
Towards high-performance deep learning architecture and hardware
accelerator design for robust analysis in diffuse correlation spectroscopy

Zhenya Zang , Quan Wang , Mingliang Pan , Yuanzhe Zhang , Xi Chen , Xingda Li ,
David Day Uei Li *

Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom

A R T I C L E I N F O

Keywords:
Diffuse correlation spectroscope
Blood flow index
Deep neural networks
Deep-learning hardware accelerator

A B S T R A C T

This study proposes a compact deep learning (DL) architecture and a highly parallelized computing hardware
platform to reconstruct the blood flow index (BFi) in diffuse correlation spectroscopy (DCS). We leveraged a
rigorous analytical model to generate autocorrelation functions (ACFs) to train the DL network. We assessed the
accuracy of the proposed DL using simulated and milk phantom data. Compared to convolutional neural net
works (CNN), our lightweight DL architecture achieves 66.7% and 18.5% improvement in MSE for BFi and the
coherence factor β, using synthetic data evaluation. The accuracy of rBFi over different algorithms was also
investigated. We further simplified the DL computing primitives using subtraction for feature extraction,
considering further hardware implementation. We extensively explored computing parallelism and fixed-point
quantization within the DL architecture. With the DL model’s compact size, we employed unrolling and pipe
lining optimizations for computation-intensive for-loops in the DL model while storing all learned parameters in
on-chip BRAMs. We also achieved pixel-wise parallelism, enabling simultaneous, real-time processing of 10 and
15 autocorrelation functions on Zynq-7000 and Zynq-UltraScale+ field programmable gate array (FPGA),
respectively. Unlike existing FPGA accelerators that produce BFi and the β from autocorrelation functions on
standalone hardware, our approach is an encapsulated, end-to-end on-chip conversion process from intensity
photon data to the temporal intensity ACF and subsequently reconstructing BFi and β. This hardware platform
achieves an on-chip solution to replace post-processing and miniaturize modern DCS systems that use single-
photon cameras. We also comprehensively compared the computational efficiency of our FPGA accelerator to
CPU and GPU solutions.

1. Introduction

Blood flow is a critical bio-indicator to investigate the consumption
and supplement of oxygen and glucose in the brain and muscles. Existing
blood flow sensing techniques have been summarized in previous
studies [1,2], among which diffuse correlation spectroscopy (DCS) is
making a remarkable stride in monitoring cerebral [3,4] and muscular
[5,6] blood flow variations in non-invasive, continuous manners. In
essence, DCS measures how fast coherent light loses coherence because
of the movement of red blood cells. DCS uses a near-infrared laser and a
photon-sensitive detector (such as single-photon avalanche detectors
(SPAD) [4,7–10], avalanche photodiodes [1,11], or photomultiplier
tubes (PMT) [12]) placed near the laser with a source-detector distance
(SDD). After the laser illuminates the tissue, the detector collects scat
tered photons. The detected intensity fluctuations are then fed into

correlator hardware to compute the intensity auto-correlation function
(ACF), i.e., g2(τ). g2(τ) is related to the electric field autocorrelation
function, g1(τ), defined by the Siegert relation [13]. The optical pa
rameters (μa and μś), blood flow index (BFi) and the coherence factor β
can be retrieved by fitting measured g2(τ) via analytical models. Fitting
algorithms [14,9] are suitable for single-point detectors in terms of ac
curacy and speed. However, advanced CMOS SPAD arrays are emerging
DCS detectors, as parallelized acquisition generates a higher
signal-to-noise ratio (SNR) compared with single-point detectors.
Massively parallelized acquisition increases data throughput and re
quires efficient algorithms and hardware architectures to interpret DCS
data. Despite the efficacy of conventional fitting [14–17] and deep
neural networks (DNNs) [18–21] for either single-point detectors or
SPAD arrays, their speeds are not applicable for array detectors due to
the high throughput. Furthermore, a highly integrated hardware

* Corresponding author.
E-mail address: david.li@strath.ac.uk (D.D.U. Li).

Contents lists available at ScienceDirect

Computer Methods and Programs in Biomedicine
journal homepage: www.sciencedirect.com/journal/computer-methods-

and-programs-in-biomedicine

https://doi.org/10.1016/j.cmpb.2024.108471
Received 8 April 2024; Received in revised form 18 September 2024; Accepted 20 October 2024

Computer Methods and Programs in Biomedicine 258 (2025) 108471

Available online 28 October 2024
0169-2607/Crown Copyright © 2024 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:david.li@strath.ac.uk
www.sciencedirect.com/science/journal/01692607
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
https://doi.org/10.1016/j.cmpb.2024.108471
https://doi.org/10.1016/j.cmpb.2024.108471
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2024.108471&domain=pdf
http://creativecommons.org/licenses/by/4.0/

computing architecture is necessary for the miniaturization of DCS
systems. We target the challenges mentioned and propose strategies in
four aspects.

1) We propose an adder-based convolutional neural network (ACNN)
tailored for hardware implementation, focusing on reconstructing
BFi and β from intensity ACFs. The ACNN architecture utilizes
multiplication-free convolutions to alleviate computational
complexity, enabling higher parallelism and lower hardware utili
zation. Notably, addition operations save half of the latency
compared with multiplication operations according to micro-
instructions of various CPU operations [22].

2) To assess ACNN’s performance in characterizing BFi and rBFi, we
quantitatively compare speed and accuracy with a conventional CNN
that performs the same network topology. This evaluation is based
on a semi-infinite analytical model and in-silico Monte Carlo (MC)
simulations of the single-layer model of milk with known diffuse
parameters. Our results demonstrate that ACNN achieves accurate
reconstructed BFi in the inference phase. We used diluted milk as the
liquid phantom to evaluate ACNN, CNN, and nonlinear square fitting
(NLSF).

3) We present a heterogeneous computing platform implemented on
Zynq-7000 and UltraScale+ MPSoC field programmable gate arrays
(FPGA). The ACNN accelerator is implemented on FPGAs. The ACNN
accelerator fully explores the parallelism of the ACNN model,
achieving different levels of parallelism ranging from nested for-
loops unrolling to pixel-wise parallelism. Alongside FPGA fabric,
single instruction multiple data (SIMD) on the embedded CPU are
enabled to accelerate ACF generation.

4) To further miniaturize the accelerator, we employ various quanti
zation strategies with different bit widths. Herein, we report the
corresponding hardware utilization and speeds on cost-effective and
high-performance FPGAs. This analysis examines the trade-off be
tween reconstruction accuracy and hardware efficiency, facilitating
choosing application-specific configurations aiding in selecting
appropriate configurations for specific application needs.

The following sections are organized: Section 2 provides a compre
hensive review of relevant literature, highlighting advancements in
reconstruction algorithms and on-chip processing methods. Prospective
enhancements in these areas are also presented. Section 3 illustrates the
DCS theory for generating ACNN’s training datasets. A canonical MC
simulation was used as the reference to validate the consistency with the
analytical model. Section 4 presents a detailed description of our ACNN
and quantitatively compares it with conventional CNN. Section 5 delves
into the details of the hardware implementation on the FPGA. Section 6
summarizes this study and indicates future work.

2. Prior work

This section reviews existing algorithms for reconstructing BFi and β
from ACFs. Besides, state-of-the-art on-chip processing strategies are
also examined. We illustrate potential improvements in the two aspects
of our work targets.

2.1. Algorithms review

Existing BFi reconstruction algorithms can be categorized into two
streams: optimization fitting algorithms and deep-learning approaches.
Fitting measured ACF with analytical models to extract BFi and β is an
ill-posed regression problem. The MATLAB NLSF (Mathwork, Inc., USA)
functions, for example, lsqnonlin(⋅) using the interior-reflective Newton
method [16], fminsearch(⋅) the Nelder-Mead simplex algorithm [20],
and optimset(⋅) the Levenberg Marquardt method [23], have been
adopted to reconstruct BFi and to assess errors resulting from un
certainties in optical properties and tissue thicknesses. Given that the

fitting methods are constrained optimization problems, they involve
numerous iterations and therefore time-consuming. A fast Nth-order
model [24] was proposed using an Nth-order Taylor Polynomial to
speed up the reconstruction of BFi compared to conventional fitting
methods. This rigorous Nth-order approximation method is bespoke for
continuous-wave (CW) illumination, making it arduous for other
analytical models and experimental platforms, such as
frequency-domain and time-domain techniques.

