enabling simultaneous, real-time processing of 10 and 
15 autocorrelation functions on Zynq-7000 and Zynq-UltraScale+ field programmable gate array (FPGA), 
respectively. Unlike existing FPGA accelerators that produce BFi and the β from autocorrelation functions on 
standalone hardware, our approach is an encapsulated, end-to-end on-chip conversion process from intensity 
photon data to the temporal intensity ACF and subsequently reconstructing BFi and β. This hardware platform 
achieves an on-chip solution to replace post-processing and miniaturize modern DCS systems that use single- 
photon cameras. We also comprehensively compared the computational efficiency of our FPGA accelerator to 
CPU and GPU solutions.

1. Introduction

Blood flow is a critical bio-indicator to investigate the consumption 
and supplement of oxygen and glucose in the brain and muscles. Existing 
blood flow sensing techniques have been summarized in previous 
studies [1,2], among which diffuse correlation spectroscopy (DCS) is 
making a remarkable stride in monitoring cerebral [3,4] and muscular 
[5,6] blood flow variations in non-invasive, continuous manners. In 
essence, DCS measures how fast coherent light loses coherence because 
of the movement of red blood cells. DCS uses a near-infrared laser and a 
photon-sensitive detector (such as single-photon avalanche detectors 
(SPAD) [4,7–10], avalanche photodiodes [1,11], or photomultiplier 
tubes (PMT) [12]) placed near the laser with a source-detector distance 
(SDD). After the laser illuminates the tissue, the detector collects scat
tered photons. The detected intensity fluctuations are then fed into 

correlator hardware to compute the intensity auto-correlation function 
(ACF), i.e., g2(τ). g2(τ) is related to the electric field autocorrelation 
function, g1(τ), defined by the Siegert relation [13]. The optical pa
rameters (μa and μś), blood flow index (BFi) and the coherence factor β 
can be retrieved by fitting measured g2(τ) via analytical models. Fitting 
algorithms [14,9] are suitable for single-point detectors in terms of ac
curacy and speed. However, advanced CMOS SPAD arrays are emerging 
DCS detectors, as parallelized acquisition generates a higher 
signal-to-noise ratio (SNR) compared with single-point detectors. 
Massively parallelized acquisition increases data throughput and re
quires efficient algorithms and hardware architectures to interpret DCS 
data. Despite the efficacy of conventional fitting [14–17] and deep 
neural networks (DNNs) [18–21] for either single-point detectors or 
SPAD arrays, their speeds are not applicable for array detectors due to 
the high throughput. Furthermore, a highly integrated hardware 
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computing architecture is necessary for the miniaturization of DCS 
systems. We target the challenges mentioned and propose strategies in 
four aspects. 

1) We propose an adder-based convolutional neural network (ACNN) 
tailored for hardware implementation, focusing on reconstructing 
BFi and β from intensity ACFs. The ACNN architecture utilizes 
multiplication-free convolutions to alleviate computational 
complexity, enabling higher parallelism and lower hardware utili
zation. Notably, addition operations save half of the latency 
compared with multiplication operations according to micro- 
instructions of various CPU operations [22].

2) To assess ACNN’s performance in characterizing BFi and rBFi, we 
quantitatively compare speed and accuracy with a conventional CNN 
that performs the same network topology. This evaluation is based 
on a semi-infinite analytical model and in-silico Monte Carlo (MC) 
simulations of the single-layer model of milk with known diffuse 
parameters. Our results demonstrate that ACNN achieves accurate 
reconstructed BFi in the inference phase. We used diluted milk as the 
liquid phantom to evaluate ACNN, CNN, and nonlinear square fitting 
(NLSF).

3) We present a heterogeneous computing platform implemented on 
Zynq-7000 and UltraScale+ MPSoC field programmable gate arrays 
(FPGA). The ACNN accelerator is implemented on FPGAs. The ACNN 
accelerator fully explores the parallelism of the ACNN model, 
achieving different levels of parallelism ranging from nested for- 
loops unrolling to pixel-wise parallelism. Alongside FPGA fabric, 
single instruction multiple data (SIMD) on the embedded CPU are 
enabled to accelerate ACF generation.

4) To further miniaturize the accelerator, we employ various quanti
zation strategies with different bit widths. Herein, we report the 
corresponding hardware utilization and speeds on cost-effective and 
high-performance FPGAs. This analysis examines the trade-off be
tween reconstruction accuracy and hardware efficiency, facilitating 
choosing application-specific configurations aiding in selecting 
appropriate configurations for specific application needs.

The following sections are organized: Section 2 provides a compre
hensive review of relevant literature, highlighting advancements in 
reconstruction algorithms and on-chip processing methods. Prospective 
enhancements in these areas are also presented. Section 3 illustrates the 
DCS theory for generating ACNN’s training datasets. A canonical MC 
simulation was used as the reference to validate the consistency with the 
analytical model. Section 4 presents a detailed description of our ACNN 
and quantitatively compares it with conventional CNN. Section 5 delves 
into the details of the hardware implementation on the FPGA. Section 6
summarizes this study and indicates future work.

2. Prior work

This section reviews existing algorithms for reconstructing BFi and β 
from ACFs. Besides, state-of-the-art on-chip processing strategies are 
also examined. We illustrate potential improvements in the two aspects 
of our work targets.

2.1. Algorithms review

Existing BFi reconstruction algorithms can be categorized into two 
streams: optimization fitting algorithms and deep-learning approaches. 
Fitting measured ACF with analytical models to extract BFi and β is an 
ill-posed regression problem. The MATLAB NLSF (Mathwork, Inc., USA) 
functions, for example, lsqnonlin(⋅) using the interior-reflective Newton 
method [16], fminsearch(⋅) the Nelder-Mead simplex algorithm [20], 
and optimset(⋅) the Levenberg Marquardt method [23], have been 
adopted to reconstruct BFi and to assess errors resulting from un
certainties in optical properties and tissue thicknesses. Given that the 

fitting methods are constrained optimization problems, they involve 
numerous iterations and therefore time-consuming. A fast Nth-order 
model [24] was proposed using an Nth-order Taylor Polynomial to 
speed up the reconstruction of BFi compared to conventional fitting 
methods. This rigorous Nth-order approximation method is bespoke for 
continuous-wave (CW) illumination, making it arduous for other 
analytical models and experimental platforms, such as 
frequency-domain and time-domain techniques.

