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Abstract

Degree heterogeneity and latent geometry, also referred to as popularity and similarity,

are key explanatory components underlying the structure of real-world networks. The rela-

tionship between these components and the statistical complexity of networks is not well

understood. We introduce a parsimonious normalised measure of statistical complexity for

networks. The measure is trivially 0 in regular graphs and we prove that this measure

tends to 0 in Erdös-Rényi random graphs in the thermodynamic limit. We go on to demon-

strate that greater complexity arises from the combination of heterogeneous and geomet-

ric components to the network structure than either on their own. Further, the levels of

complexity achieved are similar to those found in many real-world networks. However, we

also find that real-world networks establish connections in a way which increases com-

plexity and which our null models fail to explain. We study this using ten link growth mecha-

nisms and find that only one mechanism successfully and consistently replicates this

phenomenon– probabilities proportional to the exponential of the number of common

neighbours between two nodes. Common neighbours is a mechanism which implicitly

accounts for degree heterogeneity and latent geometry. This explains how a simple

mechanism facilitates the growth of statistical complexity in real-world networks.

Author summary

A statistically complex system is one which is neither regular nor random, but contains

diversity in components and structure. This departs from algorithmic complexity which

describes how difficult it is to explain information, but which is maximal for uniformly

random information. We provide a definition of statistical complexity for networks and

propose a normalised measure which satisfies that definition. We go on to explore the

relationship between statistical complexity and the two major components thought to

underlie network structure– the popularity of nodes in making connections (degree het-

erogeneity) and the geometric similarity of nodes. We find that the statistical complexity

of real-world networks agrees with a model which combines both components. We then

notice a positive relationship between the density of links in real-world networks and

their statistical complexity, which is not present in our modelling. We find that we can
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replicate this relationship, however, by growing the network using link probability which

is based on a pair of nodes’ number of common neighbours. We conclude that statistical

complexity is a natural by-product of uncomplicated network mechanisms, returning to

the old adage that complexity arises from simplicity.

Introduction

Complexity is a word used often in its common meaning within various scientific disciplines

to describe the size and multiplicity of facets and scales within a given real-world system. In

such cases, it is often used without reference to a specific measurement, or measurements are

focused on counting the numbers of such facets and scales which are apparent in that system.

In computer science, complexity has two specific definitions. Firstly, computational complex-

ity describes the shortest amount of processing time (as a function of input size) it takes to

derive the desired output from an algorithm [1]. Secondly, Kolmogorov complexity is a mea-

sure of the complexity of information based on the size of the smallest piece of code required

to derive that information as an output [2]. There is no systematic way of finding such a short-

est piece of code and proving that it is the shortest piece of code to compute a generic piece of

information [3], however Kolmogorov complexity is related to measures of entropy, based on

the predictability of information. For a given size of information, n, it is understood that ran-

domly generated pieces of information would require the largest amount of code to be deter-

ministically reproduced, while completely regular information, e.g. aaa. . .a written n times,

would take the least amount of code to reproduce– “Write ‘a’ n times”. In this way there is a

significant interest in framing complexity in terms of information entropy, since entropy simi-

larly dictates a scale between regular and random structures.

Yet, while randomly generated information may be difficult to deterministically reproduce,

it is not structurally complex in a statistical sense. Indeed, the statistical properties of randomly

generated information are defined a-priori and are evidently simple. This led the field of

dynamical systems to lay out a different conceptual framework of complexity. In this view, a

measure of complexity should go to zero for regular and random structures in the thermody-

namic limit (as number of components goes to infinity), while being higher for systems pre-

senting non-trivial and diverse correlations [4, 5]. One particularly important point of

developing measures of statistical complexity is that using a scale between regular and random

with complexity somewhere in the middle, a common approach from an information theoretic

angle, does not allow for a useful measure of complexity itself [4, 5]. Instead, we need a scale

between the simple (regularity and randomness both having uniform generational principles)

and the complex, allowing us to directly measure the extent of complexity in any given system.

When it comes to studying complexity in networks, we are concerned with the complexity

of interactions– essentially, how diverse the connectivity patterns in the network are. While

others borrow from the algorithmic view of complexity [6, 7], here we are concerned with the

statistical complexity of networks. A notable early work on statistical complexity of networks

introduced a measure called the network diversity score and provided a comprehensive over-

view of other complexity and entropy measures of networks and their limitations [8]. Another

work considered statistical complexity in networks from an information theoretic angle, multi-

plying Jensen Shannon divergence of a network with network entropy [9]. Neither of these

works, however, provides a treatment of statistical complexity as previously described, and the

measurements have limitations partly owing to lack of normalisation to network size and/or

density. In this study, we establish a normalisation of Hierarchical Complexity (NHC) as a
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network statistical complexity measure. In contrast to the network diversity score, NHC is a

parsimonious calculation of a single feature of a network, rather than the product of four dif-

ferent measures [10]. In contrast to the measure in [9] it does not require a reference graph,

displays strong independence to network density and vanishes in the thermodynamic limit for

Erdös-Rényi random graphs.

The hierarchy referred to here is the degree hierarchy of the network. A hierarchically com-

plex system is one for which diversity of connectivity patterns are found across hierarchical

levels (either individual degrees or ranges of degrees called tiers). Its introduction was moti-

vated by the need to measure the complicated hierarchical networks of brain function and

structure where it was expected that diverse functionality would be reflected in diverse connec-

tivity patterns. HC has so far seen limited application in fairly small (n< 100) macro-scale

human brain networks [10–14] and a corpus of real-world networks of varied origin

(n< 5000) [15].

A major issue with the generalisability of the HC measure is that it is not normalised by

number of nodes or number of edges. Two similarly derived networks with different numbers

of nodes or edges can be expected to have different values of HC. This paper addresses this

issue by introducing a normalised HC (NHC) measure. We show mathematically that this

measure is bounded above by 2 and satisfies the statistical complexity definition of being

asymptotically zero for Erdös-Rényi random graphs (an appropriate equivalent to randomness

in dynamical systems). We then go on to explore results of this normalisation on different

types of random graphs with the two most evident structural properties relevant to real-world

networks, hierarchy and geometry. Hierarchy here relates to the distribution of node fitness

[16] or popularity [17]. Geometry relates to the latent space of similarities between nodes

[18, 19]. Combining hierarchy and geometry successfully captures many of the properties of

real-world networks [20], but whether these properties are enough to explain the statistical

complexity of networks is not known. After this we go on to explore NHC in real-world net-

works. Here, an unexpected relationship between NHC and density is noted. Finally, we

explore explanations for this relationship by applying different kinds of link growth mecha-

nisms based on degrees and overlap of node neighbourhoods. Combined, the results reveal

non-trivial hierarchical complexity in real-world networks and we open the way for more reli-

able and robust applications of hierarchical complexity across network domains.

