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Driven optical cavities containing a nonlinear
medium support stable dissipative solitons, cavity
solitons, in the form of bright or dark spots of
light on a uniformly-lit background. Broadening
effects due to diffraction or group velocity dispersion
are balanced by the nonlinear interaction with the
medium while cavity losses balance the input energy.
The history, properties, physical interpretation and
wide application of cavity solitons are reviewed.
Cavity solitons in the plane perpendicular to light
propagation find application in optical information
processing, while cavity solitons in the longitudinal
direction produce high-quality frequency combs with
applications in optical communications, frequency
standards, optical clocks, future GPS, astronomy and
quantum technologies.

This article is part of the theme issue ‘The
quantum theory of light’.

1. Introduction
Rodney Loudon’s work has been pivotal for the
establishment and success of research in quantum
optics, quantum electronics and photonics in the UK.
Quantum electronics deals with the interaction of
radiation with discrete energy levels in a medium (as
in a maser or a laser). Rodney’s original work in the
early 1960s was indeed in quantum electronics about the
Raman effect in crystals [1]. Nonlinear optics bridges
themes of quantum optics and quantum electronics to
describe the behaviour of light in media where the
polarization density responds nonlinearly to the electric
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field of light. In his seminal book ‘The Quantum Theory of Light’ [2], Rodney beauti-
fully describes single-mode laser theory, the dynamics of atom-radiation systems, resonance
fluorescence and nonlinear quantum optics. Rodney’s work opened the doors for the flourish-
ing of these research areas in the UK. Cavity Solitons discovered at Strathclyde in the 1990s,
and reviewed here, is a story of a great success for nonlinear optics, quantum electronics and
photonics in the UK.

As well as a great scientist, Rodney was a real gentleman. Never cross, always polite, and a
pleasure to discuss and learn about topics in quantum and nonlinear optics. Rodney had been
a visiting professor at Strathclyde for many years and is sadly missed by us all. This article is
dedicated to his work and memory.

Optical solitons are pulses (or beams) of light in which light-matter nonlinearity counter-
balances dispersion or diffraction, leading to a robust structure which propagates without
change of form. Strictly speaking, true solitons are exact solutions of integrable nonlinear
partial differential equations [3], but in nonlinear optics mathematical nicety is often foregone
in favour of physical robustness. Thus the term ‘optical soliton’ is now routinely used for any
pulse or beam of light in which dispersion and/or diffraction is compensated on the average by
nonlinearity. Many interesting solitons and soliton structures have been predicted and observed
in nonlinear optical systems. Here we focus on a class of dissipative solitons, localized bright
or dark spots in driven optical cavities, the cavity solitons (CSs). They share some properties
with conservative propagation solitons which have been developed as ‘bits’ for long-haul
fibre-optic communications [4,5]. Such structures can also be natural ‘bits’ for parallel process-
ing of optical information, especially if they exist in semiconductor micro-resonators. In the
longitudinal direction (along the cavity axis), CSs represent optimal pulses with pyramidally
shaped frequency spectra. These spectra can easily span more than one octave in the frequency
(or wavelength) domain while being formed by thousands of components separated by the
free spectral range of the optical cavity round trip time. These kinds of spectra are known
as frequency combs and CS-generated frequency combs have taken the optics community by
storm. CS-generated frequency combs have found applications in frequency standards, optical
clocks, optical communications, future GPS and astronomy and quantum technologies.

There are several review articles in the literature about CSs, dissipative solitons [6–8] and
temporal CSs [9]. Here, while reviewing the subject of CSs in photonic devices, we connect the
early literature of the 1990s with the most recent developments and applications of temporal
CSs since the objects of interest, the CSs, are the same from the mathematical point of view.
The paper is organized as follows. In the next section, we introduce and derive the most
common models for the study of CSs, the Lugiato–Lefever equation (LLE) for the Kerr case
and the saturable absorber equation for the full optical nonlinearity. We then describe in §3
the instability of the homogeneous stationary solutions to spatial wave vectors leading to the
formation of CSs in both the LLE and saturable absorber models. Section 4 is dedicated to
historical highlights and properties of CSs in both cases of diffraction (transverse plane) and
group velocity dispersion (longitudinal direction). Section 5 is dedicated to the applications
of CSs in optical memories, delay lines, optical communications, information processing and
frequency combs. Section 6 contains the conclusions and outlook.

2. Model equations
We briefly derive the standard models for the generation and observation of CSs. We consider
the optical cavities shown in figure 1 where an input light beam EI leads to a resonated
electrical field that interacts with a nonlinear optical medium. In particular, we use the bow
tie cavity configuration of figure 1a for the diffractive case (although the physics of more
practical Fabry–Perot cavities is very similar [10]) where the transverse plane perpendicular to
the direction of propagation z is identified by the coordinates (x, y). We use instead the ring
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resonator configuration of figure 1b for the dispersive case where light propagation is guided in
the transverse direction.

(a) The Lugiato–Lefever equation
We start from the standard propagation equation of coherent light E in a Kerr medium, the
Nonlinear Schrödinger Equation (NLSE) [11]:

(2.1)∂zE + nc ∂tE = i
2k∇2E + iη |E |2 E

where ∂ denotes partial derivatives with respect to the given variable, z is the propagation
coordinate, n is the linear refractive index of the medium, c is the speed of light in vacuum, t is
time, k is the light wave vector and η is equal to ±1 for focusing or defocusing media respec-
tively. The term ∇2E with ∇2 = ∂x2 + ∂y2 describes diffraction, where (x, y) are the coordinates
of the plane perpendicular to the optical axes. The term (2k)−1∇2E can be replaced by γ∂t2E
to account for group velocity dispersion with the constant γ being positive in the anomalous
dispersion regime and negative in the normal dispersion regime.