The time consumption and non-transferrable restrictions from prior 
knowledge can be remarkably mitigated using data driven DNNs. DNNs 
have catalysed improvements in enhancing reconstruction and accu
racy. For example, intensity ACFs were first converted into 2-D images 
and fed into a 2-D CNN for BFi and β reconstruction [19], achieving a 
23-fold speedup compared to a nonlinear fitting method. Another study 
proposed a long short-term memory (LSTM) for BFi reconstruction and 
relative blood flow analysis due to its superior capability for extracting 
features from sequences of data [20]. Similarly, gated recurrent units 
were embedded with a 1-D CNN to enhance information extraction, 
thereby retrieving relative BFi [21]. An LSTM variant [18] was proposed 
to denoise ACFs and extract BFi. Despite existing DNNs’ high accuracy 
for DCS, redundant trainable parameters and complex topologies 
impede on-chip, real-time processing. The motivation to design a 
compact DNN is that most modern DCS systems [4,25] use SPAD arrays 
for data acquisition, where FPGAs are essential for controlling clocks 
and decoding data. We are inspired to embed the analysis on-chip to 
achieve end-to-end processing, taking the frame-based intensity as input 
and generating BFi and β.

2.2. Hardware processor review

Researchers have successfully implemented on-FPGA autocorrelators 
and on-FPGA BFi reconstruction. Buchholz et al. implemented a multi- 
channel autocorrelator for a 32 × 32 SPAD array, but the normaliza
tion of pixel-wise ACFs was not implemented [26]. To alleviate the 
computational burden, Rocca et al. [7] proposed an on-chip, scalable 
column-wise autocorrelator that can simultaneously compute up to 128 
columns for a SPAD array with 192 × 64 enabled pixels. Another study 
[8] employed two FPGAs to accumulating detected photons and 
compute ACF for a 500 × 500 SPAD array, implementing element-wise 
matrix multiplications. But computationally expensive divisions and 
square operations for FPGAs are implemented on PCs.

Besides embedded autocorrelators, an iterative nonlinear curve- 
fitting algorithm was implemented on-FPGA using LabVIEW [17]. 
Although it achieves real-time BFi reconstruction, the high-level Lab
VIEW implementation exhibits a coarse control over allocating logic and 
data paths, leading to a redundant hardware overhead. Also, iterative 
operations significantly hinder on-FPGA data pipeline, thereby deteri
orating the throughput. Overall, existing FPGA platforms merely inte
grate ACF generation and BFi reconstruction in a monolithic fashion. In 
this study, we take full advantage of reconfigurable heterogonous 
System-on-Chip (SoC) platforms embedding CPUs and programmable 
logic (PL), to encapsulate all computing pipelines on-chip, including 
ACF generation and DL-accelerators for BFi and β reconstruction. The 
proposed approach demonstrates superior efficiency compared to a 
common CPU and GPU. Extended from our previous work [27,28] for an 
FPGA-embedded DL processor for fluorescence lifetime imaging, we 
proposed a more concise, multiplication-free, CNN for estimating BFi 
and β.

In summary, from an algorithmic perspective, unlike existing DNNs 
for DCS, we proposed an end-to-end data-driven method that includes a 
synthetic data generation pipeline and a compact DL architecture design 
that eliminates the need for any multiplication. We also incorporated 
transfer learning functionality, allowing the model to be easily adapted 
to other experimental platforms with different optical and tissue prop
erties by requiring only a few additional training epochs instead of 
complete re-training. On the hardware side, as existing implementations 
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focus either on g2(τ) generated from photon intensity data or on BFi 
reconstruction using iteration-based optimization algorithms, we pro
pose an FPGA that integrates both a g2(τ) generator and DNN-based BFi 
reconstruction.

3. Mathematical model of diffusion theory

This section introduces a generic DCS analytical model, adopted for 
synthetic dataset generation hereafter. Besides, we adopted MC simu
lations to simulate a semi-infinite phantom to validate the consistency 
between analytical models and MC simulations.

3.1. Analytical model

For typical DCS systems, intensity ACFs can be obtained using the 
photon intensity function of time 

g2(r, τ) = 〈I(r, t)⋅I(r, t + τ)〉
〈I(r, t)〉2 . (1) 

The electric field ACF G1(r,τ) = 〈E(r, t) ⋅ E*(r, t + τ)〉 satisfied the 
correlation diffusion equation (CDE) in a scattering tissue [29] 
(
D∇2 − vμa − 1

/
3vμʹ

sk
2α
〈
Δr2(τ)

〉)
G1(r, τ) = − vS(r). (2) 

In Eq. (2), D = v/3
(
μa + μʹ

s
)

denotes the photon diffusion coefficient, 
μa and μʹ

s the absorption and reduced scattering coefficients, v the light 
speed in the medium, k is the wavenumber in the medium, and α is the 
ratio between dynamic scatters and all scatters. As the Brownian motion 
model has been widely adopted for specific biological tissues in DCS 
research [14,29,30], this work focuses only on Brownian motions as 
most previously reported studies advised [11,31]. With the Brownian 
motion model,〈Δr2(τ)〉= 6DBτ describes the mean-square displacement, 
and S(r) is the CW isotropic light source.