Theory

Key themes within this work are encapsulated within the image in Fig 1 which illustrates hier-

archical complexity arising from a combination of geometric and hierarchical structure.

Henceforth, unless specified otherwise, let G be a graph with n nodes, m edges and density

d = 2m/n(n − 1).

Hierarchical complexity

To compute hierarchical complexity, we first define the Neighbourhood Degree Sequence
(NDS) of a node i of degree k as

si ¼ fsi1; si2; � � � ; sikg ð1Þ

where the sij’s are the degree of the nodes to which i is connected such that si1� si2, . . .,�sik.
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Then, for all ℓ nodes of degree k, we can stack their NDSs into an ℓ × k matrix:

SkðGÞ ¼

s11 s12 � � � s1k

s21 s22 � � � s2k

..

. ..
. . .

. ..
.

sl1 sl2 � � � slk

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð2Þ

The original definition of hierarchical complexity for degree k takes the variance over the

columns of this matrix and then averages across columns:

RkðGÞ ¼
Pk

j¼1
s2
j

k
ð3Þ

where s2
j is the variance of the jth column of Sk(G). The global measure is then the average of

this over degrees:

RðGÞ ¼
1

jD2j

X

k2D2

RkðGÞ: ð4Þ

where D2 is the set of degrees in the graph taken by at least two nodes (since variance is only

meaningful over at least two elements).

Normalised hierarchical complexity

It is clear that the above definition of hierarchical complexity depends on network size. Net-

works of larger size have greater potential for larger degrees, which will influence the variances

within Eq (3). Indeed, the maximum variance of numbers in [1, n − 1] can occur with the sam-

ple {1, n − 1} (or any equal number of 1s and n − 1s) which has variance ((n − 2)/2)2. Further-

more, computations have demonstrated that hierarchical complexity also correlates with

number of edges.

Fig 1. On the left we see a geometric graph with a regular structure. Node shapes indicate distinct degrees while colours indicate distinct, repeating neighbourhood

degree sequences. On the right, nodes are randomly assigned different numbers of connections. These connections are made to the closest nodes, maintaining a

geometric nature, but now we see the diversity of structure this opens up. Again, different shapes indicate distinct degrees, but now there are many unique

neighbourhood degree sequences which remain colourless. This diversity reflects a higher hierarchical complexity.

https://doi.org/10.1371/journal.pcsy.0000026.g001
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Lack of normalisation to number of nodes and/or density is not unusual in network science.

Indeed, the latter is essentially common place– consider two of the most widely considered

network metrics, the global clustering coefficient and global efficiency which are both maxi-

mised in complete graphs. It is then of note that we can propose the following as a normalised

measure of hierarchical complexity to both n and d.

Definition 1. Let G be a network, we define the k-th normalised hierarchical complexity as:

R̂kðGÞ ¼

Pk
j¼1
sj

ð1 � dÞm
; if m≠ 0 and d≠ 1

0; if m ¼ 0 or d ¼ 1

8
>><

>>:

ð5Þ

where d is the density of G, m is the number of edges in G, and σj is the standard deviation of the
jth column of Sk(G), that is, the matrix where each row is the ordered degree sequence of a node
of degree k. Thus we propose the normalised global measure as

R̂ðGÞ ¼
1

jD2j

X

k2D2

R̂kðGÞ: ð6Þ

To justify this normalisation, we note that the normalised hierarchical complexity is

bounded.

Theorem 1. The normalised hierarchical complexity is bounded above by 2, that is, R̂ðGÞ �
2 for every graph G.

Proof. Consider R̂k. Let dj be the difference of the max and min elements of the j-th column

of Sk(G), so sj �
dj
2
. Let a ¼

Pk
j¼1

dj.

Now, let xj be the maximum degree of the j’th column of Sk(G). We claim that

2m �
Pk

j¼1
xj. If x1, . . ., xk are degrees of distinct vertices, this follows immediately, but it

could occur that xi and xj correspond to the same vertex. Note that x1� x2� . . .� xk, since

the rows are ordered in increasing order. Also note that if xi = xj, with i> j, and xj is in row r,
then the i-th entry in row r must also equal xi, since it cannot be smaller than something to it’s

left xj, and cannot be bigger than the max of it’s column xi. And since the degrees in each row

correspond to distinct vertices (as they are given by the neighourhood), if xi = xj then there are

at least two vertices of degree xi. And generalising this, if xi appears as the degree of the same

vertex ℓ times, then we can find ℓ distinct vertices of the same degree, so 2m �
Pk

j¼1
xj. Also

note that xj� dj, for all j, therefore

2m �
Xk

j¼1

xj �
Xk

j¼1

dj ¼ a:

Considering the minimal elements of each column and applying a similar argument to

above we can also deduce that 2m0 � α, where m0 ¼ nðn� 1Þ

2
� m is the number of non-edges.

Therefore, minðm;m0Þ � a

2
. Moreover, maxðm;m0Þ � nðn� 1Þ

4
, since either at least half the edges

are there or half are not.

So we can bound (1 − d)m below by:

ð1 � dÞm ¼
2mm0

nðn � 1Þ
¼

2 maxðm;m0Þminðm;m0Þ
nðn � 1Þ

�

nðn� 1Þ

4

� �
aÞ

nðn � 1Þ
¼
a

4
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Therefore,

R̂kðGÞ ¼
Pk

j¼1
sj

ð1 � dÞm
�

a

2

ð1 � dÞm
�

a

2

a

4

¼ 2

So R̂kðGÞ is bounded above by 2 for all k, and R̂ðGÞ is the average of values bounded above by

2, hence R̂ðGÞ � 2.□
There are several things to note about the formula (5). Firstly, instead of variance across

neighbourhood degree sequences, we here opt for standard deviation. The distribution of the

standard deviation over multiple samples will in general be more symmetric than that of the

variance which will be right-skewed and standard deviation is generally a more appropriate

measure when normalising.

