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Quantum retrodiction, in which the state of a
quantum system prior to a measurement is assigned
based on the results of that measurement, has had
a long history and has been used in quantum optics
research for decades. Here we summarize the theory
and point out some of the more interesting results,
before applying the theory to state identification
from multiple shots of an experiment. One surprising
result is that we show that a photodetector with
low quantum efficiency can discriminate between
photonic states better than a detector with a higher
efficiency.

This article is part of the theme issue ‘The
quantum theory of light’.

1. Introduction
Our world is ordered in time. Not only is it ordered,
but we also perceive an apparent arrow. We often have
information about a consecutive set of events that we
call the past, but we have no such information about
other consecutive events, which we call the future. We
have to predict the future using a set of physical laws.

However, the laws of physics for closed systems
show no such time-directionality. This does not matter
for many classical physical systems. Given a set of
conditions at a particular time we can solve the
equations of motion either forwards in time to get the
future state of the system, or backwards in time to find
out about the past, if we do not know it. We build
directionality into these solutions via the principle of
(strong) causality, which states that effect follows cause,
or more generally that no event can have an effect
on anything outside its future light cone. A weaker
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causality principle is often applied to state preparation and measurement in quantum physics,
one which states simply that information cannot travel outside the light cone.

The appeal of the strong causality principle can bias our theories. This bias has, in the
past, led to a sense of the immutability of probability that was partly behind the slow path
to the acceptance of Bayesianism in statistics [1–3]. It is certainly inherent in the standard
formalism of quantum physics, in which a prepared state evolves forwards in time and is
measured later by a measuring device. The bias of strong causality provides the evolved
prepared state with a sheen of apparent realism, but affects nothing measurable. We call
the standard formalism predictive quantum mechanics to distinguish it from the retrodictive
formalism that we will introduce and describe. Retrodiction in quantum physics has a long
history [4–6], reignited in the late 1990s as quantum optics experimental techniques began to
catch up with earlier theoretical progress. Projection synthesis experiments became possible,
which led to the development of the quantum scissors device [7], the internal measurements of
which can be interpreted as sending a quantum state backwards in time to form the output of
the device. Applied more widely, this principle led to the basics of retrodictive quantum theory
[8–10]. Formalism has since been applied in both theory and experiments to retrodicting atomic
states [11,12], quantum optical communication [13–15], micromaser field measurements [16,17],
quantum state engineering [18,19], fidelities in postselection [20], generalized measurements
[21], quantum imaging experiments [22–26], the mean king problem [27], a generalization
of the Gleason–Busch theorem [28], photon trajectories in interferometers [29], interspersed
with developments of the fundamental theory [30,31] and the discovery of the retrodictive
master equation [32]. The more philosophical aspects of the theory were covered in [33].
More recently there have been significant applications to quantum information, providing a
retrodictive fluctuation theorem and entropy bounds [34,35], to conditional expectations and
smoothing [36], in quantum computing [37], to time-reversal symmetry with priors [38] and to
the photostatistics of Gaussian states [39].

This paper is organized as follows. In §2, we briefly describe the standard predictive
formalism of quantum physics and then move to the retrodictive form of the theory. In the next
section, we show the results of applying the theory to optical attenuation and amplification.
We will necessarily be brief, concentrating on results rather than detailing the full calculations,
but will direct the reader to the appropriate references for these. In §4, we consider applying
the principles of retrodictive quantum physics to multiple shots of an experiment, deriving new
results that provide an intuitive picture of how we find information about a quantum state,
before presenting our conclusions.

2. Predictive and retrodictive quantum mechanics
Consider a system that is prepared at some time tp in a quantum state |ψ⟩ and later (at tm)
measured to be in a quantum state |ϕ⟩. If no evolution occurs, then in predictive quantum
mechanics the state of the system between the preparation and measurement times is |ψ⟩. Attm, the Copenhagen-inspired collapse occurs and the state changes abruptly. Quantum physics
allows us to calculate the probability that the measured state is |ϕ⟩ as

(2.1)|⟨ϕ |ψ⟩ |2 .

