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Abstract—This paper explores the increasing demand for
accurate and resilient multi-sensor fusion techniques, particularly
within 3D tracking systems enhanced by drone technology. Em-
ploying the adaptive kernel Kalman filter (AKKF) methodology
within the Stone Soup framework, our research seeks to develop
robust fusion approaches capable of seamlessly amalgamating
data from a multi-sensor arrangement with fixed ground sensors
and dynamic sensors mounted on drones. By capitalising on the
adaptive nature of the AKKF, we aim to refine the precision
and dependability of 3D object tracking in intricate scenarios.
Through empirical evaluations, we illustrate the effectiveness
of our proposed AKKF-based fusion strategies in enhancing
tracking performance within the Stone Soup framework, thus
contributing to the advancement of multi-sensor fusion method-
ologies within this framework.

Index Terms—Adaptive kernel Kalman filter; sensor fusion,
Stone Soup; 3D Tracking.

I. Introduction

In recent years, there has been a notable increase in de-
mand for accurate and robust multi-sensor fusion techniques,
particularly within 3D tracking systems employing drones [1].
This surge can be attributed to the proliferation of sensor
technologies and their integration into various applications,
from autonomous vehicles to surveillance systems. Drones,
equipped with sensors, offer distinct advantages in tracking
scenarios, providing dynamic viewpoints, swift repositioning
capabilities, and extensive coverage across large areas [2],
[3]. By integrating sensors on drones, a complementary rela-
tionship is established with fixed ground sensors, extending
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tracking range, enhancing visibility, and enabling adaptive
tracking strategies in dynamic environments. Furthermore,
drones possess the flexibility to navigate obstacles and access
remote or inaccessible areas, thereby improving the overall
effectiveness of the tracking system.

This paper addresses multi-sensor tracking scenarios involv-
ing fixed sensors on the ground and dynamic sensors mounted
on drones. This hybrid setup introduces unique challenges,
including disparate sensor characteristics, varying observation
geometries, and dynamic environmental conditions. Among
the plethora of fusion methods, the adaptive kernel Kalman
filter (AKKF) has emerged as a promising approach with
favourable computational complexity and offers an excellent
opportunity for parallelization [4], [5]. Herein, we concentrate
on implementing AKKF-based fusion methods within the
framework of Stone Soup [2], [6]. Our work builds upon
the foundations laid by the seminal paper “Adaptive Kernel
Kalman Filter Multi-Sensor Fusion” [7], which introduced the
theoretical underpinnings of AKKF-based fusion techniques.

We implement the published algorithms within the Stone
Soup platform for several reasons. Stone Soup offers a versatile
framework for algorithm development and evaluation, ensuring
reproducibility and transparency. The modular architecture of
Stone Soup allows for comprehensive testing across different
scenarios. Integrating the proposed algorithm into Stone Soup
extends its accessibility and facilitates comparative analyses
with other state-of-the-art methods.

Through empirical evaluations and comparative analyses,
we demonstrate the efficacy of the proposed AKKF-based
fusion methods in enhancing tracking performance across var-
ious scenarios, leveraging the contributions of flying drones.
Our contributions advance the state-of-the-art in multi-sensor
fusion techniques and provide valuable insights into the prac-
tical implementation of AKKF-based fusion methods within
the context of the Stone Soup framework.

In the subsequent sections, we delve into the technical
details of our approach, starting with a brief overview of the
AKKF-based fusion algorithms. We then describe the experi-
mental setup, present our results, and discuss the implications
of our findings. Finally, we conclude with remarks on future
research directions and potential applications of our work.

II. Application of the AKKF-based FusionMethods in Target
Tracking

In the depicted tracking scenario, a single target manoeu-
vres within the environment, as shown in Fig. 1, which is
generated using the Stone Soup framework. Alongside fixed
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Fig. 1: Integrated tracking system: single target tracking with fixed ground sensor and
drone in Stone Soup.

roadside base stations with predetermined positions, drones are
deployed to enhance monitoring and tracking. These drones
are equipped with global navigation satellite system (GNSS)
to precisely pinpoint their locations within the environment
and enable them to measure their altitude. As the target moves,
drones take flight to oversee and track the target’s movements
using different sensors, such as bearing-only or range-bearing
sensors. In this paper, fixed-wing drones flying in a circle
of constant radius are employed for tracking due to their
prolonged endurance, higher speeds and stability [8]. This
integration of drones introduces a dynamic element to the
tracking system, enabling flexible and adaptable surveillance
as the target traverses the area. By combining data from
fixed base stations and drones, the tracking system achieves
comprehensive coverage and real-time accuracy in monitoring
the target’s trajectory and movements.