Secondly, the division by (1 − d)m is the term which acts to normalise the measure. This

term was borrowed from the normalisation of degree variance [21]. There, it was shown to

normalise degree variance and bound it below 1 for all graphs.

Thirdly, instead of taking the mean over the standard deviations this normalisation takes

the sum. In actuality we can consider this as a multiplication of the mean by the degree of the

neighbourhood degree sequences k (cancelling out the k on the denominator of the average).

This effectively takes account of the sampling error of taking the mean over the σj’s. The sam-

pling error of the mean over k samples is:

s
ffiffiffi
k
p ; ð7Þ

where σ here is the standard deviation of the k element-wise standard deviations, so that the

accuracy of the mean depends on the degree k.

Note that in the normalisation presented we do not multiply by
ffiffiffi
k
p

to standardise these

measurements, but by k itself. This is because it is also linked with the division by m.

We do not believe the bound of 2 given in Theorem 1 is tight. Through considered con-

struction of a disconnected graph which exploits variances of 1 degree nodes, we find the larg-

est value for R̂ tends to 1

3
, which occurs with the following graph family:

Example 1. Consider the graph:

:::

:::

:::

where each column of nodes consists of n� 1

4
nodes.

Note that R1 ¼
n� 3

4
, no other degree contributes to R, m ¼ 3ðn� 1Þ

4
and d ¼ 3

2n. So

R̂ ¼ R̂1 ¼
n� 3

4

1 � 3

2n

� �
3ðn� 1Þ

4

!
1

3
; as n!1

We believe that the above family of graphs gives the largest value for R̂, but we leave this as

a conjecture:

Conjecture 1. For any graph G we have R̂ðGÞ < 1

3
.

While we in no way claim the above family of graphs is statistically or otherwise complex,

the intended application of the measure is for connected graphs with many different degrees

making a contribution. We can ensure this edge case goes to zero by using the corrective term

PLOS COMPLEX SYSTEMS Statistical complexity of heterogeneous geometric networks
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for multiply-ordered degrees as described in [15], but for most intended purposes this is not

necessary.

Expected complexity values

Next we show that R̂ satisfies the conditions of a statistical complexity measure of being 0 in

the thermodynamic limit for the Erdös-Rényi random graph. It is known (see [10]) that if a

graph is regular, that is, every node has the same degree, then the hierarchical complexity is 0–

since we have n nodes of degree k all with neighbourhood degree sequences {k, k, . . ., k}.

We can also show that for the other end of the entropic spectrum, Erdös-Rényi random

graphs, that the hierarchical complexity tends to 0, as n tends to infinity. To do so we need a

formula for the standard deviation of the i-th largest sample from this distribution, this is

known as the i-th order statistic, see [22] for background on order statistics. We can use

known results on order statistics to derive the following:

Theorem 2. Fix d 2 [0, 1]. The normalised hierarchical complexity of an Erdös-Rényi graph
ER(n, d) tends to 0 as n tends to infinity, that is,

lim
n!1

R̂ðERðn; dÞÞ ¼ 0:

Proof. For brevity let R̂n;d≔ R̂ðERðn; dÞÞ. Note that if d = 0 or d = 1, then ER(n, d) is regular,

thus R̂n;d ¼ 0 for all n, and the result holds. So assume d 2 (0, 1). We begin by giving an

approximation of R̂n;d.

First note that the node degrees of an Erdös-Rényi graph are sampled from the binomial

distribution B(n − 1, d). Whilst this sampling is not strictly independent, the dependence is

very weak, and the correlation tends to zero as n tends to infinity [23], and thus can be disre-

garded in our approximation and asymptotic analysis.

In [24] an approximate formula for the standard deviation of the i-th order statistic of k
samples for a continuous distribution with PDF ϕ(x) and CDF F(X) is given by:

si �
1

� F� 1 i
kþ1

� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðk � iþ 1Þ

ðkþ 1Þ
2
ðkþ 2Þ

s

: ð8Þ

By [25, Equation (1.1)] this approximation also holds for discrete distributions.

So to get the k’th normalised hierarchical complexity of ER(n, d), we let X be the binomial

distribution B(n − 1, d), sum (8) across i = 1, . . ., k and divide by our normalisation, which gives:

R̂kðERðn; dÞÞ �

Pk
i¼1

1

� F� 1 i
kþ1ð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðk� iþ1Þ

ðkþ1Þ2ðkþ2Þ

q

ð1 � dÞm

¼

2
Pk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðk � iþ 1Þ

p

� F� 1 i
kþ1

� �� �

dð1 � dÞnðn � 1Þðkþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
kþ 2
p :

The second equality is because the expected number of edges is m ¼ nðn� 1Þd
2

.

We can approximate the expected smallest and largest degree in ER(n, d), using [Equation

4.5.1] [22] which gives an approximation for the i’th order statistic as F� 1 i
nþ1

� �
, for sufficiently

large n. This gives our lower and upper summands a and b, and the global formula is given by

averaging R̂k between a and b.
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So for large n the global hierarchical complexity can be approximated by

R̂ðERðn; dÞÞ �
2
Pb

k¼a

Pk

i¼1

ffiffiffiffiffiffiffiffiffiffi
iðk� iþ1Þ
p

� F� 1 i
kþ1ð Þð Þ

ðkþ1Þ
ffiffiffiffiffiffi
kþ2
p

ðb � aÞdð1 � dÞðn � 1Þn
;

ð9Þ

where ϕ and F are the PMF and CDF, respectively, of the binomial distribution B(n − 1, d),

and a ¼ bF� 1 1

n

� �
c and b ¼ dF� 1 n� 1

n

� �
e. Note that this approximation is not particularly close,

particularly for small n, but it is sufficient to consider the limit of the complexity as n grows.