The time consumption and non-transferrable restrictions from prior
knowledge can be remarkably mitigated using data driven DNNs. DNNs
have catalysed improvements in enhancing reconstruction and accu
racy. For example, intensity ACFs were first converted into 2-D images
and fed into a 2-D CNN for BFi and β reconstruction [19], achieving a
23-fold speedup compared to a nonlinear fitting method. Another study
proposed a long short-term memory (LSTM) for BFi reconstruction and
relative blood flow analysis due to its superior capability for extracting
features from sequences of data [20]. Similarly, gated recurrent units
were embedded with a 1-D CNN to enhance information extraction,
thereby retrieving relative BFi [21]. An LSTM variant [18] was proposed
to denoise ACFs and extract BFi. Despite existing DNNs’ high accuracy
for DCS, redundant trainable parameters and complex topologies
impede on-chip, real-time processing. The motivation to design a
compact DNN is that most modern DCS systems [4,25] use SPAD arrays
for data acquisition, where FPGAs are essential for controlling clocks
and decoding data. We are inspired to embed the analysis on-chip to
achieve end-to-end processing, taking the frame-based intensity as input
and generating BFi and β.

2.2. Hardware processor review

Researchers have successfully implemented on-FPGA autocorrelators
and on-FPGA BFi reconstruction. Buchholz et al. implemented a multi-
channel autocorrelator for a 32 × 32 SPAD array, but the normaliza
tion of pixel-wise ACFs was not implemented [26]. To alleviate the
computational burden, Rocca et al. [7] proposed an on-chip, scalable
column-wise autocorrelator that can simultaneously compute up to 128
columns for a SPAD array with 192 × 64 enabled pixels. Another study
[8] employed two FPGAs to accumulating detected photons and
compute ACF for a 500 × 500 SPAD array, implementing element-wise
matrix multiplications. But computationally expensive divisions and
square operations for FPGAs are implemented on PCs.

Besides embedded autocorrelators, an iterative nonlinear curve-
fitting algorithm was implemented on-FPGA using LabVIEW [17].
Although it achieves real-time BFi reconstruction, the high-level Lab
VIEW implementation exhibits a coarse control over allocating logic and
data paths, leading to a redundant hardware overhead. Also, iterative
operations significantly hinder on-FPGA data pipeline, thereby deteri
orating the throughput. Overall, existing FPGA platforms merely inte
grate ACF generation and BFi reconstruction in a monolithic fashion. In
this study, we take full advantage of reconfigurable heterogonous
System-on-Chip (SoC) platforms embedding CPUs and programmable
logic (PL), to encapsulate all computing pipelines on-chip, including
ACF generation and DL-accelerators for BFi and β reconstruction. The
proposed approach demonstrates superior efficiency compared to a
common CPU and GPU. Extended from our previous work [27,28] for an
FPGA-embedded DL processor for fluorescence lifetime imaging, we
proposed a more concise, multiplication-free, CNN for estimating BFi
and β.

In summary, from an algorithmic perspective, unlike existing DNNs
for DCS, we proposed an end-to-end data-driven method that includes a
synthetic data generation pipeline and a compact DL architecture design
that eliminates the need for any multiplication. We also incorporated
transfer learning functionality, allowing the model to be easily adapted
to other experimental platforms with different optical and tissue prop
erties by requiring only a few additional training epochs instead of
complete re-training. On the hardware side, as existing implementations

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

2

focus either on g2(τ) generated from photon intensity data or on BFi
reconstruction using iteration-based optimization algorithms, we pro
pose an FPGA that integrates both a g2(τ) generator and DNN-based BFi
reconstruction.

3. Mathematical model of diffusion theory

This section introduces a generic DCS analytical model, adopted for
synthetic dataset generation hereafter. Besides, we adopted MC simu
lations to simulate a semi-infinite phantom to validate the consistency
between analytical models and MC simulations.

3.1. Analytical model

For typical DCS systems, intensity ACFs can be obtained using the
photon intensity function of time

g2(r, τ) = 〈I(r, t)⋅I(r, t + τ)〉
〈I(r, t)〉2 . (1)

The electric field ACF G1(r,τ) = 〈E(r, t) ⋅ E*(r, t + τ)〉 satisfied the
correlation diffusion equation (CDE) in a scattering tissue [29]
(
D∇2 − vμa − 1

/
3vμʹ

sk
2α
〈
Δr2(τ)

〉)
G1(r, τ) = − vS(r). (2)

In Eq. (2), D = v/3
(
μa + μʹ

s
)

denotes the photon diffusion coefficient,
μa and μʹ

s the absorption and reduced scattering coefficients, v the light
speed in the medium, k is the wavenumber in the medium, and α is the
ratio between dynamic scatters and all scatters. As the Brownian motion
model has been widely adopted for specific biological tissues in DCS
research [14,29,30], this work focuses only on Brownian motions as
most previously reported studies advised [11,31]. With the Brownian
motion model,〈Δr2(τ)〉= 6DBτ describes the mean-square displacement,
and S(r) is the CW isotropic light source.

The tissue can be modelled as a semi-infinite medium bounded by the
tissue surface for biomedical tissues with a high-scattering property.
And the solution [11,14] G1(r,τ) in Eq. (1) can be represented as

G1(τ) =
3μʹ

s
4π

(
exp(− Rr1)

r1
−

exp(− Rr2)

r2

)

, (3)

where R2 = 3μśμa + αμʹ2
s k2

0〈Δr2(τ)〉 and r1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ2 + z2
0

√

and r2 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ2 + (z0 + 2zb)
2

√

are shown in Fig. 1. Besides, k0 = (2π/λ), where λ is
the wavelength in the medium. Rn = ni/no, where ni and no are the
refractive indices inside and outside of the tissue. z0 = 1/μś means the
distance between the virtual isotropic point source and the tissue sur
face. zb = 2

(
1+Reff

)
/3μś

(
1 − Reff

)
means the distance between the

extrapolated boundary and the tissue surface, where the effective
reflection coefficient Reff = − 1.440Rn

− 2 + 0.710Rn
− 1 + 0.668 +

0.0636Rn indicates the internal reflection coefficient between two
media. As we mentioned, 〈Δr2(τ)〉 can be approximated to 6DBτ for
diffusive motion [32]. Therefore, R2 can be derived as 3μśμa +

αμʹ2
s k2

06DBτ. The details about spatial diffuse reflectometry have been
explained in [33].

Recalling the Siegert relation [34] g2(τ) = 1 + β|g1(τ)|2, g1(τ) =
G1(τ)/G1(0). Here β is the coherence factor, mainly determined by the
system setup. It has been proven that αDB can represent BFi [3,35,36].
Also, for liquid phantoms, α ~ 1 [35].

Alongside generating g2(τ) with the analytical model, the noise
model of g2(τ) is also crucial for simulating noise in real media. Existing
studies [11,14,37,38] state that the noise σ(τ) (standard deviation) of
measured (g2(τ) − 1) can be approximated as

σ(τ) =

̅̅̅
T
t

√ [

β2(1 + e− 2ΓT)(1 + e− 2Γτ) + 2m(1 − e− 2ΓT)e− 2Γτ

(1 − e− 2ΓT)

+2〈n〉− 1β
(
1 + e− 2Γτ)+ 〈n〉− 2

(1 + βe− Γτ)
]1

2.

