
Learning Programming Languages by Pantomime
Andrew Fagan

Computer and Information Sciences
University of Strathclyde
Glasgow, United Kingdom
andrew.fagan@strath.ac.uk

Alasdair Lambert
Computer and Information Sciences

University of Strathclyde
Glasgow, United Kingdom

alasdair.lambert@strath.ac.uk

Martin Goodfellow
Computer and Information Sciences

University of Strathclyde
Glasgow, United Kingdom

martin.h.goodfellow@strath.ac.uk

Abstract
It is challenging to teach students new programming languages
by lecturing while retaining interest and student engagement -
direct lectures on syntax are inherently dry, and the benefits of
more hands-on approaches to allow learners to make mistakes and
experiment are well documented.

This paper is based on a year teaching two languages, C and
Haskell, inspired by the concepts of both cognitive apprenticeship
and team teaching. Both of these languages are widely considered
to be difficult for new users to learn, and the classes in question
have in the past been deemed as challenging and unpopular by
students.

We describe our approach, then demonstrate that the application
of these methods led to these previously unpopular classes becom-
ing well-regarded by students. We support this by way of a survey,
and provide some analysis of the source of this improvement and
give some qualitative insights and other incidental benefits.

CCS Concepts
• Social and professional topics→ Computing education.

Keywords
Introductory Programming, Live Programming, Cognitive Appren-
ticeship, Team Teaching
ACM Reference Format:
Andrew Fagan, Alasdair Lambert, and Martin Goodfellow. 2025. Learning
Programming Languages by Pantomime. In Computing Education Practice
(CEP ’25), January 07, 2025, Durham, United Kingdom. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3702212.3702213

1 Introduction
Anyone who has taught or learned a programming language in
a higher education context can attest to the fact that lectures are
in constant danger of becoming a long and noninteractive way
to disappoint and disengage students. While it is critical to learn
the grammar of the language, the nuts-and-bolts of variables and
memory management, and in which particular-yet-different way a
forloop is implemented, it does not make for especially dynamic or
interesting content. This is in addition to the deeply held instinct
of all programmers that there is little substitute for the experience

This work is licensed under a Creative Commons Attribution International
4.0 License.

CEP ’25, January 07, 2025, Durham, United Kingdom
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1172-5/25/01
https://doi.org/10.1145/3702212.3702213

that comes from actually designing, writing and running a piece of
code (then realising your mistakes, rewriting and rerunning it).

In this paper we detail our use of a live programming approach
to deliver two introductory programming modules CS260 – an
introductory functional programming course using Haskell, and
CS210 – which first introduces programming in C then uses it as a
vehicle for exploring operating systems concepts. These are large
compulsory classes for second year students within the University
of Strathclyde, with approximately 160 students each. The students
enrolled in these classes have completed a year of Java programming
and as such only have basic programming experience. The topics
these classes cover are generally considered difficult and have in
the past been received poorly by students.

In recent years these classes have shifted their delivery model
from slides to live programming. This has brought substantial ben-
efits to both classes, as by necessity the students are immersed in
each language and the need to focus on details such as syntax is
reduced. By bridging the gap between lecturing syntax and design
work, students are able to extract far more value from lectures.

In addition, we have merged this with a multi-lecturer style. Each
live programming session consists of two or more lecturers who
are free to interact in a variety of ways. Most commonly, the lecture
is planned ahead of time and split into topics with representative
code examples or problems to be solved. The lecturing team will
then, starting with an empty text file or cut down template, attempt
to recreate these code examples live for the benefit of the students.

The lecturers can also choose to plan specific interactions, such
as deliberate mistakes for the other to point out and fix. These can
be planned to help understanding or as fun pantomime routines to
improve student engagement. It has been discovered by rigorous
testing that jokes don’t necessarily need to be “funny” to improve
engagement, much to the relief of the second author in particular.

2 Background
This work is about combining live programming with a multi-
lecturer approach. It is important to consider the pedagogical basis
and conventionally stated advantages of each of these approaches,
before considering how best to incorporate them into a single ap-
proach. With this in mind, we present summaries of the existing
literature on Cognitive Apprenticeship and Team Teaching.