Consider the following generic (linear or non-linear) dy-
namical state space model (DSSM), which can mathematically
describe this tracking scenario:

xk = f (xk−1,uk) , k = 1, . . . ,K (1)
yk,n = hk,n

(
xk, vk,n

)
, n = 1, . . . ,N. (2)

Here, xk represents the hidden state of the target at time
slot k, yk,n represents the observed signal from the target
at the n-th sensor node. The motion function is denoted as
f (·) and the measurement function of the n-th sensor node is
denoted as hn(·), with uk and vk,n representing the process and
measurement noise, respectively. The total number of sensors
N = ND + NG, ND represents the count of dynamic sensors
equipped on drones, while NG represents the number of fixed
ground sensors.

For model-based target tracking/localisation, Bayesian filter-
based tracking and triangulation-based localisation are com-
monly used methods. Bayesian filter-based tracking utilises
probabilistic models and recursive estimation, making it
well-suited for dynamic tracking and continuous updates.

Triangulation-based localisation uses geometric principles and
direct calculations from known references, typically applied
for static position estimation or with static reference points.
Bayesian filters can work with varying numbers of sensors and
excel in sensor fusion, whereas triangulation-based localisation
requires a specific number of sensors to solve the geometric
equations necessary for determining the object’s position;
the position cannot be uniquely determined if fewer sensors
are available than the minimum required. Based on these
differences, we estimate the hidden state recursively from a
Bayesian perspective to address the tracking scenario depicted
in Fig. 1. Specifically, the estimation of hidden states xk

is solved by constructing the posterior probability density
function (PDF) of hidden states based on all available infor-
mation, including the DSSM and received measurements, i.e.,
updating p(xk |y1:N,1:k). The AKKF uses the reproducing kernel
Hilbert space (RKHS) to transform the received measurements
into RKHS to address the issues of geometry arising from
triangulation based methods. In paper [7], we proposed two
fusion methods, which are summarised as follows.

A. Centralised Fusion

In centralised fusion, all current measurements yk,1:N and
measurement models hk,1:N(·) are transmitted from sensor
nodes to the fusion center (FC). The global measurement
model is then formulated at the FC as

Yk = Hk(xk,Vk) (3)

where Yk =
[
yk,1, . . . , yk,N

]T. The centralised fusion is realised
by applying the AKKF directly at the FC [7].

B. Semi-decentralised Fusion

Unlike centralised fusion, where all processing occurs ex-
clusively at the FC and requires real-time transmission of data
from all sensors to the FC, the semi-decentralised approach
proposed in [7] distributes local processing tasks among in-
dividual sensors. Here, each sensor computes local posterior
kernel weight vectors and covariance matrices based on in-
dividual measurements. The global kernel mean embedding
(KME) is then approximated at the FC using a weighted
combination of these local estimates, following Eqn. (37) and
Eqn. (38) in [7]. This semi-decentralised scheme not only
alleviates the computational load at the FC but also mitigates
bandwidth requirements by eliminating the need for real-time
transmission of all data to the FC. Additionally, it offers a
more modular approach to sensor networks, as the FC does not
require detailed knowledge of individual sensor characteristics.

III. Implementation in Stone Soup

Stone Soup [6], [9] is an open-source tracking and state
estimation framework following an object-orientated modular
approach to build tracking algorithms. This allows the utili-
sation of algorithmic components in a plug-and-play manner
without requiring a full understanding of the algorithms [10].
In this section, we will introduce the flow diagrams that imple-
ment AKKF-based centralised and semi-decentralised fusion

Wright, J. S., Sun, M., Davies, M. E., Proudler, I. K., & Hopgood, J. R. (2024). Implementation of AKKF-based multi-sensor fusion 
methods in Stone Soup. In 2024 27th International Conference on Information Fusion (FUSION) (pp. 1-7). IEEE. 
 https://doi.org/10.23919/fusion59988.2024.10706335



within Stone Soup, emphasizing their unique characteristics
and differences from the standard AKKF. Subsequently, we
will elucidate the new components devised in Stone Soup to
create these fusion schemes.

A. Flow Diagrams for AKKF Fusion in Stone Soup

The standard AKKF for single sensor single target tracking,
depicted in Fig. 5(a), operates across state space, measurement
space, and kernel space, encompassing three key modules.
Firstly, a predictor integrates prior and proposal information
at time k − 1. Subsequently, an updater employs the predicted
values to refine the kernel weight and covariance. Finally,
another updater generates the proposal state particles.