The tissue can be modelled as a semi-infinite medium bounded by the 
tissue surface for biomedical tissues with a high-scattering property. 
And the solution [11,14] G1(r,τ) in Eq. (1) can be represented as 

G1(τ) =
3μʹ

s
4π

(
exp( − Rr1)

r1
−

exp( − Rr2)

r2

)

, (3) 

where R2 = 3μśμa + αμʹ2
s k2

0〈Δr2(τ)〉 and r1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ2 + z2
0

√

and r2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ2 + (z0 + 2zb)
2

√

are shown in Fig. 1. Besides, k0 = (2π/λ), where λ is 
the wavelength in the medium. Rn = ni/no, where ni and no are the 
refractive indices inside and outside of the tissue. z0 = 1/μś means the 
distance between the virtual isotropic point source and the tissue sur
face. zb = 2

(
1+Reff

)
/3μś

(
1 − Reff

)
means the distance between the 

extrapolated boundary and the tissue surface, where the effective 
reflection coefficient Reff = − 1.440Rn

− 2 + 0.710Rn
− 1 + 0.668 +

0.0636Rn indicates the internal reflection coefficient between two 
media. As we mentioned, 〈Δr2(τ)〉 can be approximated to 6DBτ for 
diffusive motion [32]. Therefore, R2 can be derived as 3μśμa +

αμʹ2
s k2

06DBτ. The details about spatial diffuse reflectometry have been 
explained in [33].

Recalling the Siegert relation [34] g2(τ) = 1 + β|g1(τ)|2, g1(τ) =
G1(τ)/G1(0). Here β is the coherence factor, mainly determined by the 
system setup. It has been proven that αDB can represent BFi [3,35,36]. 
Also, for liquid phantoms, α ~ 1 [35].

Alongside generating g2(τ) with the analytical model, the noise 
model of g2(τ) is also crucial for simulating noise in real media. Existing 
studies [11,14,37,38] state that the noise σ(τ) (standard deviation) of 
measured (g2(τ) − 1) can be approximated as 

σ(τ) =

̅̅̅
T
t

√ [

β2(1 + e− 2ΓT)(1 + e− 2Γτ) + 2m(1 − e− 2ΓT)e− 2Γτ

(1 − e− 2ΓT)

+2〈n〉− 1β
(
1 + e− 2Γτ)+ 〈n〉− 2

(1 + βe− Γτ)
]1

2.

(4) 

in a homogenous medium with an infinite geometry. Here, T is the time 
intervals between two adjacent τ, m is the bin index, t is the total 
averaging time. 〈n〉 = I ⋅ T is the average number of photons, where I is 
the photon count rate. Γ is the decay rate of a single exponential function 
that approximates g1(τ) = exp( − τ/τc) [37]. Since τc is unknow, we can 
apply the fitting method fminsearch(⋅) in MATLAB to retrieve it after we 
obtain g2(τ) from the Siegert relation. We investigated the sensitivity in 
terms of the averaging time and photon intensity. We set the other op
tical parameters as constant, namely, we fixed μa and μś to 0.1 mm− 1 and 
2.0 mm− 1, SDD = 10 mm, BFi = 5×10− 7 mm2/s, β = 0.5, and λ to 785 
nm. As shown in Fig. 2 (a), the noise is related to t, and g2(τ) curves 
become noiser when t decreases. Similiarly, the amplitute of noise is 
negatively propotional to I.

3.2. Monte Carlo simulations

We chose the single-layer model of milk (μa= 0.0027 mm− 1, μś=1.6 
mm− 1 at λ=785 nm, Rn=1.33 [39]) in the Monte Carlo eXtreme (MCX) 
photon propagation simulations [15,40]. We assumed that 107 photons 
were emitted from a light source. The radius of the detector is 1 mm. ρ 
was configured to be 10 mm. The volume size of the phantom is 60 mm3. 
MCX employs fminsearch(⋅) as the non-linear fitting algorithm by 
default. The fitting method can obtain accurate results because the 
simulated curves are noise-free. The lag time is non-linearly sampled 
from [10− 7, 10− 1] s. Once we obtained parsed g1(τ) using MCX studio, 
we used Siegert relation to calculate the corresponding g2(τ), depicted 
by red lines in Fig. 3 (a) and Fig. 3 (b), respectively. Also, by using 
analytical model, we obtained the fitted g1(τ) and g2(τ) with recon
structed αDB (equivalent to BFi) and β, shown by black lines in Fig. 3 (a) 
and (b). The Euclidian distances shown in Fig. 3 (c) and (d) indicates 
small errors. Therefore, the reconstructed BFi and β can be the reference 
for evaluating our algorithms. Also, the analytical model achieves nearly 
consistent g1(τ) and g2(τ) curves compared to MC simulations in MCX, 
meaning that we can quickly generate training datasets for our DNN 
model by constructing and automating the analytical model in MATLAB.

4. Deep learning architecture

Inspired by the previous 1-D CNN FPGA implementation [27,28,41], 
we proposed a similar but more compact DL network that does not 
involve multiplications apart from batch normalizations (BNs). The 
model features two unified adder-based convolutional (UAC) layers for 
primary feature extraction. It includes two branched pathways, each 
with three UAC layers, for reconstructing BFi and β. After feature 
extraction in the temporal dimension in the main branch, the tensor with 
a reduced temporal dimension is reshaped into a channel-wise tensor for 
processing by the subsequent branches. In each training iteration, Fig. 1. The concept of spatial diffuse reflectometry in a semi-infinite geometry.
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estimated batches of BFi and β are sent to individual and same loss 
functions. The individual loss values are added to compute the gradient 
during the backpropagation. Fig. 4 illustrates the training and inference 
data pipelines and the dimensions of intermediate feature maps, 
whereas Table 1 details the layer configurations.