In the bow tie cavity of length Λ with a crystal of length L, figure 1a , at z = 0 (entrance of the
crystal) the boundary condition is

(2.2)E(x, y, 0, t) = eDE x, y, L, t − Λ − Lc + TEI(x, y)

(2.3)D = ln R − iΘ + (Λ − L) i
2k∇2

(2.4)Θ = ωc − ωc Λ T = 1 − R,

where R(T) are the mirror reflectivities (transmittivities) for the field intensity, EI is the c.w.
input field at frequency ω, while ωc is the frequency of the longitudinal cavity mode closest to ω.
In the following, we use the transmissivities of the mirrors as small parameters, i.e.

(2.5)T = ε≪ 1 .

Using this condition the standard, but detailed, steps presented in the Appendix enable the
problem to be reduced to a single evolution equation. We can introduce renormalized parame-
ters

(2.6)θ = ΘT /2 ; a = Λ − LkT ; κ = T
2τ

to obtain

(2.7)∂κt′E = EI − (1 + iθ)E + iη |E |2E + ia∇2E,

where EI has been normalized by T/2. Equation (2.7) is the renowned spatial Lugiato-Lefever
LLE model [12].

As noted in the appendix, closely analogous steps can be taken in the case of fibre ring
cavities and solid-state microresonators, see figure 1b, in the presence of group velocity
dispersion [13,14] to obtain a temporal LLE given by:

(2.8)∂κt′E = EI − (1 + iθ)E + iη |E |2E + iβ∂τ2E,

where β is the group-velocity dispersion coefficient, τ is the fast time during a round trip of the
cavity while κt′ is known as the slow time since it describes how the intra-cavity field evolves
over many round trips [10]. An interesting feature of the temporal LLE is that the coefficient β
can be either positive or negative in the anomalous or normal dispersion regimes, respectively.
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An important consideration is that, while the phenomena of diffraction and group veloc-
ity dispersion have different physical origins, equations (2.7) and (2.8) are mathematically
identical. This means that, for example, in one spatial dimension, homogeneous and localized
solutions, their instabilities and their dynamics found in one of these equations have immediate
counterparts in the other for the same parameter values. Neglecting this trivial fact can only
lead to confusion, omissions and unnecessary repetitions [15]. A historical review of the LLE is
provided in [16].

(b) The saturable absorber equation
If we consider propagation in a saturable absorber instead of a pure Kerr medium, the NLSE
changes into:

(2.9)∂zE + nc ∂tE = i
2k∇2E − Q(1 − iΔ)E

1 + Δ2 + |E|2
where Q is a numerical factor proportional to the atomic density in the medium and Δ is
proportional to the detuning between the input laser frequency and the atomic frequency of
a two-energy level system. Note that the intra-cavity intensity has been normalized by the
saturation intensity. By repeating the MFL steps outlined in the previous section and in the
appendix it is possible to obtain:

(2.10)∂κt′E = EI − (1 + iθ)E − 2C(1 − iΔ)E
1 + Δ2 + |E|2 + ia∇2E,

where the constant C is known as the cooperativity factor and is proportional to both the square
of the matrix element of the dipole transition and the atomic density. It is easy to see that in the
limit of large |Δ| and small intra-cavity intensities |E|2, equation (2.10) reduces to the LLE (2.7).
Another interesting limit is the atomic resonance case of Δ = 0 where equation (2.10) becomes:

(2.11)∂κt′E = EI − (1 + iθ)E − 2C E
1 + |E|2 + ia∇2E.

This is known as the purely absorptive case.

3. Plane wave instability and cavity solitons
The CSs described here typically occur when stationary, i.e. ∂κt′E = 0, homogeneous, i.e. ∇2E = 0,
solutions coexist with spatially modulated structures (patterns). The bifurcations where
homogeneous stationary states are unstable to spatial wave vectors K are known as Turing
instabilities [12]. CSs exist where a localized perturbation does not spread transversely, enabling
a spatially localized stationary state. Since there is no transverse spreading, other localized
states can be created nearby, but remain independent, forming an array of independent ‘bits’.

L

Cavity

length

L

TCS output

E
I

E
I

(a) (b)

Figure 1. (a) Bow tie cavity for the case with diffraction. (b) Ring cavity for the case with group velocity dispersion with a
typical output formed by a train of Temporal Cavity Solitons (TCSs).
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Thus, an array of n sites can support 2n different states, and thus has a huge information
capacity. For the bistability of Turing patterns and homogeneous stationary states to exist, the
instability of the homogeneous states has to be subcritical when increasing the input amplitudeEI while keeping the detuning θ fixed [17,18]. Hence, the ‘cavity soliton’ region is in general
found for input amplitudes EI below the Turing instability threshold of the homogeneous
stationary states.

(a) Cavity solitons in Kerr media
For self-focusing Kerr nonlinearities (η = 1), equations (2.7) and (2.8) admit homogeneous
stationary solutions Es obeying the implicit equation

(3.1)EI2 = |Es|2 1 + θ − |Es|2 2
.

The steady-state curve of |Es|2 as a function of EI2 is single-valued for θ < 3 and S-sha-
ped with possible optical bistability, for θ > 3. We introduce perturbations proportional to
exp (λκt′) exp (iK→ ⋅ x→) where x→ = (x, y) and K→ = (Kx,Ky) in two dimensions, to perform the
linear stability analysis of the homogeneous stationary solutions. Following [19], one finds that
these solutions are unstable to the growth of modulations in the wave vector interval of

(3.2)η 2 |Es |2 − θ − |Es |4 − 1 < aK2 < η 2 |Es |2 − θ + |Es |4 − 1 .