So far—so standard, but we note now that there is no access allowed to the state between
the two times. Any extraction of information about the state between the preparation and
measurement events would amount to an intermediate measurement, so in reality we know
nothing about the state between the two events. If such a collapse occurred, it could have done
so at any time, without affecting the probability. This collapse-time independence of probability
is what allows us to choose, if we wish, the retrodictive formalism, in which the collapse occurs
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at the preparation time. The state between preparation and measurement is then the measured
state |ϕ⟩ (figure 1).

(a) Probabilities in predictive quantum mechanics
More generally we can describe a thought experiment in which a preparation device operated
by Alice prepares quantum states of a system that are later measured by a measurement device
owned by Bob. We follow here a set of arguments that first appeared in [10]. We assume that
the system evolves between preparation and measurement, but neither closed nor open system
evolution changes the structure of the theory, so we leave its explicit consideration for now. The
set of possible states prepared by the device is {ρipred}. In a single shot of the experiment, one
of the set is prepared with a priori probability piap and the preparation outcome, i, is noted by
Alice (throughout this manuscript the subscript i always refers to a preparation outcome). The
superscript reminds us that the state is the one that we would normally assign to the system in
predictive quantum mechanics. Bob does not know the preparation outcome, but he measures
the state of the system that he receives. Prior to his measurement his best guess of the prepared
state is the a priori density operator,

(2.2)ρ ap = ∑i pi ap ρi pred .

We say that the preparation is unbiased if this density operator is proportional to the identity
operator for the system, but this will not normally be the case.

Bob’s measurement device has outcomes j (similarly, throughout this manuscript the
subscript j always refers to a measurement outcome) that correspond to one of a set of positive,
hermitian probability operators1 {πj}. In a single shot of the experiment, the state is measured
and the measurement outcome, j, is noted by Bob. We normally require there to be a measure-
ment result, no matter the prepared state, so this renders Bob’s measurement unbiased, which
provides a condition on the measurement probability operators,

(2.3)∑j πj = I .

In predictive quantum mechanics, the central task is to determine the probabilities of later
measurement results given the preparation outcome. We can do this via the predictive
conditional probability that Bob obtains the measurement result j, given that Alice’s prepara-
tion event was i,

(2.4)p(j | i) = Tr[ρi pred πj],
which is effectively the standard Born probability rule.

(b) Probabilities in retrodictive quantum mechanics
In retrodictive quantum mechanics, the central task is to determine the probabilities of earlier
preparation outcomes given the result of a measurement, in other words to determine retrodic-
tive conditional probabilities. We would like to be able to write these in terms of a retrodictive
state based on the measurement result. To clarify where the different symmetries of the system
enter, we first consider the situation where the preparation device is unbiased. Then we can use
the a priori density operator to define a preparation device version of the measurement device
probability operator,

1The set of generalized measurement operators goes by several names, of which two are probability operator measure and
positive operator-valued measure. We prefer here the term probability operators as it is descriptive of what they provide.
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(2.5)ξ i = Dpi ap ρi pred ,

with D the system state space dimension, such that

(2.6)∑i ξ i = D∑i pi ap ρi pred = I .

We would like to use this operator to write a retrodictive conditional probability based on a
retrodictive state in the same way as in equation (2.4),

(2.7)p(i |j) = Tr ρj retr ξi ,

so that the differing temporal orders implied by the ordering of the indices in equations (2.7)
and (2.4) align with the idea that we predict future events based on past ones and retrodict in
the opposite temporal order. Bayes’ theorem [1,3,40] states that the retrodictive and predictive
conditional probabilities are related by

(2.8)p(i |j) =
p(j | i)pi ap pj meas ,

where pjmeas is the prior probability of measurement result j. We simply substitute equation (2.4)
and use equations (2.5) and (2.6) noting that pjmeas can be written

(2.9)pj meas = TrπjD ,

to find that we can indeed write the retrodictive conditional probability in the form of equation
(2.7), provided that we define the retrodictive state as

(2.10)ρj retr = πj
Trπj ,

simply a renormalized form of the probability operator.
For biased sources, which do not satisfy equation (2.6) we can define a set of operators,

(2.11)λ i = pi ap ρi pred ,

and again use Bayes’ theorem and our definition of the retrodictive state to write

(2.12)p(i |j) =
Tr ρj retr λ i
∑k Tr ρj retr λk .