As the model is implemented in FPGA with constrained hardware 
resources and a high-speed demand, we used big receptive fields 
captured by each kernel and a small number of output channels to 
minimize the model size while maintaining accuracy. The configura
tions in Table 1 achieve a balanced trade-off. We do not use ResNet 

blocks [42] compared with the previous work [27] as its skip connec
tions introduce data dependency that impedes data pipelining and 
for-loop unrolling on FPGAs. We have proven that our network can 
converge without a ResNet blocks. The quantitative results, including 
training time, model size (# parameters), # FLOPs, and averaged ac
curacy over 1,000 individual test curves, are presented in Table 2. The 
ACNN with a ResNet block has 1.0173 times more #FLOPs and 1.0547 
times more parameters than the version without a ResNet block. 
Regarding accuracy, the ACNN with a ResNet block exhibits slightly 
higher accuracy in β but lower accuracy in BFi than the version without 

Fig. 2. g2(τ) curves with fixed optical parameters but with (a) different averaging time (t = 1 s, 5 s, and 10 s) and (b) with different photon intensities (I = 20 kcps, 40 
kcps, and 80 kcps).

Fig. 3. Comparison between MC simulation and analytic model for g1(τ) and g2(τ) of milk. (a) and (b) generated and fitted curves using MCX and analytical models. 
(c) and (d) Euclidian distance between simulated and fitted curves.
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a ResNet block. Although models with a ResNet block can converge 
faster during training, the eventual accuracy is similar. Besides, the 
version without a ResNet block is more efficient for hardware 
implementation.

As shown in Fig. 4. The g2(τ) curves synthesized from the analytical 
model were applied to training and validation as the model is based on 
rigorous deductions and assumptions. On the other hand, using the 
curves generated from MC simulations for the test datasets provides a 
realistic evaluation of the model’s performance in real-world scenarios.

We generated 40,000 g2(τ) curves for training, using the analytical 
model (Eq. (3)) and the noise generator (Eq. (4)). The dataset is 
configured with β ∈ (0, 1], BFi ∈ [10− 8, 10− 5] mm2 /s, ρ = 20 and 30 
mm, and λ = 785 nm to emulate realistic experiments. We up-scaled BFi 
in the datasets by 105 to [0, 1], making its scale that same with β to 
achieve accurate training by using the same branch in Fig. 4. The noise 
rate varies from 20 kcps to 80 kcps. Averaging time is assigned to 1 s, 5 s, 

and 10 s. 10% (4,000) curves of the training dataset were used for 
validation during training. The optimizer is RMSprop. The Huber loss 

Lδ(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2a2 if |a| ≤ δ

δ
(

|a| −
1
2δ

)

if |a| > δ
, (5) 

was adopted as the loss function, where a is the residual of predicted and 
GT values. The lag time is nonlinearly assigned between [10− 6, 10− 3] s, 
divided by 100 data points, aligning with our data acquisition system. 
The learning rate is 0.005 with, decreasing by 0.5 factor every 30 
epochs. It took 19 min for the NVIDIA RTX A1000 GPU to train the 
model. 35 patience epochs were used to avoid over-fitting. The total 
number of training epochs is 300. All g2(τ) datasets included the noise 
model and were normalized to emulate realistic g2(τ). Fig. 5 shows 
training and validation loss curves, where ACNN exhibits comparable 
convergence versus a CNN model with the same architecture but slightly 
different training strategy. ACNN and CNN use different feature 
extraction methods, thereby differentiating the backpropagation. The 
initial learning rate (0.005) of ACNN is not applicable as we noticed that 
the training terminates within only 30 epochs due to the high learning 
rate. Therefore, we use 0.001 as the initial learning rate for CNN. The 
number of parameters and floating-point operations per second (FLOPs) 
for each layer was summarized in Table 3. The compact model size and 
low FLOPs pave the way for high-parallel hardware implementation 
afterwards.

We also investigated the interpretability of our ACNN model using 
saliency maps [43], which are broadly adopted to visualize the gradient 
of the loss function for input pixels in image classification. We randomly 
selected four g2(τ) curves from our test datasets to visualize the gradients 
most influencing the model’s output. We normailzed the saliency maps 
in [0, 1] for better visualization. The red curves in Fig. 6 represent the 
gradients of the output for the input g2(τ), indicating how sensitive the 
output is to the input variation. Since changes in BFi result in horizontal 
shifts on g2(τ), the position of decay in each curve is a crucial region. 
Therefore, as indicated in Fig. 6, our ACNN model can identify the 
critical regions for extracting significant features from the g2(τ) curves.

Fig. 4. ACNN architecture in training and inference phases.

Table 1 
Configurations of each layer in the network.

Layers Specifications

UAC1 Output Channel 15, Filters (1, 17), Stride (1, 3)
UAC2 Output Channel 15, Filters (1, 13), Stride (1, 5)
UAC 3_1 Output Channel 30, Filters (1, 1), Stride (1, 1)
UAC 3_2 Output Channel 15, Filters (1, 1), Stride (1, 1)
UAC 3_3 Output Channel 1, Filters (1, 1), Stride (1, 1)

Table 2 
Quantitative comparisons of ACNN w/ and w/o a ResNet Block at main feature 
extraction branch.

Model Training 
time

#FLOPs #parameters Accuracy from Test 
(MSE)

β BFi (mm2 

/s)

ACNN w/ 
ResNet 
block

481.08 s 37.21 K 
ADDs

10.42 k 0.00015 0.024×10− 7

ACNN w/o 
ResNet 
block

370.93 s 36.58 K 
ADDs

9.88 k 0.00021 0.012×10− 7
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5. Accuracy evaluation

This section evaluates the accuracy and robustness of reconstructed 
BFi and rBFi from the ACNN model in different noise levels, comparing 
them with CNN and NLSF. Sections use both synthetic and real phantom 
datasets.