(4)

in a homogenous medium with an infinite geometry. Here, T is the time
intervals between two adjacent τ, m is the bin index, t is the total
averaging time. 〈n〉 = I ⋅ T is the average number of photons, where I is
the photon count rate. Γ is the decay rate of a single exponential function
that approximates g1(τ) = exp(− τ/τc) [37]. Since τc is unknow, we can
apply the fitting method fminsearch(⋅) in MATLAB to retrieve it after we
obtain g2(τ) from the Siegert relation. We investigated the sensitivity in
terms of the averaging time and photon intensity. We set the other op
tical parameters as constant, namely, we fixed μa and μś to 0.1 mm− 1 and
2.0 mm− 1, SDD = 10 mm, BFi = 5×10− 7 mm2/s, β = 0.5, and λ to 785
nm. As shown in Fig. 2 (a), the noise is related to t, and g2(τ) curves
become noiser when t decreases. Similiarly, the amplitute of noise is
negatively propotional to I.

3.2. Monte Carlo simulations

We chose the single-layer model of milk (μa= 0.0027 mm− 1, μś=1.6
mm− 1 at λ=785 nm, Rn=1.33 [39]) in the Monte Carlo eXtreme (MCX)
photon propagation simulations [15,40]. We assumed that 107 photons
were emitted from a light source. The radius of the detector is 1 mm. ρ
was configured to be 10 mm. The volume size of the phantom is 60 mm3.
MCX employs fminsearch(⋅) as the non-linear fitting algorithm by
default. The fitting method can obtain accurate results because the
simulated curves are noise-free. The lag time is non-linearly sampled
from [10− 7, 10− 1] s. Once we obtained parsed g1(τ) using MCX studio,
we used Siegert relation to calculate the corresponding g2(τ), depicted
by red lines in Fig. 3 (a) and Fig. 3 (b), respectively. Also, by using
analytical model, we obtained the fitted g1(τ) and g2(τ) with recon
structed αDB (equivalent to BFi) and β, shown by black lines in Fig. 3 (a)
and (b). The Euclidian distances shown in Fig. 3 (c) and (d) indicates
small errors. Therefore, the reconstructed BFi and β can be the reference
for evaluating our algorithms. Also, the analytical model achieves nearly
consistent g1(τ) and g2(τ) curves compared to MC simulations in MCX,
meaning that we can quickly generate training datasets for our DNN
model by constructing and automating the analytical model in MATLAB.

4. Deep learning architecture

Inspired by the previous 1-D CNN FPGA implementation [27,28,41],
we proposed a similar but more compact DL network that does not
involve multiplications apart from batch normalizations (BNs). The
model features two unified adder-based convolutional (UAC) layers for
primary feature extraction. It includes two branched pathways, each
with three UAC layers, for reconstructing BFi and β. After feature
extraction in the temporal dimension in the main branch, the tensor with
a reduced temporal dimension is reshaped into a channel-wise tensor for
processing by the subsequent branches. In each training iteration, Fig. 1. The concept of spatial diffuse reflectometry in a semi-infinite geometry.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

3

estimated batches of BFi and β are sent to individual and same loss
functions. The individual loss values are added to compute the gradient
during the backpropagation. Fig. 4 illustrates the training and inference
data pipelines and the dimensions of intermediate feature maps,
whereas Table 1 details the layer configurations.

As the model is implemented in FPGA with constrained hardware
resources and a high-speed demand, we used big receptive fields
captured by each kernel and a small number of output channels to
minimize the model size while maintaining accuracy. The configura
tions in Table 1 achieve a balanced trade-off. We do not use ResNet

blocks [42] compared with the previous work [27] as its skip connec
tions introduce data dependency that impedes data pipelining and
for-loop unrolling on FPGAs. We have proven that our network can
converge without a ResNet blocks. The quantitative results, including
training time, model size (# parameters), # FLOPs, and averaged ac
curacy over 1,000 individual test curves, are presented in Table 2. The
ACNN with a ResNet block has 1.0173 times more #FLOPs and 1.0547
times more parameters than the version without a ResNet block.
Regarding accuracy, the ACNN with a ResNet block exhibits slightly
higher accuracy in β but lower accuracy in BFi than the version without

Fig. 2. g2(τ) curves with fixed optical parameters but with (a) different averaging time (t = 1 s, 5 s, and 10 s) and (b) with different photon intensities (I = 20 kcps, 40
kcps, and 80 kcps).

Fig. 3. Comparison between MC simulation and analytic model for g1(τ) and g2(τ) of milk. (a) and (b) generated and fitted curves using MCX and analytical models.
(c) and (d) Euclidian distance between simulated and fitted curves.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

4

a ResNet block. Although models with a ResNet block can converge
faster during training, the eventual accuracy is similar. Besides, the
version without a ResNet block is more efficient for hardware
implementation.

As shown in Fig. 4. The g2(τ) curves synthesized from the analytical
model were applied to training and validation as the model is based on
rigorous deductions and assumptions. On the other hand, using the
curves generated from MC simulations for the test datasets provides a
realistic evaluation of the model’s performance in real-world scenarios.

We generated 40,000 g2(τ) curves for training, using the analytical
model (Eq. (3)) and the noise generator (Eq. (4)). The dataset is
configured with β ∈ (0, 1], BFi ∈ [10− 8, 10− 5] mm2 /s, ρ = 20 and 30
mm, and λ = 785 nm to emulate realistic experiments. We up-scaled BFi
in the datasets by 105 to [0, 1], making its scale that same with β to
achieve accurate training by using the same branch in Fig. 4. The noise
rate varies from 20 kcps to 80 kcps. Averaging time is assigned to 1 s, 5 s,

and 10 s. 10% (4,000) curves of the training dataset were used for
validation during training. The optimizer is RMSprop. The Huber loss

Lδ(a) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2a2 if |a| ≤ δ

δ
(

|a| −
1
2δ

)

if |a| > δ
, (5)

was adopted as the loss function, where a is the residual of predicted and
GT values. The lag time is nonlinearly assigned between [10− 6, 10− 3] s,
divided by 100 data points, aligning with our data acquisition system.
The learning rate is 0.005 with, decreasing by 0.5 factor every 30
epochs. It took 19 min for the NVIDIA RTX A1000 GPU to train the
model. 35 patience epochs were used to avoid over-fitting. The total
number of training epochs is 300. All g2(τ) datasets included the noise
model and were normalized to emulate realistic g2(τ). Fig. 5 shows
training and validation loss curves, where ACNN exhibits comparable
convergence versus a CNN model with the same architecture but slightly
different training strategy. ACNN and CNN use different feature
extraction methods, thereby differentiating the backpropagation. The
initial learning rate (0.005) of ACNN is not applicable as we noticed that
the training terminates within only 30 epochs due to the high learning
rate. Therefore, we use 0.001 as the initial learning rate for CNN. The
number of parameters and floating-point operations per second (FLOPs)
for each layer was summarized in Table 3. The compact model size and
low FLOPs pave the way for high-parallel hardware implementation
afterwards.

We also investigated the interpretability of our ACNN model using
saliency maps [43], which are broadly adopted to visualize the gradient
of the loss function for input pixels in image classification. We randomly
selected four g2(τ) curves from our test datasets to visualize the gradients
most influencing the model’s output. We normailzed the saliency maps
in [0, 1] for better visualization. The red curves in Fig. 6 represent the
gradients of the output for the input g2(τ), indicating how sensitive the
output is to the input variation. Since changes in BFi result in horizontal
shifts on g2(τ), the position of decay in each curve is a crucial region.
Therefore, as indicated in Fig. 6, our ACNN model can identify the
critical regions for extracting significant features from the g2(τ) curves.

Fig. 4. ACNN architecture in training and inference phases.

Table 1
Configurations of each layer in the network.