Note the lack of symmetry with the predictive conditional probability in equation (2.4). This is
not any form of intrinsic time asymmetry in quantum mechanics, but is one imposed by the

|ψñ

|ψñ

|ψñ |φñ

|ψñ |φñ

|φñ

|φñ|φñ

tp

tp

tp

tm

tm

tm

time

Figure 1. Schematic showing the standard predictive viewpoint with a collapse at the measurement time (top), an
intermediate viewpoint (middle) and the fully retrodictive one (bottom), where the collapse occurs immediately after
preparation.
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boundary condition of the biased source. We could equally well use a biased measurement and
obtain fully symmetric forms of both the predictive and retrodictive conditional probabilities
[30,31], but the added complication is not required here.

(c) Evolution
Evolution between preparation and measurement is easily accommodated. Both closed and
open systems evolution in retrodiction are based on the principle of collapse-time independ-
ence.

(i) Closed systems

Consider figure 2, which shows the standard predictive picture in which a state is prepared
at time tp and evolves forwards in time until the collapse at the measurement time tm. As the
system is closed, the evolution is unitary. The predictive state evolved forwards in time to the
measurement time is

(2.13)ρi pred (tm) = U(tm − tp)ρi pred (tp)U†(tm − tp),

where for a system with a time-independent Hamiltonian H the unitary evolution operator is

(2.14)U(t) = e−iHt / ℏ .

The system evolves according to the Schrödinger equation for a duration tm − tp before
measurement. The predictive conditional probability is given by the evolved version of
equation (2.4),

(2.15)p(j | i) = Tr[ρi pred (tm)πj] .

Note that we can use the cyclic property of the trace to push the evolution on to the probability
operator, where it becomes reverse time evolution and we can write the probability operator,
reverse time-evolved to the preparation time as

(2.16)πj(tp) = U†(tm − tp)πjU(tm − tp)

(2.17)= Tr πj ρj retr (tp),

so that we can write the retrodictive conditional probability as

(2.18)p(i |j) =
Tr ρj retr (tp)λ i
∑k Tr ρj retr (tp)λk ,

with a collapse occurring at the preparation time. A simpler formula, analogous to equation
(2.7), can be written for unbiased sources. We further note that we could have chosen to divide
the evolution at some intermediate collapse time so that

(2.19)U(tm − tp) = U(tm − t)U(t − tp) .

Then part of the evolution can be backwards from the measurement time and another part
forwards from the preparation, each to the collapse time t in the middle. All probabilities
remain unaffected no matter what this time is. We can even include the evolution as part of
either the preparation or the measurement devices.
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(ii) Open systems

Open system evolution is not unitary. It causes pure initial states to lose information to the
environment to become mixed. This renders it not time reversible, which would appear to make
it more challenging for retrodiction. The evolution of density operators forwards in time is
normally described using a Liouville–von Neumann master equation for the density operator
which, for Born-Markov type evolution takes the form

(2.20)ρ̇i pred 
= −iℏ H, ρi pred + ∑q 2Aqρi pred Aq† − Aq†Aqρi pred − ρi pred Aq†Aq ,

where H is the system Hamiltonian and Aq is a system operator. We can now use the principle
of collapse-time independence to derive a retrodictive version of the master equation. We follow
the argument given in [32]; the reader should consult there for more details. We begin by noting
that the predictive conditional probability given by equation (2.4) should not depend on the
collapse time. This means that

(2.21)∂
∂tcp(j | i) = ∂

∂tcTr[ρi pred (tc)πj(tc)] = 0,

where the predictive density operator is evolved forwards in time from the preparation time
and the probability operator is evolved backwards in time from the measurement time, each to
the collapse time t, somewhere in the middle. This means that

(2.22)Tr[ ∂∂t ρi pred (t) πj(t)] = − Tr[ρi pred (t) ∂∂t πj(t) ] .