When plotting these curves in a (aK2, |Es|2) diagram one can find that given the input amplitudeEI and the detuning θ there are critical values (aKc2 = 2 − θ, |Es|c2 = 1) corresponding to minima
of these curves for θ < 2. For 3 < θ < 2 the entire upper branch of the hysteresis cycle of the
homogeneous stationary solutions is unstable to patterns as well as a segment of the lower
branch, whereas for θ > 2 the upper branch is still unstable but the lower branch is stable.
Moreover, the Turing instability leading to patterns is supercritical for θ < 41/30 = 1.3666.. [12].
The subcritical condition is ideal to obtain simultaneously stable patterns and homogeneous
stationary states. Following [19], we select EI = 1.2 and θ = 1.7 where there is no bistability
of homogeneous states but stable homogeneous solutions can coexist with a stable branch of
periodically modulated patterns. By starting from a homogeneous input beam EI with a strong
perturbation in its middle, we numerically simulate the LLE model with a split-step Fourier
method [17] and observe the formation of a CS. After a short transient, the perturbation is
removed and the flat input beam restored but the CS solution survives indefinitely as shown
in figure 2. The CS balances the focusing nature of the Kerr nonlinearity with the diffractive/dis-
persive broadening while the cavity losses are balanced by the input power [6,19]. The CS
intensity peak is shown in figure 2a, its real and imaginary parts in figure 2b and a coexisting
pattern solution in figure 2c. Note that the plot of the real part of E faithfully and accurately
reproduces fig. 11a of [19] despite the enormous progress made by computers in the last 30
years. As described below, figure 11c of [19] is the first ever evidence of a CS in the LLE model
and was discovered at the University of Strathclyde.

It is important to note that the horizontal scale of figure 2 can either be the transverse
coordinate x with the LLE in the presence of diffraction or the fast time τ of the LLE in the
presence of anomalous dispersion. The two solutions are of course identical and for this reason,
a large part of the theoretical/numerical work done from the early 1990s in the diffractive case
has an immediate application in the group velocity dispersion case. Unless one uses intra-cavity
telescopes to drastically modify the diffraction length, the coefficient a in front of the Laplacian
operator in equation (2.7) is always positive.

Things are different for the dispersive case where, depending on the material used, the
group velocity dispersion coefficient can change from positive (anomalous dispersion) to
negative (normal dispersion). CSs survive this change but instead of bright CSs, one observes
dark (actually grey) CSs in the normal dispersion regime [20]. Figure 3 shows two examples
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of dark CSs when the coefficients a or β are negative and for parameter values of EI = 1.3515,θ = 1.95 (panels aand b) and EI = 2.2, θ = 4 (panel c). When increasing the input amplitude and
the detuning, dark CSs develop local oscillations around the trough.

For the diffractive case, it is important to mention the two-dimensional case. It is well known
that solitons in the two-dimensional NLSE, a conservative system, undergo a generalized
catastrophic collapse [11]. This is no longer the case for dissipative systems like the LLE where,
however, simulations require due care because of possible effects of boundary conditions. In
1996, three important regimes were identified for the two-dimensional LLE [21]. The left panel
of figure 4 shows the results of numerical simulations of the two-dimensional LLE for |Es|2 = 0.9.
For θ = 1.8, for example, we are in the presence of a collapse, much as in the NLSE limit. Forθ = 1.4 the peaked solution decays to the flat background. For θ = 1.2, damped oscillations of the
CS peak indicate asymptotic stability. The profile of an asymptotically stable two-dimensional
CS for θ = 1.2 is displayed in the right panel of figure 4 [22].

(b) Cavity solitons in absorptive media
In the case of a purely absorptive medium, (2.11), homogeneous stationary states are given by
[23]

(3.3)EI2 = |Es|2 1 + 2C
1 + |Es|2

2

+ θ2 ,

and, depending on the values of θ and C, the plane-wave input-output characteristic may be
either monostable or bistable. We consider CSs in the monostable regime, demonstrating again
that they are a phenomenon independent of the bistability of homogeneous states. There is
a Turing instability for IS > (S + 1) where I = |Es|2 and S = 2C/(1 + I)2 is a saturation parameter.
At the threshold, the critical wave vector is aKc2 = −θ which is real only if θ is negative. As
for the LLE case, a subcritical condition for Turing patterns is ideal to obtain simultaneously
stable patterns and homogeneous stationary states. Following [23], we select θ = −1.2, C = 5.4
and EI = 6.65 where the lower branch of the homogeneous solutions is stable and coexists
with a stable branch of periodically modulated patterns. Again, we start from a homogeneous
input beam EI with a strong perturbation in its middle. We numerically simulate the (2.11)
with a split-step Fourier method and observe the formation of a CS. After a short transient,
the perturbation is removed and the flat input beam restored but the CS solution survives
indefinitely as shown in figure 5. The CS intensity peak is shown in figure 5a, its real and
imaginary parts in figure 5b and a coexisting pattern solution in figure 5c. For two-dimensional
CSs in the purely absorptive case, see [23]. Note that CSs in saturable absorbers have been
labelled as Optical Bullet Holes (OBH) [23]. After the perturbations on the input beam have
been switched off, these CSs appear as transparent disks on an absorbing background, formed
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Figure 2. (a) Intensity of a CS of the LLE model (2.7) for EI = 1.2 and θ = 1.7. (b) Real and imaginary parts of the CS field.
(c) Stable pattern at the same parameter values.
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by aiming a short pulse of light at a target location. The existence and dynamical properties
of OBH are limited by the decay time of the underlying two-level system. But the strength
of the nonlinearity is essentially proportional to that decay time. In the transverse domain,
this is manageable, because one can explore the creation, interaction and erasure of OBH on
time scales long enough to make the nonlinearity strong. The transverse domain lends itself
naturally to semiconductor etalons, where the electronic nonlinearity is much slower than a
round-trip time, but correspondingly stronger. Further, one can use Fabry-Perot etalons, which
are very compact as well as efficient, where extra nonlinearity due to simple mean-field models
such bidirectionality.