5.1. Evaluation on synthetic datasets

As our ACNN uses the l1 norm to measure cross-correlation between 
weights and feature maps, we should ensure that ACNN’s weights follow 
Laplace distributions according to [44]. As shown in Fig. 7(a) and (b), 
distribution weights from CNN and our ACNN exhibit Gaussian and 
Laplace distributions, in good agreement with the AdderNet theory [44]. 
To evaluate estimated BFi and β, in Fig. 8, we used R-squared and the 
mean square error (MSE) to evaluate the fitting goodness, in comparison 
with the ground truth (GT) BFi and β. Both ACNN and the conventional 

CNN offer nearly perfect R-squared results, However, for β, a few out
liners from CNN (at small β) are shown. As for BFi’s reconstruction, 
ACNN also attains better R-squared and MSE. We observed that 
increasing the BFi leads to higher reconstruction errors, as shown in 
Fig. 8. Large values in the saliency maps indicate which parts of the data 
significant impact the model’s predictions or errors. To investigate this, 
we used saliency maps to create Fig. 9. Fig. 9(a) shows the saliency maps 
with increasing BFi with β being constant to visualize the changes. Fig. 9
(b)–(f) present the saliency maps for different BFi values. Our findings 
reveal that as BFi increases, the saliency map values also increase, 
leading to a more significant impact on the model’s predictions. Intui
tively, g2(τ) with a bigger BFi shown in Fig. 9(f) exhibits fewer features 
(regarding the amplitude and shape) than other g2(τ) curves shown in 
Fig. 9(b–e). However, the saliency map in Fig. 9(f) is higher than others, 
meaning that the model focuses on the less informative region, ampli
fying noise, and distorting the accuracy. We noticed the hetero
scedasticity of BFi reconstruction also occurs in [19] (Fig. 4(c) in that 

Fig. 5. Training and validation loss curves of ACNN and CNN. (a) and (b), ACNN training and validation loss curves in 109 epochs. (c) and (d), CNN training and 
validation loss curves in 96 epochs.

Table 3 
Detailed computational information of each layer.

UAC1 BN1 UAC2 BN2 UAC3_1 BN3_1 UAC3_2 BN3_2 UAC3_3 BN3_3 Total

#parameters 270 30 2,940 30 2,730×2 60×2 465×2 30×2 16×2 2×2 9,880
#FLOPs 10,260 1,140 17,640 180 2,730×2 60×2 465×2 30×2 16×2 2×2 35,830

Note: Some parameters and FLOPs multiply two because of the branched structure.
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paper) when BFi increases. Therefore, we managed to use saliency maps 
to explain the phenomenon and demonstrate the interpretability of the 
model.

We also assessed the impact of the photon rate in the noise model on 
the reconstruction accuracy. We compared our ACNN with CNN at 
various photon intensity levels, ranging from 1,000 to 35,000 counts per 
second (cps). This range was divided into 34 groups, each containing 
100 noisy ACF curves. The GT β and BFi values are 0.5 and 0.5 ×10− 5 

mm2/s, respectively, and t (the averaging time) = 5 s. As shown in 
Fig. 10(a), the accuracy of β (ACNN and CNN) is compromised when the 
photon rate is low, leading to inaccuracy in the mean (M) and the 
standard deviation (Std). However, as the photon intensity increases, 
both architectures provide more accurate reconstructions. ACNN tends 
to offer better accuracy for most photon intensities, whereas CNN ex
hibits slightly better accuracy (M) and precision (Std) when photon 
counts are lower than 9,000. Regarding BFi, ACNN outperforms CNN in 
terms of accuracy and achieves similar precision. Both architectures 
produce accurate BFi at high photon rates, whereas CNN is more robust 

for low photon rates (before 5,000 cps).
Since rBFi is commonly used in physiological and clinical applica

tions, we leveraged simulated datasets to evaluate our model’s appli
cability in estimating rBFi instead of only absolute BFi using our model. 
Like absolute BFi evaluation, CNN and NLSF were adopted for com
parison with ACNN. rBFi was computed from baseline BFi0 and recon
structed BFi over time i.e. rBFi = BFi/BFi0. In line with our previously 
proven rBFi evaluation [45], we assigned BFi(w) = [1 + 0.05 × (w − 1)] 
× 10− 6 mm2/s, where w=1, 2, …, 20. BFi0 was assigned when w=1. ρ 
was fixed as 20 mm. We selected four noise levels from Fig. 10, i.e., 2, 
000, 6,000, 12,000, and 25,000 cps to investigate accuracy. The per
formance of the three algorithms is shown in Fig. 11. Black dots con
nected by red lines indicate the GT rBFi. The x-ticks represent increasing 
BFi over time. For lower photon intensities, shown in Fig. 11(a) and (b), 
ACNN and CNN are more robust than NLSF, as their reconstructed BFi 
distributions are closer to the GT values across different BFis. In contrast, 
for higher photon intensities, shown in Fig. 11(c) and (d), all three al
gorithms display similarly accurate distributions.

Fig. 6. Four randomly sampled g2(τ) and corresponding computed saliency maps from test datasets.

Fig. 7. Histograms depict the weights distribution of CNN and ACNN. (a) and (b) represent Gaussian and Laplace distributions of CNN’s and ACNN’s weights.
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5.2. Evaluation on real liquid phantom

As milk has similar scattering properties as living tissue [39], we 
used a milk solution with a water-to-milk dilution ratio of 2:1 as the 
phantom to investigate the performance of three algorithms. g2(τ) curves 
were computed from a hardware correlator from raw photon intensity 
data following Eq. (1). We used a 785 nm CW laser (CrystalLaser, 
DL785-120-S), directed into the milk phantom through a multi-mode 
fiber. The scattered light from the phantom was captured through a 

single-mode fiber with ρ = 20 mm. Intensity data was detected by an 
APD (Hamamatsu, C13366-1350GD) and processed by a commercial 
correlator board to generate g2(τ). The specification of the experiment 
platform is summarized in Table 4. Two groups of datasets (20 cur
ves/group) were measured with T = 1 s and 10 s, under the same 
environment and the dilution ratio. Given the GT αDB of the milk is 
unknown, the results fitted from the datasets (T = 10 s) were employed 
as a reference. We proved that the NLSF algorithm could achieve high 
accuracy for BFi and rBFi at a high SNR, as shown in Figs. 10 and 11. The 

Fig. 8. R-square and MSE between ACNN and CNN. (a) and (b) R-squared of BFi and β from ACNN. (c) and (d) R-square of BFi and β from CNN.
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pseudo reference of αDB = 5.19×10− 7 mm2/s and β = 0.419 are 
reconstructed from the ensemble g2(τ) using NLSF. The measured g2(τ) is 
shown in Fig. 12, the curves with T = 1 s exhibited a higher standard 
deviation. The datasets with T = 1 s were used for evaluating the al
gorithms. Referring to the study [46], we determined our μa and μś are 
0.0027 and 1 mm− 1, respectively, according to our dilution ratio.