2.1 Cognitive Apprenticeship
Programming can be a difficult skill to teach in a classic lecture
setting. Slides full of code can overwhelm students and removing it
from its natural context of working to solve a problem means that
while students may be able to understand examples they may strug-
gle to solve problems. Added on to this are the onerous details such
as syntax, style and programming environments. There is a body

1

https://orcid.org/0000-0001-9714-2096
https://orcid.org/0000-0002-9762-2193
https://orcid.org/0000-0003-2151-8442
https://doi.org/10.1145/3702212.3702213
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3702212.3702213
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3702212.3702213&domain=pdf&date_stamp=2025-01-07


CEP ’25, January 07, 2025, Durham, United Kingdom Andrew Fagan, Alasdair Lambert, and Martin Goodfellow

of literature showing that live programming is an effective tool
for introductory programming classes to address these and other
shortcomings [5, 7]. This is where a lecturer actively writes code
during a lecture, solving problems using the techniques introduced.
This approach naturally dovetails with the cognitive apprentice-
ship model of education where the "master" explains their thought
process to the "apprentice" in order to make intrinsic knowledge ap-
parent [2]. While the master has great understanding of their trade
it can be easy to assume knowledge that the master does not even
need to consider. The cognitive apprenticeship model is designed
to draw this assumed knowledge out so that it can passed on to the
apprentice rather than assuming that they will pick it up in their
own time. In the setting of live programming it is very possible that
a single lecturer will not fully employ the cognitive apprenticeship
approach and will fall into the same pitfalls of assuming implicit
knowledge is obvious.

2.2 Team Teaching
Team teaching refers generally to any teaching with more than one
teacher. Different styles of team teaching can be broadly categorised
according to the relationship between the teachers [1]. For our
purposes, the most useful of these models to consider is the Teaming
model, wherein two or more teachers share every aspect of the
teaching process equitably, collaborating on preparation, planning
and delivery. In particular it means that multiple lecturers give
each lecture. While this seems to double the work needed for each
lecture we present evidence to suggest that it can bring both staff
and students significant benefits.

This model has been applied in a CS context previously. This ap-
proach can improve student engagement and understanding while
providing junior staff training, reducing some of the perceived cost
of pair lecturing [4]. It may seem wasteful to have two senior staff
deliver the same lectures however contact time is often not the
expensive part of delivery. In fact, preparation, administration and
organisation tend to consume the most time. It has also been argued
that pair lecturing provides similar benefits to pair programming
[8] such as pair pressure, pair relaying and pair review, allowing
the plan of a lecture to be improved by collaboration. The authors
also mention that junior staff can be used as a critical friend - a
trusted figure that can ask critical questions about current under-
standing or thoughts in order to provoke a different point of view
or to facilitate critical thinking [3]. A final interesting benefit is
that team teaching can be used in conjunction with the cognitive
apprenticeship model where trainee teachers follow the traditional
steps of the cognitive apprenticeship model and gradually take over
more responsibility for the course as they learn [6]. This makes a
very strong argument for this approach in the training of new staff.

3 Our Approach
While it is clear that there is potential synergy between team teach-
ing and cognitive apprenticeship in the sense that one teacher can
be the master of teaching, while one acts as the apprentice and
learns to teach more effectively, our focus going forward will be on
fundamentally combining the two for a true cognitive apprentice-
ship based teaching approach which utilises two masters and has
the students fill the apprentice role.

Due to a quirk of administration, both CS260 and CS210 found
themselves with multiple lecturers assigned to a fraction of the class.
Since it was assumed that this would be changed going forward, the
staff involved decided to deliver lectures collaboratively - initially
simply to minimise the difficulty of handover. In fact, with only a
slight change in approach, the lecturers discovered that this lead to
a wide variety of benefits to both staff and students.

Under this new approach, every lecture for both classes was
delivered by at least two lecturers almost entirely through live cod-
ing. Examples were generally designed to show common mistakes
which could be theatrically corrected by the other lecturer. In the au-
thors’ experience the ability to plan fun, if often silly, routines made
lecture preparation a much more enjoyable experience. During the
lectures staff would take turns on their parts of the content with
their colleague free to join in or provide alternative explanations.