The binomial distribution can be approximated by the normal distribution, for which the

quantile function F−1 is known in terms of the inverse error function. Combining this with an

approximation of the inverse error function [26, Equation 13] we get:

F� 1ðxÞ � ðn � 1Þd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn � 1Þdð1 � dÞ

p
erf � 1
ð2x � 1Þ

� ðn � 1Þd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln ð4xð1 � xÞÞ2ðn � 1Þdð1 � dÞ

p ð10Þ

Combining Eq (10) with the De Moivre-Laplace approximation of the binomial PMF we get:

�ðF� 1ðxÞÞ �
exp � ðF

� 1ðxÞ� ðn� 1ÞdÞ2

2ðn� 1Þdð1� dÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn � 1Þdð1 � dÞ

p

�

exp �
ððn � 1Þd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln ð4xð1 � xÞÞ2ðn � 1Þdð1 � dÞ

p
� ðn � 1ÞdÞ2

2ðn � 1Þdð1 � dÞ

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn � 1Þdð1 � dÞ

p

¼
expðlnð4xð1 � xÞÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn � 1Þdð1 � dÞ

p ¼
4xð1 � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðn � 1Þdð1 � dÞ

p

ð11Þ

We can then use Eq (11) to show that asymptotically R̂n;d is bounded above by zero:

R̂n;d �
2

ðb � aÞdð1 � dÞnðn � 1Þ

Xb

k¼a

Pk
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
iðk� iþ1Þ
p

� F� 1 i
kþ1ð Þð Þ

ðkþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
kþ 2
p

�
Xb

k¼a

2
Pk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The final step follows since d is fixed and b is always smaller than n, thus the denominator

grows at least
ffiffiffiffiffiffiffiffiffiffiffi
n � 1
p

faster than the numerator.□
We conjecture that a similar result holds for random geometric graph (RGG) (see Section

for the definition of RGG’s) with a fixed average degree of b (note in this case, d! 0 as

n!1). In particular, when we randomly position n nodes on the unitary Euclidean plane

and connect two nodes whenever they are within radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b=ðnpÞ

p
of each other. This

radius r is selected to ensure we obtain a graph with the required average degree. In this ver-

sion of an RGG, the degree distribution is also the binomial distribution (see [27]), so we can

apply a similar technique as used in the proof of Theorem 2. However, RGGs have non-trivial

degree correlations violating statistical assumptions used in the Erdös-Rényi case [27]. Never-

theless, we conjecture that a different bound can be obtained that does tend to 0, we leave this

as an open problem.

Conjecture 2. Let RGG(n, r) be the random geometric graph in the unitary plane with n

nodes and radius r ¼
ffiffiffiffi
b
np

q
, for a fixed b 2 N. We have

lim
n!1

R̂ðRGGðn; rÞÞ ¼ 0:

We’ve seen that the formula for hierarchical complexity is closely linked to order statistics

and the quantile function of probability distributions. Very few closed formulas exist for quan-

tile functions, and they are known to be difficult to analyse. Due to this we are otherwise lim-

ited in our analytical treatment of this measure. The remainder of the paper shows the validity

of this normalisation in application and we use it to derive novel insights from models and real

data. Particularly, we pursue the hypothesis that statistical complexity arises naturally through

a combination of hierarchical and geometric components to network connectivity.

Materials and methods

Network models

Our understanding of this normalisation is aided by its application to different network mod-

els and studying the behaviour of our normalisation of HC as we change the size and density

of the network. In the following, a graph refers to a mathematical object of a set of nodes with

adjoining edges. A network refers to a graph representation of the relationships or connections

between components of a real-world complex system.

Firstly, we use Erdös-Rényi (E-R) Random Graphs. E-R random graphs are generated

using random uniform edge probabilities in [0, 1] [28]. They give an indication of the behav-

iour of an ‘average’ graph of a given size and density. That being said, they do not give any

indication of the behaviour of an ‘average’ network as it lacks many of the basic characteristics

common to networks such as a relatively high clustering coefficient and degree heteregoneity.

Random Geometric Graphs (RGG) are generated from randomly sampled co-ordinates in

the unit cube (i.e. 3D) [29]. These samples then represent nodes and the inverse distances

between node pairs are the weights of the edges between them. For a desired network density,

we select the m largest weights as our graph edges. RGGs have properties of high clustering

desirable for networks, however they also lack the characteristic degree heterogeneity of

networks.

Surface-Depth (S-D) models provide geometric graphs with heterogeneous degree distribu-

tions which show distinct similarities to many real-world networks [20]. We shall refer to

these models throughout as Random Hierarchical Geometric Graphs (RHGG) since they

combine a geometric component to connections with a hierarchical component, both of
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which we also want to study in isolation. These are generated using two parameters, the σ of a

log-normal distribution and the number of dimensions, q, of a random geometric graph. The

weights of the edges are then defined as

wij ¼ dijðsi þ sjÞ; ð13Þ

where dij is the inverse distance between nodes i and j in a random geometric graph with q
dimensions and each si is a random sample from a log-normal distribution LN(μ, σ). Again,

for a desired network density, we select the m largest weights as our graph edges. In this study,

we perform a basic exploration with q = 3, μ = 0, and σ fixed at 0.2 as this produces graphs with

a suitable heterogeneity. We then also explore the effect of varying σ, and so heterogeneity of

geometric graphs, on hierarchical complexity.

Configuration models of these RHGGs allow us to probe the extent to which hierarchical

complexity of the RHGGs can be attributed merely to the hierarchical structure of the network.

We refer to these as Random Heterogeneous Graphs (RHGs) to emphasise the relationship

with our other models. Briefly, configuration models work by fixing the degree distribution of

a network but otherwise randomising the connections. Each node is provided with a number

of stubs equal to its degree. These stubs are then randomly paired between nodes to establish

edges [30].

Link growth mechanisms

We used ten different link growth mechanisms to observe the effect on NHC of increasing

density in different ways on real-world networks.

For all node pairs without edges, ði; jÞ =2 E we considered:

Random growth. Edge probabilities are uniform.