Layers Specifications

UAC1 Output Channel 15, Filters (1, 17), Stride (1, 3)
UAC2 Output Channel 15, Filters (1, 13), Stride (1, 5)
UAC 3_1 Output Channel 30, Filters (1, 1), Stride (1, 1)
UAC 3_2 Output Channel 15, Filters (1, 1), Stride (1, 1)
UAC 3_3 Output Channel 1, Filters (1, 1), Stride (1, 1)

Table 2
Quantitative comparisons of ACNN w/ and w/o a ResNet Block at main feature
extraction branch.

Model Training
time

#FLOPs #parameters Accuracy from Test
(MSE)

β BFi (mm2

/s)

ACNN w/
ResNet
block

481.08 s 37.21 K
ADDs

10.42 k 0.00015 0.024×10− 7

ACNN w/o
ResNet
block

370.93 s 36.58 K
ADDs

9.88 k 0.00021 0.012×10− 7

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

5

5. Accuracy evaluation

This section evaluates the accuracy and robustness of reconstructed
BFi and rBFi from the ACNN model in different noise levels, comparing
them with CNN and NLSF. Sections use both synthetic and real phantom
datasets.

5.1. Evaluation on synthetic datasets

As our ACNN uses the l1 norm to measure cross-correlation between
weights and feature maps, we should ensure that ACNN’s weights follow
Laplace distributions according to [44]. As shown in Fig. 7(a) and (b),
distribution weights from CNN and our ACNN exhibit Gaussian and
Laplace distributions, in good agreement with the AdderNet theory [44].
To evaluate estimated BFi and β, in Fig. 8, we used R-squared and the
mean square error (MSE) to evaluate the fitting goodness, in comparison
with the ground truth (GT) BFi and β. Both ACNN and the conventional

CNN offer nearly perfect R-squared results, However, for β, a few out
liners from CNN (at small β) are shown. As for BFi’s reconstruction,
ACNN also attains better R-squared and MSE. We observed that
increasing the BFi leads to higher reconstruction errors, as shown in
Fig. 8. Large values in the saliency maps indicate which parts of the data
significant impact the model’s predictions or errors. To investigate this,
we used saliency maps to create Fig. 9. Fig. 9(a) shows the saliency maps
with increasing BFi with β being constant to visualize the changes. Fig. 9
(b)–(f) present the saliency maps for different BFi values. Our findings
reveal that as BFi increases, the saliency map values also increase,
leading to a more significant impact on the model’s predictions. Intui
tively, g2(τ) with a bigger BFi shown in Fig. 9(f) exhibits fewer features
(regarding the amplitude and shape) than other g2(τ) curves shown in
Fig. 9(b–e). However, the saliency map in Fig. 9(f) is higher than others,
meaning that the model focuses on the less informative region, ampli
fying noise, and distorting the accuracy. We noticed the hetero
scedasticity of BFi reconstruction also occurs in [19] (Fig. 4(c) in that

Fig. 5. Training and validation loss curves of ACNN and CNN. (a) and (b), ACNN training and validation loss curves in 109 epochs. (c) and (d), CNN training and
validation loss curves in 96 epochs.

Table 3
Detailed computational information of each layer.

UAC1 BN1 UAC2 BN2 UAC3_1 BN3_1 UAC3_2 BN3_2 UAC3_3 BN3_3 Total

#parameters 270 30 2,940 30 2,730×2 60×2 465×2 30×2 16×2 2×2 9,880
#FLOPs 10,260 1,140 17,640 180 2,730×2 60×2 465×2 30×2 16×2 2×2 35,830

Note: Some parameters and FLOPs multiply two because of the branched structure.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

6

paper) when BFi increases. Therefore, we managed to use saliency maps
to explain the phenomenon and demonstrate the interpretability of the
model.

We also assessed the impact of the photon rate in the noise model on
the reconstruction accuracy. We compared our ACNN with CNN at
various photon intensity levels, ranging from 1,000 to 35,000 counts per
second (cps). This range was divided into 34 groups, each containing
100 noisy ACF curves. The GT β and BFi values are 0.5 and 0.5 ×10− 5

mm2/s, respectively, and t (the averaging time) = 5 s. As shown in
Fig. 10(a), the accuracy of β (ACNN and CNN) is compromised when the
photon rate is low, leading to inaccuracy in the mean (M) and the
standard deviation (Std). However, as the photon intensity increases,
both architectures provide more accurate reconstructions. ACNN tends
to offer better accuracy for most photon intensities, whereas CNN ex
hibits slightly better accuracy (M) and precision (Std) when photon
counts are lower than 9,000. Regarding BFi, ACNN outperforms CNN in
terms of accuracy and achieves similar precision. Both architectures
produce accurate BFi at high photon rates, whereas CNN is more robust

for low photon rates (before 5,000 cps).
Since rBFi is commonly used in physiological and clinical applica

tions, we leveraged simulated datasets to evaluate our model’s appli
cability in estimating rBFi instead of only absolute BFi using our model.
Like absolute BFi evaluation, CNN and NLSF were adopted for com
parison with ACNN. rBFi was computed from baseline BFi0 and recon
structed BFi over time i.e. rBFi = BFi/BFi0. In line with our previously
proven rBFi evaluation [45], we assigned BFi(w) = [1 + 0.05 × (w − 1)]
× 10− 6 mm2/s, where w=1, 2, …, 20. BFi0 was assigned when w=1. ρ
was fixed as 20 mm. We selected four noise levels from Fig. 10, i.e., 2,
000, 6,000, 12,000, and 25,000 cps to investigate accuracy. The per
formance of the three algorithms is shown in Fig. 11. Black dots con
nected by red lines indicate the GT rBFi. The x-ticks represent increasing
BFi over time. For lower photon intensities, shown in Fig. 11(a) and (b),
ACNN and CNN are more robust than NLSF, as their reconstructed BFi
distributions are closer to the GT values across different BFis. In contrast,
for higher photon intensities, shown in Fig. 11(c) and (d), all three al
gorithms display similarly accurate distributions.

Fig. 6. Four randomly sampled g2(τ) and corresponding computed saliency maps from test datasets.

Fig. 7. Histograms depict the weights distribution of CNN and ACNN. (a) and (b) represent Gaussian and Laplace distributions of CNN’s and ACNN’s weights.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

7

5.2. Evaluation on real liquid phantom

As milk has similar scattering properties as living tissue [39], we
used a milk solution with a water-to-milk dilution ratio of 2:1 as the
phantom to investigate the performance of three algorithms. g2(τ) curves
were computed from a hardware correlator from raw photon intensity
data following Eq. (1). We used a 785 nm CW laser (CrystalLaser,
DL785-120-S), directed into the milk phantom through a multi-mode
fiber. The scattered light from the phantom was captured through a

single-mode fiber with ρ = 20 mm. Intensity data was detected by an
APD (Hamamatsu, C13366-1350GD) and processed by a commercial
correlator board to generate g2(τ). The specification of the experiment
platform is summarized in Table 4. Two groups of datasets (20 cur
ves/group) were measured with T = 1 s and 10 s, under the same
environment and the dilution ratio. Given the GT αDB of the milk is
unknown, the results fitted from the datasets (T = 10 s) were employed
as a reference. We proved that the NLSF algorithm could achieve high
accuracy for BFi and rBFi at a high SNR, as shown in Figs. 10 and 11. The

Fig. 8. R-square and MSE between ACNN and CNN. (a) and (b) R-squared of BFi and β from ACNN. (c) and (d) R-square of BFi and β from CNN.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

8

pseudo reference of αDB = 5.19×10− 7 mm2/s and β = 0.419 are
reconstructed from the ensemble g2(τ) using NLSF. The measured g2(τ) is
shown in Fig. 12, the curves with T = 1 s exhibited a higher standard
deviation. The datasets with T = 1 s were used for evaluating the al
gorithms. Referring to the study [46], we determined our μa and μś are
0.0027 and 1 mm− 1, respectively, according to our dilution ratio.