While the authors do not imagine that they are the first to live
code with the participation of multiple teachers, we have found
no other research which addresses this synergy, and therefore to
the best of our knowledge this combination - and in particular our
analysis of its benefits - is academically novel.

Outside of lectures both classes followed a similar structure.
Weekly lab sessions were held where students could work through
problems on the week’s topics with the support of Teaching Assis-
tants. This aimed to provide the coaching and scaffolding phases of
the cognitive apprenticeship where the apprentice is asked to work
with support of an expert.

3.1 Co-lectured live coding in practice
Below, we present an illustrative example of our approach, based
loosely on real events. This example shows how lecturing responsi-
bility can be shared and how the lecturer not currently speaking
can still contribute. Readers unfamiliar with the C programming
language may feel free to mentally substitute phrases they do not
recognise for topics of their choice from another language or field -
the example should still be comprehensible. Our principle actors
we shall call Fred and Andrew, as these are their names.

Fred begins a lecture on C, with today’s topic ostensibly being
how to include and utilise a local library. He is assured by An-
drew that a library, consisting of stack.h and stack.c, has been
prepared in advance for his use. He consults stack.h and begins
writing a program utilising it, explaining his design process to the
students, while Andrew asks questions from a prepared bank if no
student does so. The students sense the more conversational tone
the lecture is taking, and some seem to feel more confident asking
questions or making comments.

Eventually, Fred compiles the code, and - to his great surprise and
distress - the compilation fails. The students laugh at his obvious
irritation, and a few who had been sleeping are jerked awake by
this change from the apparent plan. Fred discovers that stack.c
has been overwritten and is now empty. He asks Andrew as the
author of the file whether he might be able to reproduce it, and so
Andrew takes over the lecture.

Andrew begins showing the students his process of analysing
Fred’s code and the stack.h file to create signatures for each of
the functions he will have to recreate. In addressing this “mistake”,
he finds the opportunity to give the students an early glimpse at

2



Learning Programming Languages by Pantomime CEP ’25, January 07, 2025, Durham, United Kingdom

next week’s topic - memory allocation in C - which he claims they
had not planned to cover today. Fred asks some questions about
memory allocation to prompt a useful discussion and Andrew adds
some notes in comments around the code he was writing.

As Andrew continues writing code, the attention of the class
begins to wander during one of the more repetitive parts - writing
the peek function which is fairly similar to the pop function he has
written already. Noticing this, Fred begins speaking to the class
about how the scope of variables works when code is split across
multiple files - a topic they had intended to discuss later on, but
which could easily be moved up to fill this gap. He makes a note
to tighten up this part of the lecture next year, allowing them to
address it instead of forgetting this minor point as Andrew might
have alone.

Andrew completes work on stack.c, and so he hands back over
to Fred. They have a brief discussion as to why the struct he
defined, struct STACK needs to be in the stack.h file when it
seems like it could be in the stack.c file instead, which inspires
several students to ask questions.

Finally, Fred compiles the code and discovers, this time to his
actual confusion that the code doesn’t compile. Andrew spots that
he has failed to compile stack.c and has only compiled the main
program file, he points this out and then gives an explanation of the
linking process, playing off an actual mistake as part of the plan.

The astute reader might realise at this stage that the majority
of the “mistakes” made in the course of the lecture were strictly
theatrical, and were in fact part of the plan all along. Despite the
lecturers’ claims to the class that they were improvising andmoving
topics around, they were in fact presenting each topic in a context in
which it could be used for problem solving. This element of feigned
spontaneity aids with the cognitive apprenticeship approach in that
it gives the impression of the class being a team solving a problem
collaboratively. In the experience of the authors, this approach is
challenging without a partner - it is fairly taxing to convincingly
maintain the act alone, especially if the students don’t choose to
engage in the apprentice role. This also allowed a real mistake to be
disguised as a further piece of theater towards the end, preserving
the student’s perceptions of the lecturers as knowledgeable.