We can use the predictive master equation (2.20) for the derivative on the left-hand side and then
employ the cyclic property of the trace to see that the evolution equation for the probability operator
is

(2.23)∂
∂tπj = − iℏ H, πj + ∑q 2Aq†πjAq − Aq†Aqπj − πjAq†Aq .

This form is such that it ensures that at all times the sum of all probability operators is the
identity, according to equation (2.3). To obtain the retrodictive master equation, we normalize
according to equation (2.10), to obtain

(2.24)

∂
∂tρj retr = − iℏ H, ρj retr + ∑q 2Aq†ρj retr Aq − Aq†Aqρj retr − ρj retr Aq†Aq

− 2ρj retr Tr ρj retr ∑q [Aq†, Aq] ,

ρ
i
predˆ

ρ
i
predˆ

ρ
i
predˆ

pjˆ

pjˆ

pjˆ

tmtp

tp

tp tm

tm

U(tm – tp) ρi

pred U†(tm – tp)
ˆ ˆ ˆ

U†(tm – t) ρ
j

retr U(tm – t)ˆ ˆ ˆ

U†(tm – tp) ρj

retr U(tm – tp)
ˆ ˆ ˆ

U(t – tp) ρi

pred U†(t – tp)
ˆ ˆ ˆ

time

Figure 2. Schematic showing how evolution affects the states for a closed system in the predictive picture (top), an
intermediate picture (middle) and the retrodictive picture (bottom).
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where the nonlinear term in the retrodictive density operator is a consequence of the renormali-
zation. This master equation preserves the trace of the retrodictive density operator and ensures
that it is non-negative definite. We solve it in the reverse time direction. Finally in this section,
we note that there are other approaches that treat open systems retrodictive evolution more in
the manner of closed systems based on thermofields [41] and on Fano diagonalization [42], but
the master-equation approach described above is in more common usage.

3. A simple example: optical amplification and attenuation
We show in this section one example of the application of retrodiction to a simple quantum
optical system. There are many others in the references. This particular example will provide
some of the background for the next section on multiple measurements.

In classical physics noiseless optical amplification and attenuation are reverse processes.
They each result in multiplying the optical signal by a factor—the gain G or the loss K. One can
be used to undo the effect of the other on an optical field if the gain and loss of the separate
two devices are related by G = 1 / K. This is not the case in quantum physics. Some very general
considerations mean that deterministic amplification cannot be performed without adding extra
noise photons to the signal, a minimum average number of G − 1 [43–46]. This automatically
degrades signal recovery if we try to reamplify an attenuated signal but, in fact, it simply
guarantees that an amplifier cannot recreate (or clone) information lost to the environment.
The amplifier and attenuator models that we describe were first introduced by Glauber [47]
and are described in more detail elsewhere [48,49]. Here we consider the retrodictive forms
of these processes and find a surprising, somewhat pleasing, equivalence that restores the
reverse natures of amplification and attenuation in quantum physics. We then apply this to the
detection of optical signals by an imperfect detector.

We begin by noting that the predictive master equations for an optical attenuator and
amplifier are

(3.1)ρ̇(t) = γN(T) 2a†ρa − aa†ρ − ρaa† + γ N(T) + 1 2aρa† − a†aρ − ρa†a ,

for the attenuator and

(3.2)ρ̇(t) = γ N(T) + 1 2a†ρa − aa†ρ − ρaa† + γN(T) 2aρa† − a†aρ − ρa†a ,

for the amplifier, where in these equations we have suppressed the superscript denoting that
they apply to predictive density operators only. The parameter γ is related to the attenuator loss,K = e−2γt and the amplifier gain, G = e2γt. The factor N(T) is a thermal excitation function

(3.3)N(T) = 1eℏω / kBT − 1
≥ 0,

which provides the excess noise in the attenuator and amplifier, characterized by the optical
angular frequency and a noise temperature T. Both γ and N(T) encode the physical attributes
of the amplifier and are particular to each device. An amplifier (attenuator) with a larger γ
amplifies (attenuates) more quickly and one with a larger N adds more noise. The equations
above seem quite symmetrical, but their effect is not. If a vacuum state is attenuated we can
solve equation (3.1) to see that the output of the device is noise photons, a thermal state of mean
photon number N(1 − K),