The centralised fusion AKKF, as illustrated in Fig. 5(b),
is a minor departure from the standard AKKF due to its
centralised processing approach. In this configuration, all three
modules, predictor, updater, and proposal particle generation,
are consolidated at the FC. This centralised architecture en-
ables information aggregation from multiple sensors, offering
advantages regarding global perception and decision-making.
One key distinction from the standard AKKF is the handling
of input measurements. Instead of processing measurements
from individual sensors, the centralised fusion AKKF oper-
ates on a combined vector comprising measurements from
all sensors. Moreover, the measurement model employed in
the centralised fusion AKKF is a global representation that
integrates information from all sensor measurement models.
By incorporating measurements and measurement model infor-
mation into a unified framework, the centralised fusion AKKF
can comprehensively view the target’s state and effectively ac-
count for variations in sensor characteristics and environmental
conditions, resulting in more reliable estimation outcomes.

As depicted in Fig. 5(c), the semi-decentralised fusion
AKKF operates at both local sensors and the FC. Initially,
the proposal particle generation and prediction modules are
processed at the FC. Subsequently, the update step across
measurement and kernel space is processed locally at the
sensor, culminating in calculating the updated kernel weight
mean vector and covariance matrix based on the locally
received measurements. These locally updated parameters are
then transmitted back to the FC for fusion, employing the
weighted Kullback-Leibler average (KLA) mechanism. The
semi-decentralised fusion AKKF introduces a hybrid approach
that combines decentralised processing at local sensors with
centralised fusion at the FC. Unlike the standard and cen-
tralised fusion AKKFs, which operate solely centrally, this
approach enables local sensor updates, reducing computational
burden and enhancing real-time responsiveness. Locally up-
dated parameters are transmitted to the FC for centralised
fusion using the weighted KLA, ensuring the final estimate
reflects the most reliable information from all sensors.

B. New Components in Stone Soup

Previous work [2] established the groundwork for
implementing standard AKKF within a single sensor
context. The components integrated the capabilities of

kernels, kernel states, the AKKF predictor and the
AKKF updater. Particularly of use in the context of the
fusion methods is the AdaptiveKernelKalmanUpdater.
This paper extends prior efforts by introducing
the Updaters required for multi-sensor fusion: the
CentralisedAdaptiveKernelKalmanUpdater and the
SemiDecentralisedAdaptiveKernelKalmanUpdater.
These two new components allow for the centralised and
semi-decentralised fusion methods to take measurements from
multiple sensors, process the measurements at the sensor and
communicate either the measurements for the centralised case
or the updated kernel weights and covariance to the fusion
centre in the fusion tracking loop, as depicted in the flow
diagram in Fig. 5.

The CentralisedAdaptiveKernelKalmanUpdater in-
herits from the AdaptiveKernelKalmanUpdater and modi-
fies the update() method to include the set of hypotheses (the
prediction, measurement pairs) for each sensor. The update
method continues with the combined sensor measurement
information following the standard AKKF Update. This is
the only required change to implement the centralised fusion
method.

The SemiDecentralisedAdaptiveKernelKalmanUpdater
similarly inherits from the AdaptiveKernelKalmanUpdater
and modifies the update() method. The Semi-decentralised
fusion processes the measurement on the sensor before
sending the mean vector and covariance matrix of kernel
weights information to the fusion centre. This is implemented
by running parallel single sensor Updaters before fusing the
combined kernel weights’ mean and covariance at the FC.

IV. Simulation Results

This paper uses constant-velocity (CV) motion model, fol-
lowing the ConstantVelocity class as shown in [11], to
approximate the target trajectory. For sensor configuration,
bearing-only sensors are deployed to gather observations from
the target. Drones are equipped with 3D angle-only sensors,
such as omnidirectional cameras capable of providing monoc-
ular vision. These cameras capture the target’s movements
from various angles. On the ground, 2D bearing-only sensors,
such as angle of arrival sensors, are utilised to obtain the
arrival angle from the target’s perspective. The bearing-only
observation models for the drones and ground sensors are
defined as (4a) and (4b), respectively [12].

yD
k,n =

θD
k,n

ϕD
k,n

 =
 arctan

ηk−η
D
k,n

ξk−ξ
D
k,n

− arctan
ζk−ζ

D
k,n√

(ηk−η
D
k,n)2+(ξk−ξD

k,n)2

 + vD
k,n, (4a)

yG
k,n = θ

G
k,n = arctan

ηk − η
G
n

ξk − ξ
G
n
+ vG

k,n. (4b)

Here, ξD
k,n, ηD

k,n and ζD
k,n represent the coordinates of the n-

th drone sensor, where n = 1, . . . ,ND, ξGn , ηG
n represent

the coordinates of the ground sensor, where n = 1, . . . ,NG.
The drones are equipped with GNSS, providing real-time
information for ξD

k,n, ηD
k,n and ζD

k,n. The 3D bearing yD
k,n consists
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(a)

(b)

(c)

(d)

Fig. 2: Tracking performance using different methodologies: (a) Centralised fusion; (b)
Semi- decentralised fusion; (c) The drone sensor only; (d) The ground sensor only.