Popularity growth. Similar in fashion to preferential attachment for addition of new

nodes to a network, the probability of a new edge is proportional to the sum of the degrees of

the nodes:

pij � ki þ kj: ð14Þ

Similarity growth. For gi, gj the neighbourhoods of nodes i and j, the probability of edge

(i, j) occurring is proportional to the Jaccard index of their neighbourhoods:

pij � Jðgi; gjÞ ¼
jgi \ gjj
jgi [ gjj

: ð15Þ

Popularity × similarity growth. The probability of a new edge is proportional to the

intersection of their neighbourhoods, essentially removing the size normalisation of the Jac-

card index:

pij � jgi \ gjj ð16Þ

so that the probability of connection is dependent on the size of the neighbourhoods and the

overlap of the neighbourhoods. Note, popularity and similarity growth is what is commonly

known as the common neighbours algorithm, as it just counts the number of shared neigh-

bours two nodes have to predict whether they will become connected in the future [31, 32].

While simple at face value, we can clearly see from the above that this works well to account

for both popularity and similarity components of a network.

PLOS COMPLEX SYSTEMS Statistical complexity of heterogeneous geometric networks

PLOS Complex Systems | https://doi.org/10.1371/journal.pcsy.0000026 January 3, 2025 10 / 22

https://doi.org/10.1371/journal.pcsy.0000026


For each of the three latter approaches (popularity, similarity, and popularity × similarity)

we took three different approaches to deciding on links: random probabilistic selection, ran-

dom exponentiated probabilistic selection, and deterministic rank-based selection.

Probabilistic. To get the probabilities, pij, we divide each individual measurement (e.g.,

ki + kj for hierarchical attachement) by the sum over all available measurements for example,

pij ¼ ðki þ kjÞ=
X

ði;jÞ=2E

ðki þ kjÞ: ð17Þ

Edges are then randomly selected based on these probability spaces fpijgði;jÞ=2E .

Exponentiated probabilistic. This approach is taken to better differentiate between the

strong and weak potential links in the probability space and so make it more likely for stronger

potential links to be selected. Here, we simply take the exponentials of the probabilities before

normalisation: pij ¼ expðki þ kjÞ=
P
ði;jÞ=2Eexpðki þ kjÞ.

Deterministic. Here, we simply take the top x probabilities as new links. This is typically

how link prediction would be done.

These three approaches span from the more randomised, to the more rigid, with exponen-

tiated probabilistic growth taking the middle ground.

Data

We obtained data for twenty large networks from two databases– the SNAP database [33] and

the Network Repository [34]. While hierarchical complexity has been applied to several differ-

ent types of networks (including social networks, protein networks and infrastructure net-

works) with mixed results compared to configuration models [15], it has yet to be applied to

larger sized networks. Further, we have so far been unable to directly compare hierarchical

complexity of networks of different sizes due to the lack of a normalisation.

Network were chosen to cover a wide range of sizes (1912–36692) and types (protein inter-

action networks, social networks, infrastructure networks, collaboration networks), and also to

include groups of certain types of networks to explore relationships within and between net-

work types. The number of nodes, edges and the network density for each network are shown

in Table 1.

Protein-protein interaction networks generated from co-expression correlations were

taken from the Network Repository, which in turn derived these graphs from data from

wormnet [35]. These were obtained for Homo Sapiens (HS), Derio Rario (DR)– zebrafish,

Drosophilia Melanogaster (DM)– fruit fly, and caenorabditis elegans (CE)– a nematode. All

of these are exceptionally well studied, model species for which the data is most extensive

and reliable.

Also from the Network repository we took two infrastructure networks, one being the

widely studied network of the Western States power grid of the US (power grid) [36] and the

other being a network of international flights between airports where nodes are airports and

edges are established where there are flights between those airports (open flights) [37]. All

other networks were obtained from the SNAP repository.

We studied five collaboration networks within Physics disciplines, constructed from arXiv

data. For these, edges are established between co-authors of papers. Topics are self-selected by

authors during arXiv manuscript uploads. These topics are astrophysics (collab AstroPh), con-

densed matter physics (collab CondMat), general relativity (collab GrQc), high energy physics

(collab HepPh), and high energy physics theory (collab HepTh).

We studied six social networks constructed from the twitch platform for six different lan-

guages– English (twitch ENGBE), French (twitch FR), German (twitch DE), Portuguese
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(twitch PTBR), Russian (twitch RU), and Spanish (twitch ES) [38]. Nodes are the users of

twitch and edges are friendships between them. Facebook page-page is another social network

where nodes represent official Facebook pages while edges are mutual likes between sites, col-

lected through the Facebook Graph API in November 2017 and restricted to four categories of

pages- politicians, governmental organisations, television shows and companies [38]. The

LastFM social network is the network where nodes are users from Asian countries and edges

are mutual follower relationships between them [39]. We also analysed a large email network

between Enron employees (email Enron), originally made public by the Federal Energy Regu-

latory Commission during its investigation. Here, nodes are email addresses and edges are

established wherever there are emails sent between addresses.

Allen brain model for use in large network experiment. For studying the effect of nor-

malisation in very large graphs, we used the mouse V1 model from the Allen Institute for

Brain Science [40]. This model contains approximately 230,000 neurons, and can be consid-

ered as a network where each neuron is a node and there is an edge between two nodes if they

are connected by a synapse. We can sample geometric cylinders from this model using the

associated code provided at [41], this allows us to construct networks that should be very simi-

lar structurally, but vary in size from anything up to 230,000 nodes. Due to computational lim-

itations we only compute complexity values on up to 95,000 nodes.

Data for replication in link growth mechanism experiment. For studying the link

growth mechanisms, we used a replication dataset from the ICON corpus consisting of 139

networks mostly describing biological, social and technological phenomena [15, 42]. These

ranged from n = 50 to n = 3155 with a mean of 341 ± 462. Densities ranged from d = 0.0011 to

d = 0.3884 with a mean of 0.0578 ± 0.0717.

Table 1. Statistics for twenty real world networks.

Network n m d
email Enron 36692 367662 0.0005

Facebook 22470 171002 0.0007

collab CondMat 22167 186936 0.0008

collab AstroPh 16000 396160 0.0031

protein CE 15229 245952 0.0021

collab HepPh 12008 237010 0.0033

collab HepTh 9877 51971 0.0011

twitch DE 9498 153138 0.0034

lastFM Asia 7624 27806 0.0010

twitch ENGBE 7126 35324 0.0014

twitch FR 6549 112666 0.0053

collab GrQc 5242 28980 0.0021

power grid 4941 6594 0.0005

twitch ES 4648 59382 0.0055

protein HS 4413 108818 0.0112

twitch RU 4385 37304 0.0039

protein DM 4040 76717 0.0094

protein DR 3289 84940 0.0157

open flights 2939 30501 0.0071

twitch PTBR 1912 31299 0.0171

https://doi.org/10.1371/journal.pcsy.0000026.t001
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Results

Normalisation results on random models

Fig 2 shows the results of the normalisation applied to our chosen random graph models. For

each random model (Erdös-Rényi, RGG, RHG, and RHGG) we generated 100 realisations

with n* U[50, 10000] and d* U[0, 1] and plot results against both n and d.