4 Analysis
Our results show that the students surveyed were overwhelmingly
in favour of our model of pair teaching. This analysis is based
on the survey results∗ presented in Figure 1 and Table 1. In each
quantitative question asked, the majority of students believed that
pair teaching had improved their understanding and engagement.
While the survey did not directly ask students to compare to classes
which use a live programming cognitive apprenticeship approach,
many of their other classes do use that approach, and the clear
consensus was a preference for our model.

4.1 Benefits to students
Based on our results and feedback from our student cohort we
identify several key benefits for students.

∗This survey was targeted at all students in the two classes under study, and was
carried out with approval from the Ethics committee of the University of Strathclyde’s
Computer and Information Sciences Department.

Engagement and interaction. Our results show the overwhelming
majority of students believe they were more engaged during pair
lectured classes, and the results shown in table 1 show that pair
lectured classes were preferred by most students to other styles.
Pair lecturing can be used to provide a clear split between topics,
this helps mark out the start of a new topic or concept. At a more
basic level the change of voice can jolt students awake and so it
can be helpful to swap lecturers after a topic which is expected to
be less engaging.

If used well, pair lectures can have a more conversational tone
as the lecturers interject and consult each other. This helps to
break down the usual formality and encourages student questions.
Interjections can be helpful but it is important that both lecturers
are aware of the learning outcomes the other is trying to deliver.

Table 1: Question: Please rank the following based on your
own preference

Ranking 1st 2nd 3rd
Co-lectured classes (multiple lecturers in the
room at any one time)

41 4 3

Classes with multiple lecturers, but which are
traditionally lectured (a team of lecturers over
the course of a module, but with each lecture
given by a single member of the team at a time)

4 24 20

Classes which are only traditionally lectured
(one lecturer who leads the module and gives
every lecture alone)

3 20 25

Multiple Perspectives. While one lecturer usually takes the lead,
the other should be prepared to jump in, providing alternative per-
spectives on ideas being introduced or alternative explanations. In
general no single explanation will reach every student, and having
the option to ask a colleague for an alternative opinion can signifi-
cantly improve student understanding. Our responses show that
students believed pair lecturing had improved their understanding
of the topic. It is the authors’ belief that this is the case as a result
of the two above points however this is only the students opinion
and more data would be needed to show this concretely.

4.2 Benefits to staff
Our survey results show that our approach to pair lecturing is very
popular and provides many benefits to students. However, this
model provides substantial benefits to staff as well.

Lower cost of planning. Having two colleagues brainstorm together
it can make it much easier to generate new ideas on how to present
material. Overall we found that planning time was significantly
reduced in contrast to the findings of [8]. It is often easy to leave
course content as it is year in year out, with a new member of staff
joining an existing course providing a shot of energy for course
redevelopment. It is possible in the case of two expert lecturers who
both know the content very well - and are comfortable working
together - to create a lecture with only a few minutes of preparation
time, or even none at all, creating even greater time savings.

3



CEP ’25, January 07, 2025, Durham, United Kingdom Andrew Fagan, Alasdair Lambert, and Martin Goodfellow

Figure 1: Responses to the Survey

Training for junior staff. Pairing a more experienced lecturer with
a more junior member of staff provides significant on-the-job train-
ing. The joint planning gives the same benefits as the cognitive
apprenticeship model discussed in Riehm et al. [6]. In particular,
the junior member of staff learns why their colleagues make the
choices they do when presenting material. This also helps to trans-
fer institutional knowledge to new staff and could be a useful way
to onboard new staff.

Redundancy. While co-lecturing has the myriad of benefits we’ve
explored, a live programming lecture which has been prepared
for two lecturers can also include a plan to give the lecture alone.
Should either lecturer be absent for any reason their colleague can
deliver the lecture traditionally, this also allows staff more flexibility
to take annual leave during term. Arguably this is also a benefit to
students as it avoids disruption caused by staff absence.

Workload Management. Lecturers might consider dividing prepara-
tory time in such a way as to optimise their individual workloads.
Generally contact time with students is cheap compared to design-
ing lectures and creatingmaterials.We have found that this paradox-
ically reduces the cost of running classes, with fewer preparatory
hours for the class lecturer - usually the member of the teaching
team whose time is most expensive - at the cost of additional hours
from a second, usually more junior member of staff. Even in the
case of staff on the same level, it is probable that the total number
of preparation plus contact hours would be reduced, but a more
exhaustive study would be required to make this point concretely.