We developed a transfer learning mechanism in the training scripts
for both ACNN and CNN models, enabling them to be transferable and

adjustable for different optical or tissue parameters. In our case, we re-
generated 40,000 curves in the training datasets, using μa and μś are
0.0027 and 1 mm− 1. ACNN and CNN models required 60 epochs (5 min)
and 92 epochs (8 min), respectively, to complete the training based on a
previously saved pre-trained model with the old experimental
parameters.

Fig. 13 presents the error distributions of reconstructed β and αDB
when ρ = 10, 20, and 30 mm. ACNN and CNN were re-trained using

Fig. 9. (a) g2(τ) curves with five increasing BFi (2×10− 7, 8×10− 7, 2×10− 6, 3×10− 6, and 6×10− 6 mm2/s) and constant β =0.5. (b)-(f), indivudual g2(τ) in (a) with
increasing BFi and corepcsonding seliance maps.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

9

transfer learning using the corresponding datasets defined by ρ,
consuming around 4 min. When ρ = 20 mm, NLSF presents the most
significant % error (EαDB) in αDB. Although ACNN achieves the smallest
EαDB , it shows a slightly higher Eβ. Although CNN is more accurate than

ACNN regarding β, there are more outliers than ACNN and NLSF in αDB
estimation. Three algorithms show similar error distributions when ρ =
10 and 30 mm, where CNN presents a higher Eβ than ACNN and NLSF;
ACNN and CNN show similar EαDB . As ρ increases, the standard deviation

Fig. 10. Accuracy evaluation of ACNN and CNN under different levels of photon rate in the noise model. (a) and (b) reconstructed β and BFi.

Fig. 11. rBFi evaluation of ACNN, CNN, and NLSF in (a) 2,000, (b) 6,000, (c) 12,000, and (d) 25,000 cps.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

10

from each algorithm also increases. EαDB and Eβ are computed using (ŷ −
yave/yave)%, where ŷ and yave are the predicted values and pseudo
reference of β and αDB, respectively.

6. Accelerator architecture

The ACNN accelerator was implemented on programmable logic (PL)
on cost-optimized Zynq-7000 SoC and high-end Zynq-UltraScale+
MPSoC using Vivado high-level-synthesis (HLS) 2018.2. Alongside the
accelerator, the computation of ACF was implemented on the ARM-
based processing system (PS). The following reasons are for producing
the ACF module on PS: firstly, implementing Eq. (1) on the FPGA re
quires taking thousands of frames and conducting element-wise vector
multiplications and divisions; it is challenging due to limited DSP slides
and on-chip memory. The onboard double-data-rate synchronous DRAM
(DDR) with hundreds of megabytes can efficiently accommodate raw
data and bridge the data transfer between the ACF module on PS and BFi
reconstruction on PL. Secondly, in theory, the multiplication operations
in the numerator are followed by an averaging operation that can be
implemented as adder-trees and end up with a subsequent divider.
Although the overhead of parallelizing the adder-tree for averaging is
negligible, vector multiplications and divisions are computationally
expensive in FPGAs. To address this concern, we leverage Neon and

Table 4
Specification of the experiment for phantom measurement.

Parameters Property

Detector fibre Single mode
Detector Hamamatsu, C1366-1350GD
Laser module CrystalLaser, DL785-120-S, 785 nm long coherence (>5m)
ρ 10mm, 20 mm, 30mm
dilution ratio Water: milk = 2:1

(milk: 1.7% Fat, 3.5% Protein)
μa 0.0027 mm− 1

μ́s 1 mm− 1

Correlation scheme Multi-tau

Fig. 12. g2(τ) curves of phantom experiement. (a) and (b) 20 curves measured with T = 1 s and 10 s. (c) and (d) Averaged ensambld g2(τ) (blue) and std (red).

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

11

VFPU [47] technologies in ARM CPUs to accelerate vector multiplica
tions in the numerator, as the arithmetic logical unit (ALU) in ARM
Cortex-A9 and -A53 CPU cores on our FPGA boards contain vectorized
dividers and multipliers optimized with single instruction multiple data
(SIMD), which offloads ACF processing from PL. We yielded 11-fold
acceleration compared to the speed without enabling VFPU. There
fore, allocating workloads to PS and PL achieves a trade-off between
performance and hardware utilization. Meanwhile, we can reserve more
hardware resources for regular vector-addition and accumulation (VAA)
and vector-multiplication (VM) operations for DL accelerators.

The processing pipeline in PS is summarized in Fig. 14(a). To vali
date the functionality, we initially preloaded intensity data in the DDR.
Multiple bit-width fixed-point (FXP) quantization methods were adop
ted to alleviate the hardware overhead and timing latency, and the
floating-point (FLP) to FXP conversion was implemented as shift oper
ations and divisions on PS. Once enough ACFs are computed and a pre-
defined number corresponding to the number of cores specified in

Table 5 is reached, the quantized and normalized ACF are dispatched to
the PL accelerators through an AXI-full interface. Similarly, the FXP to
FLP conversion was implemented similarly for printing readable BFi and
β. malloc(⋅) was used to store quantized and dispatch ACF vectors to
AXI’s Master port. MACROS parameterizes the pointer addressing space
and the length of ACFs. A general-purpose timer driver was employed to
measure the time-consumption when DL accelerators reconstruct BFi
and β.

As shown in Fig. 14(b), our ACNN accelerator is a scalable, multi-
core architecture, where each DL-core can process one ACF and recon
struct BFi and β simultaneously. The details about each DL-core are
depicted in Fig. 14(b); the input feature go through a series of UAC
modules, where the for-loops of output channels and kernel windows are
unrolled to improve the parallelism. The Reshape flattens the feature and
allocates the data in channel dimensions for channel-wise convolution
afterwards. Unrolling operations in UAC are decomposed in Fig. 14(c).
The BRAMs (storing learned parameters) are partially partitioned

Fig. 13. Error distribution of reconstructed β and αDB from three algorithms evaluated with milk. (a-c) ρ = 10, 20, 30 mm. Error cars show the mean of the error
distrobution and mean values are at the centre of the crosses. The initial value of β and αDB before the fitting is 0.4 and 1×10− 6 mm2/s.

Fig. 14. Hardware architecture integrates intensity temporal ACF computation and ACNN accelerators (For example, 10 cores on Zynq 7000 and 15 cores on Zynq
UltraScale+). (a). The architecture overview illustrates the data transfer and functionalities of each module. (b). Detailed architecture of each DL core, data path and
memory access were depicted with back and yellow arrows, respectively. (c). Detailed structures of each UAC illustrate parallelism in the input channel, output
channel, and kernel size.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

12

accordingly to satisfy the bandwidth requirement of UACs. As BNs are
involved in each UAC, they are implemented as VMs after ACs. In theory,
BN at the inference phase can be transformed into a matrix multiplica
tion with two constants, scale and shift [27,48,49]:

xBN(i) = scale(i) × x(i) + shift(i), (6)

where i means the ith output channel,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

scale(i) =
γ(i)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ(i)2
+ ε

√

shift(i) = ω(i) −
γ(i)θ(i)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ(i)2
+ ε

√

, (7)

γ and ω are trainable parameters that are parsed off-line, δ and θ are the
statistical standard deviation and mean of x(i), ε is a constant to avoid
dividing by zero (0.0001 by default). Once these parameters from the
pre-trained model are extracted, they are preloaded on BRAMs, as the
dashed box shows in Fig. 14(b).

Table 5
Evaluation results of ACNN accelerators with different quantization bit-width on Zynq-7000 and Zynq-UltraScale+ FPGA.