(a)

(b)

(c)

(d)

Fig. 3: Tracking performance using different methodologies in Stone Soup: (a) Cen-
tralised fusion; (b) Semi-decentralised fusion; (c) The drone sensor only; (d) The ground
sensor only.
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of two components: θD
k,n and ϕD

k,n provide the vertical angle and
horizontal angle relative to the drone’s position, respectively.
The 2D bearing observation yG

k,n provides the angle relative to
the sensor’s position on the ground. ξk, ηk and ζk represent
the current coordinates of the target. As the target is assumed
to be moving on the flat ground, ζk = 0. The measurement
noise vD

k,n for drone sensors and vG
k,n for ground sensors, are

assumed to follow Gaussian distributions with zero mean,
vD

k,n ∼ N(0, σ2
DI2), vG

k,n ∼ N(0, σ2
G). These noise terms

capture the random fluctuations or errors introduced during
measurement.

In this simulation, the timestep in the motion model is
∆T = 1s, and the magnitude of the noise is set to be 1e − 2.
We consider a scenario featuring one ground sensor and one
drone sensor, with the measurement noise variance set as
σ2

G = 2.6e − 4 and σ2
D = 6.1e − 3. To initialise the tracking,

the prior distribution of the hidden state, i.e., x0, is set to
be Gaussian with mean x̄0 = [−0.05, 0.001, 0.7,−0.05]T and
covariance matrix P0 = diag[1e − 2, 2.5e − 5, 1e − 2, 1e − 4].
Figures 2 and 3 display the tracking performance obtained by
centralised fusion, semi-decentralised fusion, the drone sensor
only, and the ground sensor only using the quadratic kernel-
based AKKFs with the particle size set to 100, in MATLAB
2023a and Stone Soup respectively. Additionally, in Fig. 4, we
compare the average logarithmic mean squared error (LMSE)
performance obtained by running 100 Monte Carlo (MC)
simulations with particle sizes of 100 and 200.

From these simulation results, it is evident that filters using
a single sensor measurement lose track. The performance of
the ground sensor is inferior, mainly due to the sensor’s fixed
position at the end of the trajectory, which constrains the
sensor’s perspective and results in insufficient position infor-
mation based solely on received bearing measurements. The
drone, with its ability to cover a larger surveillance area and
exhibit higher flexibility than the fixed ground sensor, offers
distinct advantages in tracking scenarios. This is reflected in
the enhanced tracking performance observed when utilising
drone-based measurements. Fusion-based filters demonstrate
improved performance, highlighting the benefit of data fusion.
Further, the results exhibit a remarkable consistency between
the MATLAB 2023a and Stone Soup frameworks, demonstrat-
ing the validity and effectiveness of Stone Soup as a versatile
tool for addressing complex tracking challenges across various
scenarios and environments. Additionally, the Stone Soup
framework’s ability to replicate results from MATLAB simu-
lations further validates its suitability for practical deployment
in real-world tracking and surveillance applications.

V. Conclusions

This paper provides an implementation of fusion methods of
the AKKF algorithm in Stone Soup. We utilised and extended
existing AKKF components to incorporate the fusion updaters.
The new fusion algorithms provide extensions to the existing
AKKF algorithm for the multi-sensor use cases. Additionally,
this paper demonstrated the use of the AKKF algorithm with a
mixture of sensor modalities including moving sensors. This

Fig. 4: Average LMSE performance with different particle sizes. The error bars are
calculated as E(LMSE) ± Std(LMSE).

showed that Stone Soup is a very powerful framework for
implementing sophisticated scenarios, i.e., implementing 2D
and 3D scenarios, and decreases the complexity of introducing
additional sensors and sensor modalities.

The authors are interested in extending the AKKF further
[5], [13] by offering additional examples on the AKKF fusion
methods in the Stone Soup documentation [9].
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Fig. 5: Flow diagrams for (a) the standard AKKF, (b) the centralised Fusion AKKF and (c) the Semi-decentralised Fusion AKKF.
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