(3.4)ρ att 
 pred = 1N(1 − K) + 1 ∑n = 0

∞ N(1 − K)N(1 − K) + 1
n |n⟩⟨n | ,

which can be simply the vacuum state if no excess noise photons are added (N = 0). Conversely
if a vacuum state is amplified, the solution to equation (3.2) shows that the output is also a
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thermal state, but with a mean photon number (N + 1) (G − 1), which has non-zero minimumG − 1 for N = 0.
A simple application of the procedure leading to equation (2.24) to the equation for the

attenuator gives

(3.5)

ρ̇  retr 
(t) = γ N(T) + 1 2a†ρ retr a − aa†ρ  retr − ρretraa†

+ γN(T) 2aρ retr a† − a†aρ retr − ρ retr a†a ,

which has precisely the same format as equation (3.2). If we had started with this predictive
equation we would have found a retrodictive form identical to equation (3.1). This shows our
equivalence; the detailed proof is found in the appendix of [14]. The above forms of predictive
and retrodictive master equation are required to guarantee that the conditional probabilities
are consistent. There are other simple proofs of the equivalence based on comparison of matrix
elements [13,14].

The equation for the retrodictive attenuator is particularly useful, as it can be applied
directly to detection by an inefficent photodetector. If we detect a particular number of
photocounts at a detector of quantum efficiency η, then to find the retrodictive state just prior
to the detector we simply amplify the state (adding the requisite amplifier noise). So if an
inefficient detector that adds no dark counts does not fire, this amounts to detecting in the
thermal state

(3.6)ρ det 
 retr = 1G ∑n = 0

∞ G − 1G n |n⟩⟨n | = η ∑n = 0

∞
(1 − η)n |n⟩⟨n | ,

where η = 1/G [8]. Any number of photons could have led to the detector not firing. If we
now add in preparation information we can find the retrodictive conditional probability that
particular states were prepared. Suppose, for example that only 0, 1 or 2 photons could have
been prepared, each with equal prior probability 1/3. We plot in figure 3 the retrodictive
conditional probability that each of these states was prepared, given that a detector of quantum
efficiency η did not fire. We see that for a perfect detector the vacuum state was prepared
with certainty. In the limit that the detector is very poor it becomes more likely that the one-
and two-photon states were prepared and that they converge on to the prior probabilities in
the poor-detector limit. Also plotted is the estimate of the mean photon number of the input.
This is zero for a perfect detector and grows as η decreases. It would be infinite for η = 0
(corresponding to the infinitely amplified vacuum state) but is suppressed by the limited state
space.

4. Retrodiction of prepared states from multiple measurements
As stated in §2b, the basic task of retrodictive quantum mechanics is to use the measured state
to determine the probability that a particular state was prepared. It is normally applicable to
single shots of an experiment, for which a retrodictive state can be assigned. If multiple shots
of an identical experiment are performed then different measurement outcomes can occur in
different shots and so different retrodictive states would be assigned each time. As we shall see,
however, the basic task can still be accomplished. There are two possible situations to consider.
In the first scenario, the probabilistic choice of prepared state is made once, at the beginning.
Afterwards the same preparation outcome occurs each time. This can occur by deliberate
design, but it is also the normal situation for channel discrimination in a quantum communica-
tion setting. The alternative situation has multiple independent shots of the experiment with
the same a priori density operator, but producing a new independent state consistent with this
density operator each time. We consider the first of these situations, before commenting briefly
on the second at the end of the section.
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Suppose that we perform two experiments in which the same state was produced by the
preparation device but with, in principle, different measurement outcomes 1 and 2. We must
treat each measurement as an equally good provider of information about the prepared state.
Therefore the best guess of the prepared state after the two shots’ shot is simply an equal
mixture of the two measured retrodictive states

(4.1)ρ(2) = 1
2 ρ1

 retr + ρ2
 retr = 1

2
π1

Trπ1
+ π2

Trπ2
,

where the superscript on the state indicates that this is the best guess of the state of each shot
after two measurements. The extension to more shots of the same identical state experiment is
straightforward. If there are N shots and outcome j occurs Nj times, the state is