4. Historical highlights and properties of cavity solitons
The story of cavity solitons can perhaps be divided into two Ages: the Space Domain Age (from
1994 to 2010), and the Time Domain Age (after 2010). During the Space Domain Age (diffrac-
tive models in one or two transverse dimensions) several favourable circumstances combined
to stimulate a huge expansion of interest in spatiotemporal nonlinear optics. Workstation
development made dynamical simulation of one- and two-dimensional field patterns widely
available [17]. In addition, simple mean-field models such as equations (2.7), (2.10) and (2.11)
provided a convenient framework which readily matched studies of pattern formation in fluids
and other fields. A special issue of Chaos, Solitons and Fractals in 1994 [24] shows how
dramatically the field changed in just a few years. It is in this special issue that the first evidence
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and imaginary parts of the CS field. (c) Intensity of a dark CS of the LLE model (2.7) with normal dispersion for EI = 2.2 andθ = 4.
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of CSs in the one-dimensional LLE appears [19] followed by two-dimensional predictions in
[21,25] and [22].

For the saturable absorber and purely absorptive models, a breakthrough came in 1996 with
the prediction and characterization of optical bullet holes [23]. Here it was also shown that CSs
are very sensitive to spatial variation of the input phase by demonstrating that CSs move up
phase gradients and that it is possible to arrange initially randomly distributed CSs into regular
grids. If these discrete grids are periodic in space and fully occupied by CSs, one can talk of
‘CSs crystals’. Addressing and erasing CSs in the saturating models with input perturbations of
suitable phase was also described in the same year in [26]. Control of the spatial position of CSs
and their localized switching on and off by using address pulses opened up applications of CSs
in optical processing and optical memories.

On the experimental side, two major breakthroughs in the generation and application of
CSs have been achieved at the Institute Non-Lineaire in Nice, France (now part of INPHYNI).
In 2002, by using a Vertical Cavity Surface Emitting Laser (VCSEL) below the threshold when
operating as an amplifier, CSs were generated by using a semiconductor medium [27]. Here it
was shown that the ability to switch cavity solitons on and off and to control their location and
motion by applying laser pulses makes them interesting as potential ‘pixels’ for reconfigurable
arrays or all-optical processing units. A second major application of CSs was demonstrated
again in Nice and again by using VCSELs in 2008: an all-optical delay line based on the lateral
drift of cavity solitons in semiconductor microresonators [28]. We will see below how these
control features are based on the intrinsic properties of CSs.

The Time Domain Age (dispersive models in the fast time longitudinal direction of a cavity)
developed in 2010, beginning with the seminal work on the experimental realization of CSs
in an optical fibre loop [29,30]. To separate the diffractive CSs in the transverse plane from
the CSs due to group velocity dispersion and propagating along the fibre, the name Temporal
Cavity Solitons (TCSs) has been introduced. However, the TCSs are still solutions of the LLE
and are mathematically identical to the diffractive CSs shown above. The physical properties
of TCSs are however unique. In [29] around 5000 TCSs were created and sustained in a 300
m long fibre loop (see figure 1b). The key advantage of this setup is that each TCS propagates
around the cavity, sampling and averaging the entire nonlinear medium. This means that the
time-translation symmetry of the time-domain LLE is much better observed in fibre loops than
the space translation symmetry in the spatial domain of media supporting diffractive CSs.

Around the same time, Pascal Del’Haye and his group realized that light propagating in
a monolithic ring microresonator was capable of generating an output spectrum with a huge
number of discrete lines and a span of over 500 nm (≈ 70 THz) around 1550 nm, a frequency
comb, without relying on any external spectral broadening [31]. It was later realized first
theoretically [32,33] and then experimentally by Tobias Herr and co-workers [34] that this
new method to generate frequency combs was due to bright TCSs circulating in the Kerr ring
resonator. Since then there has been an explosion of theoretical, numerical, experimental and
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industrial work on frequency combs generated by TCSs of the LLE [35] of the same kind, shape
and stability of those discovered in the early 1990s at Strathclyde [19]. On the theoretical side,
it is worth mentioning a recent model that unifies TCSs and frequency combs in active and
passive cavities [36].

(a) Control and frequency properties of cavity solitons
To better understand how this seismic revolution in applications of CSs has taken place, it
is important to understand a few properties of CSs: their motion on phase gradients, their
controlled positioning (tweezing), their interactions, and their frequency spectra. If we consider
an input beam EI = EI0exp [iϕ(x, y)] with a space-dependent phase ϕ(x, y), the damping and
detuning coefficients develop a spatial dependence, and solutions of the LLE (2.7) or absorptive
equation (2.11) acquire a drift velocity given by v→ = 2a∇→ϕ (v = (2β∂τϕ) for the dispersive case
[23]. As a consequence, a CS will move towards the local maximum of ϕ(x, y), and remain there.
A pixel array of CSs can be made if ϕ(x, y) has an array of maxima. This was demonstrated in
[23] by writing the letters ‘IT’ with CSs in a square array of phase maxima of the input beam.
The process of moving and controlling the final positions of CSs is similar to optical tweezers
where laser light is used to trap and move microscopic particles in space. The difference is that
here light is capable of tweezing CSs. In 2015, many TCSs were stored in an optical fibre loop
pumped by a continuous wave ‘holding’ laser beam [37]. The cavity solitons are trapped into
specific time slots through a phase modulation of the holding beam and moved around in time
by manipulating the phase profile. Continuous and discrete tweezing and manipulations of the
temporal positions of TCSs were achieved experimentally, with the ability to simultaneously
and independently control several pulses within a train.