Notably, Erdös-Rényi random graphs have the lowest complexity of the models studied.

Above this, the complexity of RGGs and RHGs is similar across all n and d. The greatest com-

plexity is clearly observed in the RHGGs, particularly at lower densities, indicating that greater

complexity arises naturally through the combination of hierarchical and geometric structure.

While Erdös-Rényi random graphs, RGGs and RHGs have similar levels of complexity

across density (highlighting the normalisation features of our measure across density), there is

a different behaviour noted in RHGGs. Higher complexity at low densities compared to high

densities in this instance can be considered a structural feature present in the graphs. We can

understand very high densities as regarding the connectivity of the least important connec-

tions (specifically, the complement of the graphs) which in this instance are those between

nodes with low degrees which are geometrically distant. It is reasonable to expect complexity

here to be as low as for RHGs and RGGs.

As per the theoretical results for E-R random graphs, the experiments across the different

models shows an inverse relationship for R̂ with n but little to no dependency on d. The reason

for hierarchical complexity decreasing with increasing n may be a true relationship of the com-

plexity of these models as n increases, rather than a normalisation issue. Indeed, we can expect

that larger sample sizes of neighbourhood degree sequences given by larger random graphs

would result in more homogeneous ordered sequences as they better approximate the global

degree distributions.

Interestingly, for the RHGGs– which more accurately model real-world network structure–

there is very little if any decrease with increasing n for n> 1000. This indicates that

Fig 2. Results show measurements for random realisations (n*U[50, 10000], d*U[0, 1]) of different random graphs as denoted in the legend, against size n and

density d.

https://doi.org/10.1371/journal.pcsy.0000026.g002
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comparisons of R̂ in large networks are reliable, but caution must still be taken when making

comparisons in smaller networks.

In the Supplementary Information section SI1 in S1 File, we explore the suitability of two

relevant previously proposed network measures for assessing statistical complexity of networks

using similar analyses as above. We find that neither meet the requirements expected of being

0 for regular and ER random graphs. We also find that they are not useful for distinguishing

between different types of models which should be distinguishable in terms of statistical

complexity.

Normalisation results on increasing number of nodes

To extend our observations of the normalisation with respect to network size we studied the

behaviour of the normalisation in very large graphs. In this case we use the mouse V1 model

from the Allen Institute for Brain Science, see [40], and Erdös-Rényi random graphs, for

which we know the normalised complexity value tends to 0 by Theorem 2.

We would expect networks of the same structure to have the same, or at least similar, NHC.

However, what do we mean by the “same structure”? If two networks have a different number

of nodes they inherently have a different structure. In fact, the size of the network is related to

the complexity, because as the size of random graphs increase their uniformity increases, this

is due to the inverse relationship between variance and the sample mean. As such, we would

expect that the NHC will decrease slightly as the number of nodes increases, but two suffi-

ciently large networks of similar structure, but different size, would have similar complexity

values.

The effect of this is well demonstrated in Fig 3. We see that the Erdös-Rényi random

graph tends to 0 with increasing n, as expected. At the same time, for the Allen Brain for

small n the complexity is higher, but for larger n, roughly n� 2000, the complexity is very

close between samples, appearing to tend to a non-zero limit in n. This demonstrates a

behaviour expected of statistical complexity in dynamical systems, that randomness (aswell

as regularity) vanishes to 0 complexity in the limit of n, while non-zero complexity is main-

tained in diverse structure [5].

Fig 3. The normalised hierarchical complexity of cylinders of increasing sizes of the Allen Brain V1 mouse model vs

ER graphs of the same size and density.

https://doi.org/10.1371/journal.pcsy.0000026.g003
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Effect of degree heterogeneity on hierarchical complexity

Here we study the change in complexity as we increase heterogeneity among the RHGGs. We

generated RHGGs of size n = 1000 and d* U[0, 1]. The heterogeneity was determined with

100 realisations of the model for each σh = 0.01, 0.02, . . ., 2. Results are shown in Fig 4.

The results show that NHC has a consistent range of values across most degrees for hetero-

geneous geometric graphs, tapering off quickly at either end towards 1 and n. It is beneficial

that the measure does not have a positive or negative relationship with degree so that the mea-

sure does not overly emphasise any particular range of degrees. Further, the fact the measure

quickly tapers off towards very small degrees protects the measure from being influenced by

the high levels of uncertainty of sampling at these small sample sizes.

NHC is generally strongest in models with σh between 0.2 and 0.4 and decreases towards

low and high heterogeneity. When σh is high the network becomes dominated by the hierar-

chical relationships, which should make the network more ordered. On the other hand, with

low σh the model gets closer to a random geometric graph which has low values of NHC as

shown in Fig 2. This is consistent with our expectations of NHC being a statistical measure of

complexity in networks.

In section SI2 in S1 File of the Supplementary Information, we apply NHC to the non-uni-

form Popularity Similarity Optimisation model [43] to see how it fairs on another model

which directly utilises degree heterogeneity and latent geometry. We find similar patterns as

for RHGGs, that the model achieves highest NHC in a middle ground of degree heterogeneity.

Fig 4. Top, average normalised hierarchical complexity per degree of heterogeneous geometric graphs with with

n = 1000, d*U[0, 1], and σh = 0.01, 0.02, . . ., 2. One hundred realisations are created for each σ. Bottom, global

normalised hierarchical complexity plotted against heterogeneity of these networks.

https://doi.org/10.1371/journal.pcsy.0000026.g004
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We also explore the effect of varying the clustering in the network and the number of commu-

nities through additional parameters of the model. We find that decreasing the clustering by

randomising more connections decreases NHC, and that introduction of strong community

blocks in the geometry also decreases NHC. These are broadly consistent with our expectations

of a statistical complexity metric.