(4.2)ρ(N) = 1N∑j Njρj retr ,

where N = ∑j Nj. The quantity Nj / N is our best, relative frequency-based, guess of the probabil-
ity that in further shots of the experiment we would obtain the result j. It is not necessarily
the same as the probability that the source produced state ρjretr, because we have not used
knowledge of which states could have been prepared. The state ρ(N) is the best guess of the
state produced in each of the N individual shots of the experiment. It is a necessarily limited
guess because it does not include any prior information about the source, neither the possible
prepared states nor their associated prior probabilities. In the following sections, we show how
we can obtain a better guess of the prepared state using Bayesian reasoning after each shot of
the experiment.

(a) Prior information and conditional probabilities
The retrodictive states above are mixtures of the states that are measured. The situation changes
if we have prior information about which states could have been prepared, even though the
retrodictive state in each shot of the experiment does not. We know the (biased or unbiased)
set of states that could have been prepared. If we have a source that produces a set of statesρipred with prior probabilities piap, the a priori density operator is given by equation (2.2). This is
the best guess of the state produced each time by the preparation device with no knowledge
of anything other than the states that could have been prepared and their prior probabilities.
Can we use our measurement to adjust our best guess of the state prepared when we have no
knowledge of the preparation outcome? The retrodictive states above will provide a guide to
the possible effects on our knowledge of the prepared state.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

P(η)

η

Figure 3. Input photon number state probability when the detector does not fire as a function of detector quantum
efficiency for equal prior probabilities of input states. Solid curves are, from top to bottom (green, blue, red), the probabilities
that 0, 1 or 2 photons were prepared. At the high-loss end all three states are equally likely. The dashed curve is the best
estimate of the mean photon number of the input.
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(b) Updating the prior state
We wish, by measurement, to retrodict the preparation event and hence the state that was
prepared by the source, based on both our prior knowledge of the source and on our measure-
ment result. We do not know the particular outcome i of the preparation process, just that it
was, by design, the same outcome in each shot. If we want to retrodict the prepared state of a
quantum system we should write the state in terms of those states which could possibly have
been prepared, so in general we write this density operator after N shots in the form

(4.3)ρ(N) = ∑i pi(N)ρi pred ,

where pi(N) is a representation of our belief that the state ρipred was prepared after N shots of the
experiment. Equation (2.2) is one example of this formula, after zero shots of the experiment
have been performed so that pi(0) = piap. This formulation provides a preferred ensemble for
retrodiction of the preparation event [50].2 We now proceed to show how the pi(N) are calculated
after N shots of the experiment.

We calculate the predictive conditional probabilities of particular measurement results j if
the preparation event was i via equation (2.4). Similarly, the overall probability that we get the
measurement result j without knowing the preparation outcome i is

(4.4)p(j) = ∑i pi(0)Tr(ρi pred πj) = Tr(ρ(0)πj),
with ρ(0) the initial a priori density operator from equation (2.2), with the superscript (0) to tell
us that it has not been updated. Bayes’ theorem provides the retrodictive conditional probabil-
ity p(1)(i|j), the probability that the prepared state was ρi given that the first measurement
outcome was j,

(4.5)p(1)(i|j) =
pi(0)p(j|i)
∑kpk(0)p(j|k)

=
pi(0)Tr(ρiπj)
∑kpk(0)Tr(ρkπj) =

pi(0)Tr(ρiπj)
Tr(ρ(0)πj) .

This set of conditional probabilities is of significant interest to us in that it can be inserted into
equation (4.3) to provide a new density operator that includes not only the prior information,
but also the update based on our measurement result, πj, via

(4.6)ρ̂j(1)
= ∑i p(1)(i|j)ρ̂i.

This is now the best guess of the prepared state that we can make without knowledge of
the preparation outcome. It is an update on the a priori density operator, which formed this
best guess prior to a shot of the experiment. It forms a kind of retrodicted prepared state, an
updated version after a measurement. In general it is not the same as the retrodictive state,
which is based solely on the single-shot measurement result.