Conventional solitons of conservative integrable systems like those in Kerr media described
by the NLSE (2.1) pass through each other without radiation losses [38]. This follows from
the fact that the NLSE has an infinite number of integral invariants. Things change of course
when considering non-Kerr materials as for example in [39] where non–NLSE solitons radiate
on colliding with the radiation creating new stable solitons or fuse the original two into a single
stable soliton. In contrast, theoretical and experimental observations of soliton collisions in the
LLE (2.7), an NLSE with the addition of input and loss of energy, have been far rarer. Unlike
conservative solitons, widely separated CSs of LLE are phase-locked to the external driver,
and thus all of them possess identical features (for given EI and θ), including frequency and
velocity. Accordingly, unassisted collisions occur only when two CSs are sufficiently close to
interact with each other [26], yet such interactions are difficult to explore controllably. Inducing
collisions by suitably modulating the phase of the driver addresses that issue [40]. Since a CS
moves towards the local maximum of a background phase modulation, a controlled collision of
CSs can be observed when exciting, for example, two CSs on opposite sides of a local maximum
of the phase profile [40]. Controlled collisions of TCSs leading to merging and annihilation have
been predicted and observed in a detailed numerical and experimental study of the LLE in [41].
In [41] the following form of the LLE for the field ψ has been used:

(4.1)∂tψ = S − (1 + iΔ)ψ + i |ψ |2ψ + i∂τ2ψ,

where S is the amplitude of the input field and Δ the cavity detuning. In both merging and
annihilation cases the dissipative nature of the interaction is revealed through the analysis of
the energy balance. Figure 6 shows the results of numerical simulations of the LLE (2.7) with
an input beam EI = EI0exp (iϕ(x)) with a Gaussian phase profile ϕ(x) = ϕ(0) exp (−x2/x0

2). Here
the longitudinal spatial coordinate x is related to the fast time variable τ of (2.8). Two TCSs are
initiated through the initial condition

(4.2)E(0,x) = 2Δ sech Δ(x − xL) + sech Δ(x + xL)
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where 2xL is the initial distance of the TCSs. Figure 6a,b shows typical results of the LLE
simulations for EI0 = 1.87, Δ = 2.91 and EI0 = 2.10, Δ = 3.64 and with ϕ(0) = 0.5rad and x0 = 30.
These parameters are chosen to replicate the experiments described below. In both cases, the
TCSs drift towards each other until they are close enough to interact. The outcome of the
collision is, however, markedly different. In figure 6a, the two TCSs merge into one, while in
figure 6b, the intracavity field after the interaction is globally reduced to the homogeneous
solution, i.e. the two TCSs annihilate one another. In the left panel of figure 6, a summary of
the numerically observed outcome of the interactions as a function of EI0, Δ for the same driver
phase modulation ϕ(0) and x0 is presented. Merging (green) and annihilation (red) of TCSs
occur in clearly distinct, but adjacent, regions [41].

Experiments were performed in a nonlinear optical fibre (Kerr) resonator (see the left panel
of figure 7), in which the TCSs are excited at selected and precise positions, and systemat-
ically induced to interact. As for the numerical simulations, the interactions are triggered
by manipulating the phase profile of the driver; the outcome controllably depends on the
detuning θ and driving strength [41]. Typical results are shown in figure 7a,b for parameter
conditions close, to experimental accuracy, to those of figure 6a,b, respectively. The first 10 s of
the measurements are very similar: two TCSs with 200 ps separation are stably trapped at the
maxima of the phase pulses. In figure 7a the experimental merging to a single TCS is observed
while both TCSs disappear in an annihilation event in figure 7b. These results are strongly
indicative of merging and annihilation, which is in agreement with numerical simulations.
Indeed, the simulation results use the very same parameters as the experiments [41].

To establish the origin of the observed dynamics, the roundtrip-by-roundtrip evolution of
the intracavity energy was measured on a real-time oscilloscope. Typical experimental results
for merging and annihilation are shown as red circles in figure 7c,d, respectively [41]. The
energy is normalized so that a single isolated TCS carries an energy of 1 in arbitrary units. The
results unambiguously reveal the dissipative nature of the interactions: for the case of figure 7a
the energy falls from two to one, implying merging; for figure 7b the energy falls from two to
zero, implying annihilation. The agreement between experiments and numerical simulations is
simply spectacular, a testament to the accuracy and predictive power of the equation models
considered here. The localized and dissipative nature of CSs is demonstrated theoretically,
numerically and experimentally and confirms in an unequivocal way analogies and differences
of CSs from conservative Kerr solitons of the NLSE.