We developed a transfer learning mechanism in the training scripts 
for both ACNN and CNN models, enabling them to be transferable and 

adjustable for different optical or tissue parameters. In our case, we re- 
generated 40,000 curves in the training datasets, using μa and μś are 
0.0027 and 1 mm− 1. ACNN and CNN models required 60 epochs (5 min) 
and 92 epochs (8 min), respectively, to complete the training based on a 
previously saved pre-trained model with the old experimental 
parameters.

Fig. 13 presents the error distributions of reconstructed β and αDB 
when ρ = 10, 20, and 30 mm. ACNN and CNN were re-trained using 

Fig. 9. (a) g2(τ) curves with five increasing BFi (2×10− 7, 8×10− 7, 2×10− 6, 3×10− 6, and 6×10− 6 mm2/s) and constant β =0.5. (b)-(f), indivudual g2(τ) in (a) with 
increasing BFi and corepcsonding seliance maps.

Z. Zang et al.                                                                                                                                                                                                                                    Computer Methods and Programs in Biomedicine 258 (2025) 108471 

9 



transfer learning using the corresponding datasets defined by ρ, 
consuming around 4 min. When ρ = 20 mm, NLSF presents the most 
significant % error (EαDB ) in αDB. Although ACNN achieves the smallest 
EαDB , it shows a slightly higher Eβ. Although CNN is more accurate than 

ACNN regarding β, there are more outliers than ACNN and NLSF in αDB 
estimation. Three algorithms show similar error distributions when ρ =
10 and 30 mm, where CNN presents a higher Eβ than ACNN and NLSF; 
ACNN and CNN show similar EαDB . As ρ increases, the standard deviation 

Fig. 10. Accuracy evaluation of ACNN and CNN under different levels of photon rate in the noise model. (a) and (b) reconstructed β and BFi.

Fig. 11. rBFi evaluation of ACNN, CNN, and NLSF in (a) 2,000, (b) 6,000, (c) 12,000, and (d) 25,000 cps.
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from each algorithm also increases. EαDB and Eβ are computed using (ŷ −
yave/yave)%, where ŷ and yave are the predicted values and pseudo 
reference of β and αDB, respectively.

6. Accelerator architecture

The ACNN accelerator was implemented on programmable logic (PL) 
on cost-optimized Zynq-7000 SoC and high-end Zynq-UltraScale+
MPSoC using Vivado high-level-synthesis (HLS) 2018.2. Alongside the 
accelerator, the computation of ACF was implemented on the ARM- 
based processing system (PS). The following reasons are for producing 
the ACF module on PS: firstly, implementing Eq. (1) on the FPGA re
quires taking thousands of frames and conducting element-wise vector 
multiplications and divisions; it is challenging due to limited DSP slides 
and on-chip memory. The onboard double-data-rate synchronous DRAM 
(DDR) with hundreds of megabytes can efficiently accommodate raw 
data and bridge the data transfer between the ACF module on PS and BFi 
reconstruction on PL. Secondly, in theory, the multiplication operations 
in the numerator are followed by an averaging operation that can be 
implemented as adder-trees and end up with a subsequent divider. 
Although the overhead of parallelizing the adder-tree for averaging is 
negligible, vector multiplications and divisions are computationally 
expensive in FPGAs. To address this concern, we leverage Neon and 

Table 4 
Specification of the experiment for phantom measurement.

Parameters Property

Detector fibre Single mode
Detector Hamamatsu, C1366-1350GD
Laser module CrystalLaser, DL785-120-S, 785 nm long coherence (>5m)
ρ 10mm, 20 mm, 30mm
dilution ratio Water: milk = 2:1 

(milk: 1.7% Fat, 3.5% Protein)
μa 0.0027 mm− 1

μ́s 1 mm− 1

Correlation scheme Multi-tau

Fig. 12. g2(τ) curves of phantom experiement. (a) and (b) 20 curves measured with T = 1 s and 10 s. (c) and (d) Averaged ensambld g2(τ) (blue) and std (red).
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VFPU [47] technologies in ARM CPUs to accelerate vector multiplica
tions in the numerator, as the arithmetic logical unit (ALU) in ARM 
Cortex-A9 and -A53 CPU cores on our FPGA boards contain vectorized 
dividers and multipliers optimized with single instruction multiple data 
(SIMD), which offloads ACF processing from PL. We yielded 11-fold 
acceleration compared to the speed without enabling VFPU. There
fore, allocating workloads to PS and PL achieves a trade-off between 
performance and hardware utilization. Meanwhile, we can reserve more 
hardware resources for regular vector-addition and accumulation (VAA) 
and vector-multiplication (VM) operations for DL accelerators.

The processing pipeline in PS is summarized in Fig. 14(a). To vali
date the functionality, we initially preloaded intensity data in the DDR. 
Multiple bit-width fixed-point (FXP) quantization methods were adop
ted to alleviate the hardware overhead and timing latency, and the 
floating-point (FLP) to FXP conversion was implemented as shift oper
ations and divisions on PS. Once enough ACFs are computed and a pre- 
defined number corresponding to the number of cores specified in 

Table 5 is reached, the quantized and normalized ACF are dispatched to 
the PL accelerators through an AXI-full interface. Similarly, the FXP to 
FLP conversion was implemented similarly for printing readable BFi and 
β. malloc(⋅) was used to store quantized and dispatch ACF vectors to 
AXI’s Master port. MACROS parameterizes the pointer addressing space 
and the length of ACFs. A general-purpose timer driver was employed to 
measure the time-consumption when DL accelerators reconstruct BFi 
and β.