Hierarchical complexity in large real-world networks

We compared unnormalised and NHC in the twenty large networks detailed in Table 1. The

results are shown in Table 2. The values of the non-normalised HC range from 4 in the power

grid network to 87858 in the German twitch network, a difference by a factor of nearly 22000.

This range highlights the lack of utility of an unnormalised and unbounded measure for com-

parisons of different networks. On the other hand, the values of NHC range from 0.0022 in the

power grid network up to 0.0830 in the Portugese twitch network, a difference by a factor of

just under 38.

We can see that the normalised measure allows us to compare between these networks

more clearly. For example, consider the twitch DE, twitch FR and twitch RU networks, which

have the largest non-normalised HC values. These three networks are all constructed in the

same way (friendships in twitch) and have similar densities (0.0034,0.0053, and 0.0039, respec-

tively), and yet the twitch DE non-normalised HC value is 6 times bigger than the twitch RU

non-normalised HC, suggesting that the twitch DE network is significantly more complex

than the twitch RU network. However, when normalised these three networks all have very

similar NHC values, suggesting they have very similar levels of complexity, as one would

expect.

Table 2. Rankings of hierarchical complexity and normalised hierarchical complexity for twenty real world

networks.

R Network R̂ Network

87858 twitch DE 0.0830 twitch PTBR

35996 twitch FR 0.0684 twitch RU

14328 twitch RU 0.0612 twitch DE

11099 email Enron 0.0586 twitch FR

7625 twitch ES 0.0526 open flights

7167 twitch PTBR 0.0454 twitch ES

4216 twitch ENGBE 0.0360 protein DR

3275 facebook 0.0334 protein HS

2207 collab HepPh 0.0297 email Enron

1283 protein HS 0.0279 protein DM

1015 protein DR 0.0272 twitch ENGBE

873 collab AstroPh 0.0258 collab HepPh

755 protein CE 0.0182 facebook

752 protein DM 0.0154 collab GrQc

582 open flights 0.0147 lastFM Asia

293 LastFM Asia 0.0124 protein CE

261 collab CondMat 0.0105 collab AstroPh

68 collab GrQc 0.0056 collab HepTh

39 collab HepTh 0.0054 collab CondMat

4 power grid 0.0022 power grid

https://doi.org/10.1371/journal.pcsy.0000026.t002
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Next consider the other three twitch networks: ES, PTBR and ENGBE. We can see that

twitch ES and twitch ENGBE have very similar unnormalised HC values, but when normalised

the twitch PTBR is twice as complex as twitch ES. This is not surprising considering they have

markedly different densities, and we will see in the next section that even after normalisation

the network density is correlated to the NHC value in real world networks. We also see that

the twitch ENGBE has much lower complexity than the other twitch networks, which is likely

explained by the lower density of the network.

So we can see that our normalisation reduces the scale of the difference between complexi-

ties of networks, and allow us to better compare networks of different sizes. However, we also

see that the density of the network still correlates with the NHC value.

Growth of hierarchical complexity in real world networks

We found that hierarchical complexity was positively correlated with network density in the

twenty networks from Table 1 (ρ = 0.7203, p = 0.0005), Fig 5, left. We confirmed this observa-

tion with a network dataset of 139 smaller networks (n 2 [50, 3155], ρ = 0.5325,

p = 1.5 × 10−11) [15, 42], Fig 5, right. To discount the potential confounding effect of network

size, n, on these correlations, we implemented linear regression on network density with net-

work size as a predictor and found that the correlations of the residuals of the regression with

NHC were still significant in both cases– ρ = 0.6526, p = 0.0023 for the 20 large networks and

ρ = 0.2294, p = 0.0066 for the 139 small-to-medium sized networks.

At the same time, we have shown that NHC shows strong normalisation with respect to

density for many types of graph. The relationship between density and NHC in real world net-

works is therefore unlikely due to a lack of normalisation, but is a true relationship requiring a

mechanistic explanation. To try to explain this relationship we applied ten link growth algo-

rithms, as described in section III.B, to real-world networks to artificially increase their density

and see if any would consistently lead to the targeted increase in NHC.

Fig 5. Scatterplots visualising the positive association between density and hierarchical complexity in real-world networks. Spearman’s correlation coefficient and

associated p-value shown inset. Bottom row shows average results of the values of NHC as we increase density of networks according to the link growth mechanisms as

described in the legend.

https://doi.org/10.1371/journal.pcsy.0000026.g005
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Firstly, we implemented link growth on 100 HRGGs of size n = 250, density d = 0.05 and

density σ = 0.2. Each link growth algorithm in Section III.B was applied for 50 iterations with

50 new links established each iteration. For the real-world networks, we applied the link

growth algorithms to all of the 139 ICON networks and 17 of the 20 SNAP networks (omitting

the 3 largest due to computational limitations). For these we used 10 iterations with 100 new

links established each iteration. Results are shown in Fig 6.

There are two clear observations to be made from these results. Firstly, the only kind of link

growth which provided increased NHC were those based on the common neighbours (here

referred to as Popularity × Similarity) algorithm. This shows a clear favoured strategy for link

growth in complex networks.

All of the random, Popularity only and Similarity only algorithms worked to decrease NHC

and in similar amounts as the baseline uniformly random algorithm. There was no particular

observable consistent difference between the Popularity and Similarity only mechanisms.

However, the deterministic mechanisms typically did worse most of the time. Infact, in the

HRGGs the Popularity only deterministic mechanism did much worse than the uniformly ran-

dom approach. Anytime the algorithm showed a greater decrease than the uniformly random

mechanism we can assume this is caused by a more ordered structure being enforced on the

network, since the only NHC smaller than ER random graphs are regular graphs and highly

organised graphs where all nodes of the same degree have the same or similar neighbourhood

degree sequences [15].

Secondly, the only algorithm which consistently increased the NHC across the three data-

sets was the exponentiated probabilistic Popularity × Similarity algorithm. This algorithm

takes the middle ground between the more random standard probabilistic algorithm and the

deterministic link ranking algorithm. The probabilistic mechanism increased for the SNAP

networks over 10 iterations, but decreased slightly in the ICON networks and moreso in the

RHGGS with a similar trajectory as for uniformly random growth. The deterministic mecha-

nism intially increased alot for the RHGG model before going into a steep decline, while it

increased in the SNAP networks but decreased in line with the uniformly random mechanism

in the ICON networks.