Finally, we consider the spectral properties of TCSs. The output of photonic devices
generating TCSs is shown schematically in figure 1b. A c.w. input laser produces an output
of regularly spaced optical pulses, the CSs. In figure 8, we show the power spectrum in decibels
of a train of bright LLE CSs of figure 2a,b, of a train of bright purely absorptive CSs of figure
5a,b, and of a train of the two dark LLE CSs of figure 3a–c, respectively.
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Figure 6. Numerically simulated dynamics of induced TCSs interactions for ϕ(0) = 0.5 rad and x0 = 30 using the LLE (4.1).
In (a) for S = 1.87, Δ = 2.91, the two TCSs merge into one; in (b) for S = 2.10, Δ = 3.64, the two TCSs annihilate one
another. Right panel: Results from numerical simulations illustrating the outcome of TCSs interactions as a function of the
detuning Δ and driver strength S0.Each solid dot represents a distinct simulation. No TCS exists in the white area. Figures
reprinted from [41] through authors' permission.
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There are three clear common features in these four power spectra: (i) broadness that
survives to a very low decibel scale; (ii) finely spaced comb teeth separated by the inverse
of the round trip time of the micro-resonator; and (iii) almost pyramidal structure with a single
central peak. These are the features that have made CSs the optimal generators of optical
frequency combs. Frequency combs consist of equidistant laser lines and have revolutionized
time-keeping, metrology and spectroscopy. Hence, the investigation of power spectra from
devices producing TCSs has become an essential tool for the applications reviewed in the next
section. Here we note that the original LLE CS of [19] produces a very broad spectrum with an
almost exact triangular shape and a huge number of comb lines, see figure 8a. The spectrum
of the purely absorptive case, figure 8b, has similar features to the LLE case but the sides are
modulated due to a fast-time varying phase that can be seen in figure 5b. Finally, the intensity
modulations of the dark LLE CS of figure 3c are visible on the side of the spectrum in figure 8d
when compared to the spectrum in figure 8c corresponding to the unmodulated dark LLE CS of
figure 3a.

5. Applications of cavity solitons
In this section, we review some of the most striking applications of CSs in photonic devices.
In their 30 years of life, the number of experimental observations and applications has grown
enormously with a recent explosion in scientific impact after the realization of TCSs in 2010 [29].

(a) Optical memory based on cavity solitons
Beyond their fundamental interest, CSs have been sought in optical resonators as elementary
bits for information processing. The idea is to use the transverse area of an optical resonator
as a blackboard, where light bits can be individually written and erased, thus forming
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reconfigurable optical memory arrays [22,42,43]. In these devices, address pulses of short
duration can imprint CSs in specific locations in the plane perpendicular to the direction of
propagation in the cavity [27]. We have seen that these CSs can be moved to desired positions,
say on a square matrix, by suitable modulations of the input phase [23]. In this way, messages
can be coded and stored inside the cavity for as long as one desires, thus building an optical
memory. The messages can be changed at will by using new address pulses with suitable phase
[26]. Hence the realization of reconfigurable optical memories [44]. Because of the limited size
of photonic devices in the transverse plane and the typical size of CSs being around 10μm,
optical memories based on diffractive CSs to date are of the order of a hundred bits of data
(matrices of CSs). Things are different when considering TCSs in long fibre loops (380 m) driven
by a c.w. laser at 1550 nm [29]. TCSs of 4 ps duration were generated via ‘addressing’ pulses.
The TCSs circulated unchanged for hundreds of thousands of cavity round trips, through
balances of dispersion and nonlinearity, on one side, and driving and losses, on the other.
An all-optical memory and buffering of 15-bit data streams were achieved [29,30]. In 2015, by
applying suitable phase modulations to avoid TCS interactions, a robust all-optical buffer based
on TCSs and capable of storing a record of 4536 bits of data at 10 GB/s was demonstrated [45].

(b) Optical information processing based on cavity solitons
Maximizing information capacity in optoelectronics demands some kind of buffering or
delaying mechanism for avoiding the so-called data packet contention in data transmission.
This problem originates from switches or routers that can only process one packet at a time.
The solution is to build a buffer, which places one of the packets on hold while the other clears
the switch. Several methods have been suggested to realize an all-optical delay line, the most
famous being slow light [46]. Slow-light schemes however are usually limited to a few pulse
widths.

As mentioned in §4, an alternative approach to an all-optical delay line was developed using
semiconductor CSs [28,40]. This method injects a stream of optical bits into an optical cavity,
creating CSs that drift transversely with a controllable velocity. A phase gradient imposed
on the input holding beam induces drift which removes the CSs from their initial positions
and moves them toward the maxima of the gradient. The speed at which the CSs move
and the resulting delay depend on the form and strength of the applied gradient [28,40].
Recent extensions of this method to semiconductor lasers (VCSELs) with saturable absorbers
[47] suggested less complex configurations, possible realizations in integrated circuits and the
remarkable capability of tuning the delay up to at least 2300 pulse widths. These features make
delay and buffering methods based on CSs viable technologies in the optical processing of
information and all-optical computing.

(c) Frequency combs based on cavity solitons
Conventional optical frequency combs based on mode-locked laser pulses in photonic crystal
fibres [48,49] are still mostly confined to scientific laboratories [50]. In recent years, there has
been progress in the development of optical frequency combs based on compact, chip-scale
microresonators (also named micro-combs), based on CSs [34]. Micro-combs are now capable of
producing coherent, octave-spanning frequency combs, with microwave to terahertz repetition
rates, at low pump power, and in chip-scale devices and have been used in a wide variety of
applications, owing to bandwidth and coherence provided by the dissipative temporal soliton
states. Here , we list some of the most striking applications of micro-combs based on CSs, the
vast majority of them already in operation.