(c) Repeat experiments with prior information
We have seen in the previous section that Bayes’ theorem allows us to define a new best
guess state after one experimental shot even if we have prior information about the states that
could have been prepared. At the first measurement outcome j1 occurs, which changes our
knowledge of the prepared state to that given by equation (4.6) with j1 substituted for j.

We now have a choice—almost a philosophical one. We could treat the second shot of the
experiment, with outcome j2, as independent of the first, with the same prior. If the outcome j2
is different from j1 the best guess for the state will be of similar form to equation (4.6), but will

2Conversely, if we want to predict the results of measurements or, more specifically, the state corresponding to the possible
measurement results it is calculationally advantageous to write the state in terms of those measurement results.
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represent a different state. We could sum the two best guess states and normalize, in a similar
manner to the procedure that produced equation (4.2). We then continue in the same fashion for
any later shots of the experiment. Such a procedure will not always converge on to one of the
prepared states (e.g. if the possible prepared states are not all orthogonal) because it introduces
frequentism into our previous Bayesian reasoning.

Instead we take Bayes’ theorem seriously and use the updated state from the first measure-
ment, equation (4.6), as our a priori state for the second shot of the experiment. All of the
predictive conditional probabilities remain the same, but the retrodictive ones become

(4.7)p(2)(i|j1, j2) =
pi(1)Tr(ρiπj2)
∑kpk(1)Tr(ρkπj2)

=
pi(1)Tr(ρiπj2)

Tr(ρj1
(1)πj2)

,

where pi(1) = p(1)(i|ji) is the ‘prior’ probability after one measurement result. We can use the
probabilities p(2)(i|j1, j2) to define a new best guess state for the preparation after two shots of
the experiment,

(4.8)ρ̂j1, j2

(2)
= ∑i p(2)(i|j1, j2)ρ̂i.

The extension to multiple measurements is straightforward. After N measurements the state is

(4.9)ρ̂j1, ...jN(N) = ∑i p(N)(i|j1, ...jN)ρ̂i.
By this method, we obtain a gradually improving guess of the prepared state that will eventu-
ally arrive at the state that was repeatedly prepared.

(i) Example: estimation of photonic states

Our example is based on imperfect measurements of optical fields with photodetectors. In some
cases, our formulation allows imperfect measurements to make a perfect retrodiction of the
prepared state when a perfect detector does not. Fundamentally this is a problem of estimating
states of the electromagnetic field using informationally incomplete measurements. Consider a
single-mode source that can be prepared in one of three Fock states, {|0⟩, |1⟩, |2⟩}. We assume that
each state is prepared with equal probability. The single mode is measured using a threshold
detector with efficiency η. This measurement has two outcomes: no photons detected (no-click)
and photons detected (click). The probability operator for no-click is π0 = ∑n = 0

2
(1 − η)n|n⟩⟨n|, while the

click probability operator is π1 = 1 − π0. These lead to retrodictive states given by the state-space
limited and renormalized equation (3.6) and its similarly limited renormalized complement

(4.10)

ρ0
 retr = 1

3 − 3η + η2 ∑n = 0

2
(1 − η)n |n⟩⟨n | ,

ρ1
 retr = |1⟩⟨1 | + (2 − η) |2⟩⟨2|

3 − η ,

corresponding to the amplified vacuum and complement vacuum states. We use these
measurements to condition the a priori density operator repeatedly via equation (4.9).

We perform a Monte Carlo simulation in which |1⟩ is repeatedly prepared, averaged over
3000 runs. Figure 4 shows the averaged fidelity of the best guess of the prepared state, from
equation (4.9), against number of detected states N. The fidelities are calculated for each of
the three possible prepared states {|0⟩, |1⟩, |2⟩}. In the two panels, the quantum efficiencies are
(i) η = 0.9 and (ii) η = 0.5. Both (i) and (ii) show similar trends in that the one-photon fidelity
increases with the number of copies, which demonstrates that measurement is able to estimate
the state accurately. The zero-photon fidelity rapidly decays and this occurs faster for η = 0.9.
This is because a single click is enough to indicate that the state is not the vacuum. An inter-
esting feature is that for small values of N, both the one- and two-photon fidelities increase,
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until eventually the two-photon fidelity begins to decay. In fact, initially the two-photon fidelity
increases faster than the one-photon fidelity. To understand this behaviour, we can examine
the retrodictive states, equation (4.10). If we register a click for low N, ⟨2|ρ1