Discussion

Our modelling demonstrated greater statistical complexity arising through the combination of

hierarchical and geometric components. While the space of random geometric graphs is

Fig 6. Average results of the values of NHC as we increase density of networks according to the link growth mechanisms as described in the legend. P stands for

Popularity, S for Similarity and P × S for Popularity × Similarity. For the Heterogeneous geometric graphs we take the median over 100 iterations. For the ICON and

SNAP networks we take the median of the z-scores of trajectories to avoid bias of networks with high NHC.

https://doi.org/10.1371/journal.pcsy.0000026.g006
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regular, the nodes being placed randomly in that space opens up pockets of higher and lower

connectivity, as quantified through degree correlations [27]. This may be understood as a clas-

sic instance where randomness and regularity interact to generate some degree of complexity.

Similarly, heterogeneous random graphs contain an ordered structure in terms of the hierar-

chy of node degrees, combined with randomness of connections established through the con-

figuration model procedure. By giving a randomly allocated log-normal node fitness to the

nodes randomly placed in Euclidean space we see an amplification in terms of complexity.

This is particularly interesting since heterogeneous geometric networks closely model many

aspects of real-world networks [20]. Future work will explore whether access to heterogeneous

connectivity patterns in networks facilitates the formation of more heterogeneous functional-

ity and therefore assess the advantages conferred by the combination of hierarchy and geome-

try which real-world networks appear to incorporate almost universally, as found in e.g. [11]

(although there are a subset of networks which buck this trend [32]).

In the results of NHC among the 20 large real-world networks some patterns appear. The

general trends among the three groups of networks we have (6 twitch networks, 4 protein net-

works, 5 physics collaboration networks) indicate that the twitch networks tend to have highest

complexity, while protein networks have fairly high complexity and physics collaboration net-

works have low complexity. The power grid having the lowest complexity can be expected as it

is a network with high geometrical constraints and we might expect some specific universal

design principles in its construction. On the other hand, online social networks of twitch are

largely free from geometrical constraints (although will still have a latent similarity space, but

this can be of arbitrarily large dimension) and may reflect the diversity of social relationships.

However, sample sizes would need to be increased to provide stronger evidence for any such

generalisations.

The results from the link growth mechanism experiments showed that explanations for the

positive relationship between density and NHC were not given by link growth mechanisms for

popularity or similarity of nodes separately, but again the combination of the two. It indicates

that growth of statistical complexity requires a trade-off of randomness and determinism. Too

much randomness and no structure is developed. Too little randomness and the structure

becomes too rigid. It also highlights how real-world networks may naturally grow to develop

higher statistical complexity simply through nodes more likely to (but not with certainty) form

links with nodes with a lot of common neighbours. It also highlights some amount of futility

in trying to ever perfectly predict links– there is randomness in connectivity, and in fact net-

works may well benefit from that randomness in breaking rigidity of patterns and becoming

more diverse.

The evidence that random geometric graphs have non-zero NHC in the thermodynamic

limit gives an interesting insight into the geometrical nature of NHC. It tentatively points

towards a definitive notion of statistical complexity of networks. Essentially, if we take seri-

ously the established notion of networks as embedded in a latent geometrical space [19, 44],

then we can start to conceptualise measures of statistical complexity of networks such as NHC

as attempting to measure the irregularity of the distribution of points over that space.

It is worth noting that in all of the NHC values we computed, we rarely find anything above

0.1. This means, we expect 0.1 is a very high value of NHC for a network. Here, we recall that a

normalisation does not require values to be in any particular range, just that the values are

comparable for the same phenomena, for example model with all other parameters fixed, with

changes to the targeted normalisation parameter. Further, while we provide an upper bound

of 2 to demonstrate there is no possible case of the measure exploding to infinity, we do not

believe this is a tight upper bound. From our experience, it is likely a tight upper bound is even

below 1.
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In the future, we intend to thoroughly explore the application of NHC for analysis of brain

networks, across scales, across different types of networks, and eventually, across species. We

will also explore applications to protein-protein interaction networks utilising the vast datasets

available through the STRING database in order to begin to answer questions regarding the

relationship between NHC of protein-protein interactions and evolutionary parameters.

Applications to social networks hold obvious appeal given the consistently high complexity we

noticed in the twitch social networks. There is also serious scope for extension and improve-

ment of NHC. For example, we could consider generalising the measure to considering neigh-

bourhoods of neighbourhoods, up to an arbitrary depth. Generally speaking, our

understanding of statistical complexity of networks in different fields is limited by a lack of

parsimonious measurements for its quantification. The tools offered here can therefore help

researchers to begin to answer fundamental questions regarding the existence and extent of

statistical complexity of real-world networks, especially in light of the larger and higher quality

datasets becoming evermore available.

Conclusion

We proposed and demonstrated the utility of a normalisation for hierarchical complexity–

NHC. We proved that this measure is bounded above by 2 and tends to zero for Erdös-Rényi

random graphs with increasing size. This is analogous to a defining characteristic required of a

statistical complexity measure in dynamical systems. We then demonstrated that, while ran-

dom graph models containing degree heterogeneity and geometry individually had lower

complexity, the combined components of degree heterogeneity and geometry is enough to cre-

ate NHC of a similar level to real-world networks. However, we then found that real-world

networks displayed an association between NHC and density that could not be explained

solely by our models. Instead, we could manage to explain this consistently with a common

neighbours link growth algorithm with exponentiated probabilities. Particularly, this was

more consistent than a deterministic weight ranking algorithm and the more random non-

exponentiated probability algorithm. All other algorithms tried failed to increase complexity.

We therefore posit that real-world networks have a preference for growth which increases

complexity of the interacting system. We provide a parsimonious measure for statistical com-

plexity of networks which is ready to be applied to answering questions and gathering new

insights into the degrees of complexity in various fields such as neuroscience, protein biology

and social networks.

Supporting information

S1 File. This file contains additional analyses of other metrics, demonstrating how they are

not adequate measurements of statistical complexity, and another model, the uPSO model

which shows consistent behaviour as our other models with respect to statistical complexity.

(PDF)
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