Optical communications. Replacing a large number of lasers in wavelength-division-mul-
tiplexed (WDM) optical communication systems with an optical frequency comb has been
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an attractive idea for some time [51]. Optical frequency combs have an intrinsically sta-
ble frequency spacing that enables transmission-performance enhancements beyond what is
possible with free-running lasers. Moreover, by using a frequency comb in WDM systems one
can relax the resource requirements at the receiver by implementing joint impairment compen-
sation and tracking for multiple data channels by exploiting the broadband phase coherence
of the frequency comb. Micro-combs (or Kerr combs) use the Kerr effect in an integrated
microcavity to convert light from a continuous-wave pump laser to evenly spaced lines across
a wide bandwidth [31,34]. The performance of micro-combs is sufficiently high to cope with
the requirements in terms of frequency stability, signal-to-noise ratio and linewidth of modern
coherent communication systems [52–55]. Stabilized Kerr CSs in microresonators guarantee
control of the bandwidth and number of comb lines with great precision [56]. By using two
SiN micro-combs, thermal control and tuning of the central frequency has allowed the use of
a matched comb at the receiver as a multi-wavelength local oscillator [56]. The line spacing
can reach values in the order of 100 GHz, making micro-combs an attractive multi-wavelength
light source for applications in fibre-optic communications. Micro-combs based on dark CSs
[57] are particularly interesting for advanced coherent communications since they can display
lower time jitter, e.g. 13 dB lower [58], than bright CSs. For example, a coherent transmission
line using 64-quadrature amplitude modulation encoded onto the frequency lines of a dark
CS comb has enabled transmitted optical signal-to-noise ratios above 33 dB in an 80 km data
transmission with 20 channels [59].

Optical clocks, frequency standards, GPS. Optical frequency combs have revolutionized
metrology and advanced other fields such as RF photonics and astronomy. As mentioned
above, traditional frequency combs can be bulky, expensive, and difficult to manufacture, thus
limiting their use in real-world scenarios. Within the last decade or so, CS-based micro-combs
have led to hopes of overcoming the constraints of more traditional bulk combs.

One of the first applications for bulk frequency combs was the optical atomic clock. It
promised extreme long-term time stability, better than that of the Cesium clock that currently
defines the SI second. More recently, interest in a fully portable optical atomic clock has grown.
Such a device could reliably keep time even without the aid of GPS references, and poten-
tially with greater accuracy than current GPS synchronization can provide. Optical clocks take
advantage of narrow and stable atomic transitions to realize exceptionally stable laser frequen-
cies [60]. Optical frequency combs facilitate the measurement and use of these atomic referen-
ces by providing a set of clock-referenced lines that span more than an octave. Micro-combs
offer revolutionary advantages over existing comb technology, including chip-based photonic
integration, large comb-mode spacings, and monolithic construction with small size and low
power consumption. Micro-comb technology has advanced frequency control of spectra via the
implementation of phase-locked and mode-locked states and even through an Rb-stabilized
micro-comb oscillator [61]. The milestone of all-optical frequency control of a micro-comb
locked to an atomic reference, including frequency division to the microwave domain, has been
achieved in [62] by demonstrating a functional optical clock based on full stabilization of a
micro-comb to atomic Rb transitions.

Even more recently, CSs in Kerr microresonators have been used as a source of coherent,
ultrafast pulse trains and ultra-broadband optical-frequency combs to enable optical synthesis
and metrology [63]. Here a Kerr microresonator optical clockwork, distributing optical-clock
signals to the mode-difference frequency of a comb, has been developed. The clockwork is
based on a silicon-nitride microresonator that generates a CS frequency comb with a repetition
frequency of 1 THz. These experiments have reached a record absolute frequency noise of one
part in 1017, the highest accuracy and precision ever reported in optical clockworks with the
possibility of measuring high-performance optical clocks with Kerr micro-combs.

Astrocombs. Astrocombs are broadband, high-repetition-rate optical frequency combs that
are used for the calibration of astronomical spectrographs [64]. Their precision and accuracy
make astrocombs a critical technology for astronomical spectroscopy and will likely enable
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ground-breaking observations in the fields of exoplanets, cosmology and fundamental physics.
Conflicting requirements of comb line spacing (usually more than 10 GHz), broadband spectral
coverage (from below 400 to above 2400 nm) and low-maintenance operation have been
significant technical challenges. For in-depth discussions of astrocombs, see the comprehensive
reviews [65–67].

For astrocombs, TCSs in Kerr resonators enable the generation of low-noise, ultra-short
femtosecond pulses with repetition rates that can readily reach and exceed tens of GHz.
Microresonator combs have been employed in two proof-of-concept demonstrations of
near-infrared astronomical spectrograph calibration. A TCS micro-comb generated in a fused
silica chip-based resonator whose line spacing of 22 GHz was stabilized and whose free-drift-
ing offset was tracked, was used for calibration of the NIRSPEC spectrograph [68]. Simultane-
ously, in a parallel demonstration a 24 GHz TCS comb, fully stabilized via pulsed driving
[69], was generated in a silicon nitride photonic-chip microresonator and used for calibration
of the GIANO-B spectrograph [70]. Recently, pulsed driving has enabled demonstrations of
octave-spanning near-infrared spectra, hence showing that coverage of the entire near-infrared
is possible [71,72]. Finally, dark TCS combs operating in the normal dispersion regime [57]
provide new opportunities given their potential integration in space-based observatories where
compactness and low power consumption are key ingredients.

Quantum technologies. We come now to the research topic that would have interested
Rodney Loudon the most: applications of CS frequency combs in quantum optics. When a Kerr
resonator is pumped weakly, frequency combs can be a quantum resource for the generation
of heralded single photons and energy-time entangled pairs [73], multiphoton entangled states
[74,75] and squeezed vacuum [76,77]. When pumped more strongly, the modes of a Kerr comb
can become phase-locked to form a stable, low-noise dissipative Kerr soliton, the TCS. Although
the TCS micro-comb has been extensively studied classically (see above), it is nonetheless
fundamentally governed by the dynamics of quantized processes: each resonator mode is
coupled to every other mode through a four-photon interaction. When these quantum processes
can be harnessed, TCS micro-combs can open a pathway toward the experimental realization of
a multimode quantum resource in a scalable, chip-integrated platform. Fully quantum-optical
properties of TCS micro-combs have now been directly observed first in the quantum-limited
timing jitter and quantum diffusion of the TCS state [78] and then in quantum correlations of
a multimode Gaussian state leading to the prediction of an all-to-all entanglement for this state
[79].