Core

Data type DFF LUT LUTRAM BRAM_18K DSP PPMS

Zynq-7000 5 Fixed<18,
9>

18.99% (20,203 out
of 106,400)

50.56% (26,898 out
of 53,200)

7.20% (1,253 out of
17,400)

36.07% (50.50 out
of 140)

29.55% (65 out of
220)

21.74

Fixed<24,
12>

19.00% (20,212 out
of 106,400)

49.89% (26,541 out
of 53,200)

7.20% (1,253 out of
17,400)

36.07% (50.50 out
of 140)

29.55% (65 out of
220)

17.86

10 Fixed<18,
9>

34.75% (36,973 out
of 106,400)

91.93% (48,588 out
of 53,200)

12.55% (2,183 out
of 17,400)

75.36% (105.5, out
of 140)

59.09% (130 out
of 220)

41.67

Fixed<24,
12>

34.81% (37,043 out
of 106,400)

90.07% (47,919 out
of 53,200)

12.54% (2,182 out
of 17,400)

75.36% (105.5, out
of 140)

59.09% (130 out
of 220)

35.01

Zynq UltraScaleþ
MPSoC

10 Fixed<18,
9>

5.88% (27,083 out of
460,800)

21.96% (50,603 out
of 230,400)

1.35% (1,375 out of
101,760)

35.58% (111 out of
312)

7.52% (130 out of
1,728)

38.46

Fixed<24,
12>

5.68% (26,162, out of
460,800)

22.25% (51,253 out
of 230,400)

1.35% (1,375 out of
101,760)

35.58% (111 out of
312)

7.52% (130 out of
1,728)

33.21

15 Fixed<18,
9>

8.35% (38,473, out of
460,800)

32.28% (74,375 out
of 230,400)

1.82% (1,855 out of
101,760)

53.21% (166 out of
312)

11.28% (195 out
of 1,728)

48.49

Fixed<24,
12>

8.05% (37,101, out of
460,800)

32.74% (75,438 out
of 230,400)

1.82% (1,855 out of
101,760)

53.21% (166 out of
312)

11.28% (195 out
of 1,728)

44.37

Fig. 15. DL cores implementation on Zynq-7000 and Zynq-UltraScale+ with different quantization FXP schemes, and their corresponding MAE of BFi and β.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

13

6.1. Accelerator evaluation

We implemented the ACNN accelerator on Zynq-7000 and Zynq-
UltraScale+ to investigate its performance. To validate the scalability,
we implemented five and ten DL cores on Zynq-7000, and ten and fifteen
on Zynq UltraScale+. Each scheme contains two sets of FXP bit-width,
24 bit-width containing 12 fractional bits, and 18 bit-width containing
9 fractional bits. Hardware consumption and speed are demonstrated in
Table 5. Considering our accelerator targets single-photon detector ar
rays, we use pixel per millisecond (PPMS) to assess the speed of simul
taneously processing ACFs. Timer functions on the PS measure the time-
consumption of the ACNN accelerator. According to Table 5, PPMS in
creases while the number of DL cores increases. Besides, we evaluated
the reconstruction accuracy of BFI and β of the eight schemes in terms of
mean absolute error (MAE) that is directly output from the FPGA board.
As shown in Fig. 15, there is no considerable fluctuation from different
numbers of cores and FXP bit-widths. In theory, the accuracy of FPGA
results should match that of the GPU, and the ratio between <18, 9> and
<24, 12> should remain consistent. However, slight deviations may
occur due to quantization errors, underflow or overflow errors, or timing
violations. These errors are acceptable within the context of our work.
We define the computational efficiency using the latency of batches over
power consumption, as shown in Table 6. We measured the power
consumption of accelerators on FPGAs using Xilinx Power Estimator
[50]. We also used NVML [51] and PyJoules [52] APIs to measure the
power consumption of GPU and CPU. FPGA-based SoC platforms obtain
the highest computational efficiency across different batch sizes
compared to the CPU and GPU.

7. Discussion

We present a holistic hardware platform integrating a g2(τ) generator
with a multiplication-free, DNN-based hardware accelerator for BFi

reconstruction. The current implementation assumes that photon in
tensity data is received from a single detector. However, averaging g2(τ)
across multiple parallel detectors can provide a higher signal-to-noise
ratio (SNR). Additionally, the intensity data was pre-loaded into on-
chip memory for functional evaluation, assuming that the hardware
interface has sufficient data transfer bandwidth to receive data from the
detector. This hardware platform presents three key aspects for the
future work:

1. we will explore how to connect the g2(τ) generator module to the
detector with an efficient interface design.

2. a module could be developed to compute average ensemble g2(τ)
data from individual detectors, enhancing the SNR. Another hard
ware improvement is the power consumption; 90% of total power
consumption is from PS (g2(τ) generator) as the CPU cores are more
power-demanding than PL side logic fabric. Given a previous study
implementing a g2(τ) generator in PL [7], an ideal solution is to
integrate a g2(τ) generator and DNN accelerator on PL to save more
energy if the hardware resource is sufficient.

3. the PYNQ-Z2 and ZCU104 MPSoC FPGAs have 2 and 4 CPU cores,
respectively; however, we only enabled one core to implement the
g2(τ) generator. In the future, it is worthwhile to explore enabling
multiple cores to accelerate the computation of ensemble g2(τ)
calculations.

Apart from potential hardware improvements, there are limitations
in the simulated data generated by both in-silico and analytical models.
According to Eq. (4), noise generation for g2(τ) requires averaging time T
and photon intensity I. While the present total number of photons in a
simulated voxel is available in MCX, configurable I in the temporal
dimension of g2(τ) is not available in MCX, nor is T. Therefore, the
analytical noise model in MCX is not applicable for producing clear g2(τ)
data from MCX simulations. Additionally, regarding the analytical
model used in this work, we adopted a semi-infinite homogeneous
model instead of a multi-layer model, which limits the generalization of
our network to complex tissues, such as a multi-layer brain model.
Recent research [45] has introduced a three-layer analytical model,
which could enhance data-driven methods for multi-layer structures. As
a future direction, we plan to integrate the multi-layer analytical model
into our network training pipeline to generalize our approach to more
complex tissue structures.

8. Conclusion

This study reports a compact, hardware friendly DNN to reconstruct
BFi and β in DCS. The correctness of our analytical model was verified by
comparing in-silico MC simulations. According to Fig. 8, we ensure that
our DNN architecture achieves higher accuracy than conventional CNNs
yet has simpler operators. We used a real liquid phantom experiment to
evaluate ACNN, CNN, and NLSF. The results reveal that ACNN estimates
αDB and β values closest to the reference values. By leveraging the
miniaturized architecture, we implemented our scalable DL clusters on
an SoC-based FPGA to assess their accuracy, hardware utilization, and
computational efficiency. Enhanced with different bit-widths of quan
tization schemes, we evaluated these quantized versions on cost-
optimized and high-end FPGAs. To achieve end-to-end processing, we
encapsulated g2(τ) generation and BFi reconstruction on a single SoC-
based FPGA, providing different on-chip processing solutions for mod
ern DCS sensing systems. Given that current FPGA mounted on modern
SPAD arrays are mainly middle-end devices that only contain PL, our
heterogenous hardware architecture provides a foundation for future
integration of high-end FPGA and SPAD arrays.

CRediT authorship contribution statement

Zhenya Zang: Writing – review & editing, Writing – original draft,

Table 6
Performance comparisons of CPU, GPU, and FPGA-based SoC when processing
different numbers of pixels (ACFs) for each batch.