As shown in Fig. 14(b), our ACNN accelerator is a scalable, multi- 
core architecture, where each DL-core can process one ACF and recon
struct BFi and β simultaneously. The details about each DL-core are 
depicted in Fig. 14(b); the input feature go through a series of UAC 
modules, where the for-loops of output channels and kernel windows are 
unrolled to improve the parallelism. The Reshape flattens the feature and 
allocates the data in channel dimensions for channel-wise convolution 
afterwards. Unrolling operations in UAC are decomposed in Fig. 14(c). 
The BRAMs (storing learned parameters) are partially partitioned 

Fig. 13. Error distribution of reconstructed β and αDB from three algorithms evaluated with milk. (a-c) ρ = 10, 20, 30 mm. Error cars show the mean of the error 
distrobution and mean values are at the centre of the crosses. The initial value of β and αDB before the fitting is 0.4 and 1×10− 6 mm2/s.

Fig. 14. Hardware architecture integrates intensity temporal ACF computation and ACNN accelerators (For example, 10 cores on Zynq 7000 and 15 cores on Zynq 
UltraScale+). (a). The architecture overview illustrates the data transfer and functionalities of each module. (b). Detailed architecture of each DL core, data path and 
memory access were depicted with back and yellow arrows, respectively. (c). Detailed structures of each UAC illustrate parallelism in the input channel, output 
channel, and kernel size.
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accordingly to satisfy the bandwidth requirement of UACs. As BNs are 
involved in each UAC, they are implemented as VMs after ACs. In theory, 
BN at the inference phase can be transformed into a matrix multiplica
tion with two constants, scale and shift [27,48,49]: 

xBN(i) = scale(i) × x(i) + shift(i), (6) 

where i means the ith output channel, 

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

scale(i) =
γ(i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ(i)2
+ ε

√

shift(i) = ω(i) −
γ(i)θ(i)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ(i)2
+ ε

√

, (7) 

γ and ω are trainable parameters that are parsed off-line, δ and θ are the 
statistical standard deviation and mean of x(i), ε is a constant to avoid 
dividing by zero (0.0001 by default). Once these parameters from the 
pre-trained model are extracted, they are preloaded on BRAMs, as the 
dashed box shows in Fig. 14(b).

Table 5 
Evaluation results of ACNN accelerators with different quantization bit-width on Zynq-7000 and Zynq-UltraScale+ FPGA.

# 
Core

Data type DFF LUT LUTRAM BRAM_18K DSP PPMS

Zynq-7000 5 Fixed<18, 
9>

18.99% (20,203 out 
of 106,400)

50.56% (26,898 out 
of 53,200)

7.20% (1,253 out of 
17,400)

36.07% (50.50 out 
of 140)

29.55% (65 out of 
220)

21.74

Fixed<24, 
12>

19.00% (20,212 out 
of 106,400)

49.89% (26,541 out 
of 53,200)

7.20% (1,253 out of 
17,400)

36.07% (50.50 out 
of 140)

29.55% (65 out of 
220)

17.86

10 Fixed<18, 
9>

34.75% (36,973 out 
of 106,400)

91.93% (48,588 out 
of 53,200)

12.55% (2,183 out 
of 17,400)

75.36% (105.5, out 
of 140)

59.09% (130 out 
of 220)

41.67

Fixed<24, 
12>

34.81% (37,043 out 
of 106,400)

90.07% (47,919 out 
of 53,200)

12.54% (2,182 out 
of 17,400)

75.36% (105.5, out 
of 140)

59.09% (130 out 
of 220)

35.01

Zynq UltraScaleþ
MPSoC

10 Fixed<18, 
9>

5.88% (27,083 out of 
460,800)

21.96% (50,603 out 
of 230,400)

1.35% (1,375 out of 
101,760)

35.58% (111 out of 
312)

7.52% (130 out of 
1,728)

38.46

Fixed<24, 
12>

5.68% (26,162, out of 
460,800)

22.25% (51,253 out 
of 230,400)

1.35% (1,375 out of 
101,760)

35.58% (111 out of 
312)

7.52% (130 out of 
1,728)

33.21

15 Fixed<18, 
9>

8.35% (38,473, out of 
460,800)

32.28% (74,375 out 
of 230,400)

1.82% (1,855 out of 
101,760)

53.21% (166 out of 
312)

11.28% (195 out 
of 1,728)

48.49

Fixed<24, 
12>

8.05% (37,101, out of 
460,800)

32.74% (75,438 out 
of 230,400)

1.82% (1,855 out of 
101,760)

53.21% (166 out of 
312)

11.28% (195 out 
of 1,728)

44.37

Fig. 15. DL cores implementation on Zynq-7000 and Zynq-UltraScale+ with different quantization FXP schemes, and their corresponding MAE of BFi and β.
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6.1. Accelerator evaluation

We implemented the ACNN accelerator on Zynq-7000 and Zynq- 
UltraScale+ to investigate its performance. To validate the scalability, 
we implemented five and ten DL cores on Zynq-7000, and ten and fifteen 
on Zynq UltraScale+. Each scheme contains two sets of FXP bit-width, 
24 bit-width containing 12 fractional bits, and 18 bit-width containing 
9 fractional bits. Hardware consumption and speed are demonstrated in 
Table 5. Considering our accelerator targets single-photon detector ar
rays, we use pixel per millisecond (PPMS) to assess the speed of simul
taneously processing ACFs. Timer functions on the PS measure the time- 
consumption of the ACNN accelerator. According to Table 5, PPMS in
creases while the number of DL cores increases. Besides, we evaluated 
the reconstruction accuracy of BFI and β of the eight schemes in terms of 
mean absolute error (MAE) that is directly output from the FPGA board. 
As shown in Fig. 15, there is no considerable fluctuation from different 
numbers of cores and FXP bit-widths. In theory, the accuracy of FPGA 
results should match that of the GPU, and the ratio between <18, 9> and 
<24, 12> should remain consistent. However, slight deviations may 
occur due to quantization errors, underflow or overflow errors, or timing 
violations. These errors are acceptable within the context of our work. 
We define the computational efficiency using the latency of batches over 
power consumption, as shown in Table 6. We measured the power 
consumption of accelerators on FPGAs using Xilinx Power Estimator 
[50]. We also used NVML [51] and PyJoules [52] APIs to measure the 
power consumption of GPU and CPU. FPGA-based SoC platforms obtain 
the highest computational efficiency across different batch sizes 
compared to the CPU and GPU.