retr|2⟩ is greater
than ⟨1|ρ1

retr|1⟩, which means a click is more likely to be associated with the state |2⟩ whenη < 1. However, after we are confident the state was not the vacuum, then not registering a
click makes us more confident that the state is actually the single-photon state, rather than a
two-photon state.

Another strange feature of figures 4a,b is that for large N, the fidelity of the correct state|1⟩ is greater for the poorer detector, η = 0.5, than for η = 0.9. A poorer detector seems to
identify the one-photon state more quickly. The same would be true if we had prepared the
two-photon state—a poorer detector would identify it more quickly. In fact there is an optimal
value of η between 0 and 1 that can be found from the retrodictive states that provides the best
distinguishability between the one- and two-photon states. Equation (4.10) shows that as η→ 0,
i.e. the feeble detector does not fire, no information is gained. On the other hand, as η→ 1, a
single firing excludes the vacuum state, but firing does not distinguish between the one- and
two-photon states. So the efficiency η must be large enough for the detector to fire occasionally
if photons are present. When it does not fire it preferentially picks out the one-photon state (the
weighting of the two-photon state is 1 − η smaller than that of the one-photon state in ρ0

retr). The
efficiency must also be sufficiently smaller than 1 so that it can preferentially pick out the higher
weighted two-photon state in ρ1

retr when the detector fires. This is the trade-off that determines
the best value of efficiency. The interplay between these two efficiency criteria suggests that an
adaptive Bayesian strategy may be better in principle [51], for example with a high value of η
used until the first click and then a lower one afterwards.

(d) Independent state choice
Finally we examine the case of choosing an independent state each time we do the experiment.
A single shot of the experiment provides the same results as §4a. The best guess of the prepared
state is given by equation (4.6), with the conditional probabilities given by equation (4.5). The
differences begin when we consider the second shot of the experiment. Because the preparation
outcome is in principle different (say i2) the second experiment does not necessarily tell us
anything about the first preparation. We cannot use either to update the prior probabilities
in the a priori density operator. After many shots of the experiment the detection results
will correspond simply to a detection-probability-weighted sum of the retrodictive states. The
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weightings will be such that the sum corresponds to the a priori density operator, but written in
the retrodictive basis, not the possible prepared states of the preparation basis.

5. Conclusions
Retrodictive quantum mechanics is almost 70 years old at the time of writing. In its modern
form, couched in the language of modern quantum measurement theory, it has been a useful
tool for the development of quantum optics and information. Even the spur for its resurgence,
the theoretical proposal of the quantum scissors device in 1998, led not only to a physical
realization, but also an unforeseen development of new forms of postselecting quantum
amplifiers that beat the traditional noise addition limit [52].

The first formulations of retrodiction were based on ensemble averages and so were more
akin to frequentism [4]. As quantum physics began to be applied to single systems this was
no longer adequate. If the state of a single quantum system can be thought of as a subjective
entity that depends on the information that an outside observer (preparer or measurer) has,
then many states can be defined that are consistent with the probabilistic mathematics of
quantum theory. Bayes’ theorem provides a natural relation between two sets of these states, the
predictive ones produced by a preparation device and the retrodictive states that are measured,
as it does for classical probabilities [10].

In this paper, we have reviewed the main results of retrodictive quantum mechanics, before
extending the theory towards an ensemble-based past, via independent measurements on
multiple versions of the same prepared state. The formalism allows an observer to retrodict
the prepared state from a knowledge of the states that could have been prepared and a set of
measurement results that do not distinguish them perfectly (or even very well, as our photon
example shows). This retrodicted prepared state forms a natural multi-shot-based counterpart
to the a priori state. We will apply this theory further, for example, to measuring non-orthogonal
states on the Bloch sphere, elsewhere.
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