6. Conclusions
Cavity Solitons, a class of dissipative localized solutions observed in photonic devices when
coherent light propagates through a Kerr nonlinear medium in an optical cavity, have come
a long way from their first prediction 30 years ago at the University of Strathclyde [19]. By
using the Lugiato-Lefever model, it was discovered that CSs balance diffraction (or dispersion)
with the Kerr nonlinearity, as happens for conservative solitons in the NLSE, but also the cavity
losses with the energy input of the laser driver, a feature that is typical of CSs [6]. Typical
CSs in Kerr or purely absorptive media require Turing instabilities leading to pattern solutions
that are bistable with homogeneous stationary states. The tails of CSs approach asymptotically
these homogeneous states while the peaks are very close to a single peak of the coexisting
pattern solution (see figures 2,5). All these CSs features, first investigated in the diffractive case
of the LLE, survive unaltered in the Kerr micro-resonator [34] and fibre loops [29] cases with
group velocity dispersion instead of diffraction, the TCSs. This is the important message of this
review paper. There is no need to introduce new names like ‘dissipative Kerr solitons’ [15,16] to
describe well-established CSs of the LLE.

CSs and TCSs are universal features in nonlinear, quantum optical and photonic systems
and have been found in VCSELs [27], in lasers with saturable absorbers [80,81], in the presence
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of higher-order dispersion [82–84], of vectorial cases with two-polarizations [85], of quadratic
nonlinearities [86,87], of three-level media with two drivings and electromagnetically induced
transparency [88] and of laser systems [89,90], to cite a few examples. Dissipative solitons are
also found in Fabry–Perot cavities [91,92] and single mirror feedback optical configurations
[7,8].

Since the experimental demonstration of TCSs [29], the number of applications of photonic
devices using CS-based optical frequency combs has exploded: wave demultiplexing in optical
communications, frequency standards, optical clocks, future GPS, astrocombs and quantum
optic technologies based on micro-combs are just a few of the examples that we have described
in §5. We expect these to continue to grow in the coming decades as technologies for integrated
devices further develop. CS-based micro-combs are ideal for the processes of miniaturization
and device integration.
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Appendix
Starting from equations (2.1) and (2.2), we complete here the derivation of the LLE in the
standard mean field limit (MFL ) approximation. In order to force the boundary condition (2.2)
into the propagation (2.1) , the usual MFL transformation is entered

(A 1)

z′ = zt′ = t + Λ − Lc zL .

Under the condition (8.1), we obtain

(A 2)∂z + nc ∂t = ∂z′ + Λ − LcL ∂t′ + nc ∂t′ = ∂z′ + Λ + (n − 1)LcL ∂t′ .

By introducing the new field variable F such that

(A 3)F = ΓE + TEI zL with Γ = exp DzL
we obtain

(A 4)

∂t′F + cLΛ + (n − 1)L ∂z′F =

 cLΛ + (n − 1)L DL F − TEI zL + Γ i 1
2k∇2E + iη |E |2E + TEI 1L .
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The longitudinal boundary conditions (2.2) are now transformed into

(A 5)F(x, y, 0, t′) = F(x, y, L, t′)
providing a condition of periodicity for the field at the same time t′ (synchronous boundary
conditions). Under the MFL assumptions of Θ and 1/(2k) being O(ε) ≪ 1 one obtains

(A 6)D ≈ − T2 − iΘ + i Λ − L2k ∇2 Γ ≈ 1 + DL z
since

(A 7)ln R=ln 1 − T≈ln 1 − T2 ≈ −T2 .

At the first order in ε one gets

(A 8)

∂t′F + cLΛ + (n − 1)L ∂z′F =

− c T /2
Λ + (n − 1)L F − i c ΘΛ + (n − 1)L Fj + i c(Λ − L)

2k[Λ + (n − 1)L]∇2F
+ c TΛ + (n − 1)L EI + c LΛ + (n − 1)L iη |E |2E .

By introducing the new convenient parameters

(A 9)τ = Λ + (n − 1)Lc ; d = Λ − L
2k ;

one obtains:

(A 10)τ ∂t′F + L ∂z′F = −(T/2)F − iΘF + id∇2F + iLη|E|2 + TEI.
Since the new longitudinal boundary condition (8.5) is now synchronous and periodic, one can
use an expansion in longitudinal Fourier modes. However, under the MFL conditions, only the
longitudinal mode closest to ω has components different from zero. This mode corresponds to
a zero longitudinal frequency so that ∂z′F = 0. Finally, we note that Γ at zeroth order is one so
that F ≈ E, we divide the equation by T/2, consider L = O(T/2) and introduce the renormalized
parameters:

(A 11)θ = ΘT/2 ; a = Λ − LkT ; κ = T
2τ

to obtain:

(A 12)∂κt′E = EI − (1 + iθ)E + iη|E|2E + ia∇2E.

We note that in the transverse case above we considered a single longitudinal mode of the
cavity. When deriving the LLE in the time domain, instead, one considers a single transverse
mode but a very large number of longitudinal cavity modes. Each longitudinal mode is
considered to be slowly varying and with a cavity linewidth much smaller than the free spectral
range. In this case, a temporal LLE (2.8 ) can be obtained under appropriate MFL conditions
[14 ].
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