7. Discussion

We present a holistic hardware platform integrating a g2(τ) generator 
with a multiplication-free, DNN-based hardware accelerator for BFi 

reconstruction. The current implementation assumes that photon in
tensity data is received from a single detector. However, averaging g2(τ) 
across multiple parallel detectors can provide a higher signal-to-noise 
ratio (SNR). Additionally, the intensity data was pre-loaded into on- 
chip memory for functional evaluation, assuming that the hardware 
interface has sufficient data transfer bandwidth to receive data from the 
detector. This hardware platform presents three key aspects for the 
future work: 

1. we will explore how to connect the g2(τ) generator module to the 
detector with an efficient interface design.

2. a module could be developed to compute average ensemble g2(τ) 
data from individual detectors, enhancing the SNR. Another hard
ware improvement is the power consumption; 90% of total power 
consumption is from PS (g2(τ) generator) as the CPU cores are more 
power-demanding than PL side logic fabric. Given a previous study 
implementing a g2(τ) generator in PL [7], an ideal solution is to 
integrate a g2(τ) generator and DNN accelerator on PL to save more 
energy if the hardware resource is sufficient.

3. the PYNQ-Z2 and ZCU104 MPSoC FPGAs have 2 and 4 CPU cores, 
respectively; however, we only enabled one core to implement the 
g2(τ) generator. In the future, it is worthwhile to explore enabling 
multiple cores to accelerate the computation of ensemble g2(τ) 
calculations.

Apart from potential hardware improvements, there are limitations 
in the simulated data generated by both in-silico and analytical models. 
According to Eq. (4), noise generation for g2(τ) requires averaging time T 
and photon intensity I. While the present total number of photons in a 
simulated voxel is available in MCX, configurable I in the temporal 
dimension of g2(τ) is not available in MCX, nor is T. Therefore, the 
analytical noise model in MCX is not applicable for producing clear g2(τ) 
data from MCX simulations. Additionally, regarding the analytical 
model used in this work, we adopted a semi-infinite homogeneous 
model instead of a multi-layer model, which limits the generalization of 
our network to complex tissues, such as a multi-layer brain model. 
Recent research [45] has introduced a three-layer analytical model, 
which could enhance data-driven methods for multi-layer structures. As 
a future direction, we plan to integrate the multi-layer analytical model 
into our network training pipeline to generalize our approach to more 
complex tissue structures.

8. Conclusion

This study reports a compact, hardware friendly DNN to reconstruct 
BFi and β in DCS. The correctness of our analytical model was verified by 
comparing in-silico MC simulations. According to Fig. 8, we ensure that 
our DNN architecture achieves higher accuracy than conventional CNNs 
yet has simpler operators. We used a real liquid phantom experiment to 
evaluate ACNN, CNN, and NLSF. The results reveal that ACNN estimates 
αDB and β values closest to the reference values. By leveraging the 
miniaturized architecture, we implemented our scalable DL clusters on 
an SoC-based FPGA to assess their accuracy, hardware utilization, and 
computational efficiency. Enhanced with different bit-widths of quan
tization schemes, we evaluated these quantized versions on cost- 
optimized and high-end FPGAs. To achieve end-to-end processing, we 
encapsulated g2(τ) generation and BFi reconstruction on a single SoC- 
based FPGA, providing different on-chip processing solutions for mod
ern DCS sensing systems. Given that current FPGA mounted on modern 
SPAD arrays are mainly middle-end devices that only contain PL, our 
heterogenous hardware architecture provides a foundation for future 
integration of high-end FPGA and SPAD arrays.
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Table 6 
Performance comparisons of CPU, GPU, and FPGA-based SoC when processing 
different numbers of pixels (ACFs) for each batch.

5 pixels/batch

i7- 
12800H 
CPU

RTX 
A1000 
GPU

Artix-7 and 1 
thread ARM- 
Cortex-A9, <18, 
9>

Artix-7 and 1 
thread ARM- 
Cortex-A9, <24, 
12>

Power (W) 3.586 4.438 1.962 1.981
Latency 
(ms/batch)

3.753 1.311 0.183 0.174

Efficiency 
(W/ms)

0.956 3.385 10.721 11.385

10 pixels/batch

i7- 
12800H 
CPU

RTX 
A1000 
GPU

Artix-7 and 1 
thread ARM- 
Cortex-A9, <18, 
9>

Artix-7 and 1 
thread ARM- 
Cortex-A9, <24, 
12>

Power (W) 3.534 4.346 2.549 2.579
Latency 
(ms/batch)

3.927 1.356 0.258 0.267

Efficiency 
(W/ms)

0.900 3.205 9.880 9.659

15 pixels/batch

i7- 
12800H 
CPU

RTX 
A1000 
GPU

UltraScale+ and 1 
thread ARM- 
Cortex-A53, <18, 
9>

UltraScale+ and 1 
thread ARM- 
Cortex-A53, <24, 
12>

Power (W) 3.549 4.236 4.826 4.846
Latency 
(ms/batch)

5.115 1.524 0.283 0.295

Efficiency 
(W/ms)

0.694 2.780 17.053 16.427
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