5 Further Work
This model works well in the context of introductory programming
and it is likely not an ideal model for every context and topic.
However, given that suchmodules are core to any CS undergraduate
program our model provides significant scope to improve both
student engagement and understanding.

As our data is limited we would initially like to conduct a larger
survey. Ideally this would includemore classes, multiple year groups
and potentially other institutions. This would significantly improve
on the limitations of our data and provide a stronger argument for
the merits of our approach.

Aswith our data our results would have been improved by having
more classes which use a live programming cognitive apprentice-
ship model without pair lecturing for comparison. Both methods
are popular with students so more classes with this model would act
as a control so that pair lecturing could be isolated as the difference.

Another beneficial control would increasing the pool of lecturers
used. This would strengthen our argument that the model is correct
instead of only working for the small number of lecturers involved.

6 Conclusion
We present a model for introductory programming modules which
combines the known benefits of both the cognitive apprenticeship
approach with those of live programming and pair lecturing. Our
approach does not claim to be a panacea however we do believe that
there are significant benefits to both staff and students with this
approach. In particular, students can benefit from better engage-
ment and improved understanding, while staff can enjoy support in
what is generally a solitary role. We also believe that these benefits
can be achieved without increasing staffing costs, or with some
potential to reduce them.

Acknowledgments
We would like to thank our co-lecturers Drs. Jules Hedges, Fredrik
Nordvall Forsberg, John Levine and Conor McBride, as well as
Graham and Claire for their help with several Pressing issues.

References
[1] Marlies Baeten andMathea Simons. 2014. Student teachers’ team teaching: Models,

effects, and conditions for implementation. Teaching and Teacher Education 41 (7
2014), 92–110. https://doi.org/10.1016/J.TATE.2014.03.010

[2] Allan Collins, John Seely Brown, Ann Holum, et al. 1991. Cognitive apprenticeship:
Making thinking visible. American educator 15, 3 (1991), 6–11.

[3] Arthur L Costa, Bena Kallick, et al. 1993. Through the lens of a critical friend.
Educational leadership 51 (1993), 49–49.

[4] Grischa Liebel, Håkan Burden, and Rogardt Heldal. 2017. For free: continuity and
change by team teaching. Teaching in Higher Education 22 (1 2017), 62–77. Issue 1.
https://doi.org/10.1080/13562517.2016.1221811

[5] John Paxton. 2002. Live programming as a lecture technique. J. Comput. Sci. Coll.
18, 2 (dec 2002), 51–56.

[6] Katja Riehm, Eva Hellmuth, Kevin Eichhard, and ThomasWaitz. [n. d.]. Teamteach-
ing Chemistry: a Concept to Promote the Acquisition of Professional Knowledge
in the Context of University Internships. ([n. d.]).

[7] Marc J. Rubin. 2013. The effectiveness of live-coding to teach introductory pro-
gramming. In Proceeding of the 44th ACMTechnical Symposium on Computer Science
Education (Denver, Colorado, USA) (SIGCSE ’13). Association for Computing Ma-
chinery, New York, NY, USA, 651–656. https://doi.org/10.1145/2445196.2445388

[8] Daniela Zehetmeier, Axel Böttcher, and Anne Brüggemann-Klein. 2018. Designing
Lectures as a Team and Teaching in Pairs. 4th International Conference on Higher
Education Advances (HEAD’18) (7 2018), 873–880. https://doi.org/10.4995/HEAD18.
2018.8103

4

https://doi.org/10.1016/J.TATE.2014.03.010
https://doi.org/10.1080/13562517.2016.1221811
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.4995/HEAD18.2018.8103
https://doi.org/10.4995/HEAD18.2018.8103

	Abstract
	1 Introduction
	2 Background
	2.1 Cognitive Apprenticeship
	2.2 Team Teaching

	3 Our Approach
	3.1 Co-lectured live coding in practice

	4 Analysis
	4.1 Benefits to students
	4.2 Benefits to staff

	5 Further Work
	6 Conclusion
	Acknowledgments
	References