5 pixels/batch

i7-
12800H
CPU

RTX
A1000
GPU

Artix-7 and 1
thread ARM-
Cortex-A9, <18,
9>

Artix-7 and 1
thread ARM-
Cortex-A9, <24,
12>

Power (W) 3.586 4.438 1.962 1.981
Latency
(ms/batch)

3.753 1.311 0.183 0.174

Efficiency
(W/ms)

0.956 3.385 10.721 11.385

10 pixels/batch

i7-
12800H
CPU

RTX
A1000
GPU

Artix-7 and 1
thread ARM-
Cortex-A9, <18,
9>

Artix-7 and 1
thread ARM-
Cortex-A9, <24,
12>

Power (W) 3.534 4.346 2.549 2.579
Latency
(ms/batch)

3.927 1.356 0.258 0.267

Efficiency
(W/ms)

0.900 3.205 9.880 9.659

15 pixels/batch

i7-
12800H
CPU

RTX
A1000
GPU

UltraScale+ and 1
thread ARM-
Cortex-A53, <18,
9>

UltraScale+ and 1
thread ARM-
Cortex-A53, <24,
12>

Power (W) 3.549 4.236 4.826 4.846
Latency
(ms/batch)

5.115 1.524 0.283 0.295

Efficiency
(W/ms)

0.694 2.780 17.053 16.427

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

14

Visualization, Validation, Software, Methodology, Data curation,
Conceptualization. Quan Wang: Software. Mingliang Pan: Visualiza
tion, Validation, Methodology, Data curation. Yuanzhe Zhang: Visu
alization, Validation, Software, Methodology, Data curation. Xi Chen:
Software. Xingda Li: Software. David Day Uei Li: Writing – review &
editing, Supervision, Resources, Project administration, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work is supported by the EPSRC (EP/T00097X/1): the Quantum
Technology Hub in Quantum Imaging (QuantiC), Datalab, Photon Force,
Ltd., Xilinx, and the University of Strathclyde.

References

[1] T. Durduran, A.G. Yodh, Diffuse correlation spectroscopy for non-invasive, micro-
vascular cerebral blood flow measurement, Neuroimage 85 (2014) 51–63.

[2] S.A. Carp, M.B. Robinson, M.A. Franceschini, Diffuse correlation spectroscopy:
current status and future outlook, Neurophotonics 10 (1) (2023) 013509.

[3] Y. Shang, T. Li, G. Yu, Clinical applications of near-infrared diffuse correlation
spectroscopy and tomography for tissue blood flow monitoring and imaging,
Physiol. Meas. 38 (4) (2017) R1.

[4] W. Liu, et al., Fast and sensitive diffuse correlation spectroscopy with highly
parallelized single photon detection, APL Photonics 6 (2) (2021).

[5] Y. Shang, T. Symons, T. Durduran, A.G. Yodh, G. Yu, Effects of muscle fiber motion
on diffuse correlation spectroscopy blood flow measurements during exercise,
Biomed. Opt. Express 1 (2) (2010) 500–511.

[6] C.G. Bangalore-Yogananda, R. Rosenberry, S. Soni, H. Liu, M.D. Nelson, F. Tian,
Concurrent measurement of skeletal muscle blood flow during exercise with diffuse
correlation spectroscopy and Doppler ultrasound, Biomed. Opt. Express 9 (1)
(2018) 131–141.

[7] F.M. Della Rocca, E.J. Sie, R. Catoen, F. Marsili, R.K. Henderson, Field
programmable gate array compression for large array multispeckle diffuse
correlation spectroscopy, J. Biomed. Opt. 28 (5) (2023) 057001.

[8] M.A. Wayne, et al., Massively parallel, real-time multispeckle diffuse correlation
spectroscopy using a 500\times 500 SPAD camera, Biomed. Opt. Express 14 (2)
(2023) 703–713.

[9] D. Tamborini, et al., Portable system for time-domain diffuse correlation
spectroscopy, IEEE Trans. Biomed. Eng. 66 (11) (2019) 3014–3025.

[10] E.J. Sie, et al., High-sensitivity multispeckle diffuse correlation spectroscopy,
Neurophotonics 7 (3) (2020) 035010.

[11] C. Zhou, G. Yu, D. Furuya, J.H. Greenberg, A.G. Yodh, T. Durduran, Diffuse optical
correlation tomography of cerebral blood flow during cortical spreading depression
in rat brain, Opt. Express 14 (3) (2006) 1125–1144.

[12] C.J. Stapels, et al., A scalable correlator for multichannel diffuse correlation
spectroscopy, in: Proceedings of the Advanced Biomedical and Clinical Diagnostic
and Surgical Guidance Systems XIV, SPIE, 2016, pp. 106–112.

[13] S.O. Rice, Mathematical analysis of random noise, Bell Syst. Tech. J. 23 (3) (1944)
282–332.

[14] L. Dong, L. He, Y. Lin, Y. Shang, G. Yu, Simultaneously extracting multiple
parameters via fitting one single autocorrelation function curve in diffuse
correlation spectroscopy, IEEE Trans. Biomed. Eng. 60 (2) (2012) 361–368.

[15] H. Zhao, E. Sathialingam, E.M. Buckley, Accuracy of diffuse correlation
spectroscopy measurements of cerebral blood flow when using a three-layer
analytical model, Biomed. Opt. Express 12 (11) (2021) 7149–7161.

[16] D. Mazumder, M.M. Wu, N. Ozana, D. Tamborini, M.A. Franceschini, S.A. Carp,
Optimization of time domain diffuse correlation spectroscopy parameters for
measuring brain blood flow, Neurophotonics 8 (3) (2021) 035005.

[17] W. Lin, D.R. Busch, C.C. Goh, J. Barsi, T.F. Floyd, Diffuse correlation spectroscopy
analysis implemented on a field programmable gate array, IEEE Access 7 (2019)
122503–122512.

[18] P. Zhang, Z. Gui, L. Hao, X. Zhang, C. Liu, Y. Shang, Signal processing for diffuse
correlation spectroscopy with recurrent neural network of deep learning, in:
Proceedings of the IEEE Fifth International Conference on Big Data Computing
Service and Applications (BigDataService), IEEE, 2019, pp. 328–332.

[19] C.S. Poon, F. Long, U. Sunar, Deep learning model for ultrafast quantification of
blood flow in diffuse correlation spectroscopy, Biomed. Opt. Express 11 (10)
(2020) 5557–5564.

[20] Z. Li, Q. Ge, J. Feng, K. Jia, J. Zhao, Quantification of blood flow index in diffuse
correlation spectroscopy using long short-term memory architecture, Biomed. Opt.
Express 12 (7) (2021) 4131–4146.

[21] J. Feng, M. Jiang, J. Bai, K. Jia, Z. Li, Cerebral blood flow monitoring using a
ConvGRU model based on diffuse correlation spectroscopy, Infrared Phys. Technol.
129 (2023) 104541.

[22] Agner Fog, Instruction Tables-Lists of Instruction Latencies, Throughputs and
Micro-Operation Breakdowns For Intel, AMD, and VIA CPUs, Technical University
of Denmark, 2022 [Online]. Available: [Online]. Available: https://www.agner.org
/optimize/instruction_tables.pdf.

[23] J. Dong, R. Bi, J.H. Ho, P.S. Thong, K.C. Soo, K. Lee, Diffuse correlation
spectroscopy with a fast Fourier transform-based software autocorrelator,
J. Biomed. Opt. 17 (9) (2012) 097004.

[24] Y. Shang, G. Yu, A Nth-order linear algorithm for extracting diffuse correlation
spectroscopy blood flow indices in heterogeneous tissues, Appl. Phys. Lett. 105
(13) (2014).

[25] S. Xu, et al., Imaging dynamics beneath turbid media via parallelized single-photon
detection, Adv. Sci. 9 (24) (2022) 2201885.

[26] J. Buchholz, et al., FPGA implementation of a 32×32 autocorrelator array for
analysis of fast image series, Opt. Express 20 (16) (2012) 17767–17782.

[27] Z. Zang, D. Xiao, Q. Wang, Z. Jiao, Y. Chen, D.D.U. Li, Compact and robust deep
learning architecture for fluorescence lifetime imaging and FPGA implementation,
Methods Appl. Fluoresc. 11 (2) (2023) 025002.

[28] D. Xiao, et al., Dynamic fluorescence lifetime sensing with CMOS single-photon
avalanche diode arrays and deep learning processors, Biomed. Opt. Express 12 (6)
(2021) 3450–3462.

[29] D.A. Boas, L. Campbell, A.G. Yodh, Scattering and imaging with diffusing temporal
field correlations, Phys. Rev. Lett. 75 (9) (1995) 1855.

[30] M. Seong, Y. Oh, K. Lee, J.G. Kim, Blood flow estimation via numerical integration
of temporal autocorrelation function in diffuse correlation spectroscopy, Comput.
Methods Programs Biomed. 222 (2022) 106933.

[31] R.R. Alfano, W.B. Wang, L. Wang, S.K. Gayen, Light propagation in highly
scattering turbid media: concepts, techniques, and biomedical applications.
Photonics, John Wiley & Sons, Ltd, 2015, pp. 367–412, https://doi.org/10.1002/
9781119011804.ch9.

[32] C. Cheung, J.P. Culver, K. Takahashi, J.H. Greenberg, A. Yodh, In vivo
cerebrovascular measurement combining diffuse near-infrared absorption and
correlation spectroscopies, Phys. Med. Biol. 46 (8) (2001) 2053.

[33] T.J. Farrell, M.S. Patterson, B. Wilson, A diffusion theory model of spatially
resolved, steady-state diffuse reflectance for the noninvasive determination of
tissue optical properties in vivo, Med. Phys. 19 (4) (1992) 879–888.

[34] A. Siegert, On the Fluctuations in Signals Returned by Many Independently Moving
Scatterers, Radiation Laboratory, Massachusetts Institute of Technology, 1943.

[35] L. He, Y. Lin, Y. Shang, B.J. Shelton, G. Yu, Using optical fibers with different
modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-
oximeter measurements, J. Biomed. Opt. 18 (3) (2013) 037001.

[36] R. Bi, J. Dong, K. Lee, Deep tissue flowmetry based on diffuse speckle contrast
analysis, Opt. Lett. 38 (9) (2013) 1401–1403.

[37] X. Cheng, H. Chen, E.J. Sie, F. Marsili, D.A. Boas, Development of a Monte Carlo-
wave model to simulate time domain diffuse correlation spectroscopy
measurements from first principles, J. Biomed. Opt. 27 (8) (2022) 083009.

[38] S.A. Carp, et al., Diffuse correlation spectroscopy measurements of blood flow
using 1064 nm light, J. Biomed. Opt. 25 (9) (2020) 097003.

[39] J.D. Johansson, D. Portaluppi, M. Buttafava, F. Villa, A multipixel diffuse
correlation spectroscopy system based on a single photon avalanche diode array,
J. Biophotonics 12 (11) (2019) e201900091, https://doi.org/10.1002/
jbio.201900091.

[40] Q. Fang, D.A. Boas, Monte Carlo simulation of photon migration in 3D turbid
media accelerated by graphics processing units, Opt. Express 17 (22) (2009)
20178–20190.

[41] Z. Zang, et al., Hardware inspired neural network for efficient time-resolved
biomedical imaging, in: Proceedings of the 44th Annual International Conference
of the IEEE Engineering in Medicine & Biology Society (EMBC), 2022,
pp. 1883–1886, https://doi.org/10.1109/EMBC48229.2022.9871214.

[42] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770–778, https://doi.org/10.1109/CVPR.2016.90.

[43] K. Simonyan, A. Vedaldi, and A. Zisserman, ‘Deep inside convolutional networks:
visualising image classification models and saliency maps’, ArXiv Prepr.
ArXiv13126034, 2013.

[44] H. Chen, et al., AdderNet: do we really need multiplications in deep learning?, in:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020, pp. 1465–1474, https://doi.org/10.1109/
CVPR42600.2020.00154.

[45] Q. Wang, M. Pan, Z. Zang, D.D.U. Li, Quantification of blood flow index in diffuse
correlation spectroscopy using a robust deep learning method, J. Biomed. Opt. 29
(1) (2024) 015004.

[46] T. Lindbergh, I. Fredriksson, M. Larsson, T. Strömberg, Spectral determination of a
two-parametric phase function for polydispersive scattering liquids, Opt. Express
17 (3) (2009) 1610–1621.

[47] ‘NEON version: 1.0 programmer’s guide’. 2013. [Online]. Available: [Online].
Available: https://static.docs.arm.com/den0018/a/DEN0018A_neon_programmer
s_guide_en.pdf.

[48] S. Liang, S. Yin, L. Liu, W. Luk, S. Wei, FP-BNN: binarized neural network on FPGA,
Neurocomputing 275 (2018) 1072–1086, https://doi.org/10.1016/j.
neucom.2017.09.046.

[49] Z. Xu, R.C.C. Cheung, Binary convolutional neural network acceleration framework
for rapid system prototyping, J. Syst. Archit. 109 (2020) 101762, https://doi.org/
10.1016/j.sysarc.2020.101762.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

15

http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0001
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0001
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0002
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0002
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0003
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0003
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0003
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0004
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0004
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0005
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0005
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0005
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0006
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0006
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0006
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0006
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0007
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0007
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0007
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0008
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0008
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0008
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0009
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0009
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0010
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0010
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0011
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0011
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0011
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0012
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0012
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0012
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0013
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0013
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0014
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0014
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0014
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0015
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0015
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0015
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0016
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0016
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0016
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0017
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0017
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0017
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0018
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0018
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0018
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0018
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0019
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0019
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0019
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0020
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0020
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0020
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0021
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0021
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0021
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0023
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0023
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0023
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0024
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0024
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0024
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0025
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0025
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0026
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0026
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0027
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0027
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0027
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0028
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0028
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0028
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0029
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0029
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0030
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0030
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0030
https://doi.org/10.1002/9781119011804.ch9
https://doi.org/10.1002/9781119011804.ch9
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0032
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0032
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0032
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0033
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0033
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0033
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0034
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0034
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0035
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0035
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0035
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0036
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0036
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0037
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0037
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0037
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0038
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0038
https://doi.org/10.1002/jbio.201900091
https://doi.org/10.1002/jbio.201900091
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0040
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0040
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0040
https://doi.org/10.1109/EMBC48229.2022.9871214
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR42600.2020.00154
https://doi.org/10.1109/CVPR42600.2020.00154
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0045
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0045
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0045
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0046
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0046
http://refhub.elsevier.com/S0169-2607(24)00464-4/sbref0046
https://static.docs.arm.com/den0018/a/DEN0018A_neon_programmers_guide_en.pdf
https://static.docs.arm.com/den0018/a/DEN0018A_neon_programmers_guide_en.pdf
https://doi.org/10.1016/j.neucom.2017.09.046
https://doi.org/10.1016/j.neucom.2017.09.046
https://doi.org/10.1016/j.sysarc.2020.101762
https://doi.org/10.1016/j.sysarc.2020.101762

[50] ‘Xilinx power estimator user guide (UG440)’. 2023. [Online]. Available: [Online].
Available: https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator?
tocId=nnrf2odl4xIaqGp3~WtIBA.

[51] ‘NVML API reference guide’. 2023. [Online]. Available: [Online]. Available:
https://docs.nvidia.com/deploy/nvml-api/index.html.

[52] ‘pyJoules’. 2024 [Online]. Available: [Online]. Available: https://pyjoules.readthe
docs.io/en/latest/, 2020.

Z. Zang et al. Computer Methods and Programs in Biomedicine 258 (2025) 108471

16

https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator?tocId=nnrf2odl4xIaqGp3~WtIBA
https://docs.xilinx.com/r/en-US/ug440-xilinx-power-estimator?tocId=nnrf2odl4xIaqGp3~WtIBA
https://docs.nvidia.com/deploy/nvml-api/index.html
https://pyjoules.readthedocs.io/en/latest/
https://pyjoules.readthedocs.io/en/latest/

	Towards high-performance deep learning architecture and hardware accelerator design for robust analysis in diffuse correlat ...
	1 Introduction
	2 Prior work
	2.1 Algorithms review
	2.2 Hardware processor review

	3 Mathematical model of diffusion theory
	3.1 Analytical model
	3.2 Monte Carlo simulations

	4 Deep learning architecture
	5 Accuracy evaluation
	5.1 Evaluation on synthetic datasets
	5.2 Evaluation on real liquid phantom

	6 Accelerator architecture
	6.1 Accelerator evaluation

	7 Discussion
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References

