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Abstract: In this paper, adaptive fault-tolerant control for multi-joint robot manipulators is proposed
through the combination of synchronous techniques and neural networks. By using a synchronization
technique, the position error at each joint simultaneously approaches zero during convergence due to
the constraints imposed by the synchronization controller. This aspect is particularly important in
fault-tolerant control, as it enables the robot to rapidly and effectively reduce the impact of faults,
ensuring the performance of the robot when faults occur. Additionally, the neural network technique
is used to compensate for uncertainty, disturbances, and faults in the system via online updating.
Firstly, novel robust synchronous control for a robot manipulator based on terminal sliding mode
control is presented. Subsequently, a combination of the novel synchronous control and neural
network is proposed to enhance the fault tolerance of the robot manipulator. Finally, simulation
results for a 3-DOF robot manipulator are presented to demonstrate the effectiveness of the proposed
controller in comparison to traditional control techniques.

Keywords: fault-tolerant control; passive fault-tolerant control; robot manipulator; adaptive control;
synchronization; neural network

1. Introduction

During the past few decades, robots have played and continue to play an important
role in many areas, especially in the advancement of various industries and replacement
of humans in harsh and hazardous work environments. Consequently, they have been
increasingly studied and developed to enhance their working capabilities and safety in
many circumstances and diverse work environments. In robot manipulator systems,
the occurrence of faults in actuators or sensors can reduce the performance of the robot,
damage the system, and have economic implications [1,2]. Therefore, fault-tolerant control
(FTC) is introduced to improve the safety of robot systems. It guarantees the acceptable
performance and provides operators with a scheduled maintenance time to ensure smooth
operation of the robotics system. In general, fault-tolerant control can be divided into
two types: (1) active fault-tolerant control (AFTC) [3–5] and (2) passive fault-tolerant
control (PFTC) [6,7].

In AFTC, to ensure the stability of the system, fault detection and fault diagnosis (FDD)
are used to compensate with a conventional controller. The performance of AFTC highly
depends on the accuracy of the FDD process. Therefore, numerous FDD methodologies
have been developed to enhance the accuracy of FDD [8–10]. In robot manipulator systems,
the FDD is typically supplanted by fault estimation (FE), a process that comprehensively
estimates, detects, and isolates faults in a single step. This AFTC structure control is similar
to disturbance observer-based (DOB) control approaches [11–13]. The key distinction
between AFTC and DOB lies in the utilization of the estimated value from FE, which
is compared with a predefined threshold for fault detection and isolation. Additionally,
these estimated values serve to alert operators, prompting them to take efficient actions for
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maintenance. A notable advancement of AFTC is the ability to deal with high-magnitude
faults or multi-fault scenarios. However, AFTC has a slow response to faults due to the
delayed feedback from FE. The consequential effect is the occurrence of peaking phenomena,
which reduce the performance of the robot system [3,14].

In contrast, PFTC uses a single controller for both normal and fault condition. This
structural control approach enables the robot to respond more rapidly to faults than the
AFTC scheme. Therefore, peaking phenomena are reduced in comparison with the AFTC
scheme. Sliding Mode Control (SMC) stands out as a popular technique considered for
PFTC. Given its robustness and ability to deal with disturbances and uncertainties, SMC
has received significant attention in PFTC research [15–17]. In addition, the finite and fixed-
time convergence are advantageous features of SMC, which have attracted the efforts of
many researchers [18–20]. However, relying solely on the SMC technique renders the robot
system less effective in addressing high-magnitude faults. The second most popular PFTC
approach is adaptive control [21,22], which can handle high-magnitude faults. It quickly
adjusts the control strategy in response to faults, with the capability of real-time adjustments.
In addition, this technique can deliver high performance, even with less-precise dynamic
robot models. Based on the analysis above, it can be seen that the choice between AFTC
and PFTC depends on the model of the system and the understanding the system designer,
with the potential to optimize the performance of the robot system. This paper focuses on
the development of PFTC to provide a rapid response to faults and enhance the system’s
ability to handle high-magnitude faults based on an adaptive technique.

To enhance the response of a robotic manipulator system to faults, the synchronization
technique was used [3,18,23]. The synchronization technique was introduced in [24,25].
This method was well known in closed-loop robot systems like the dual-drive gantry
mechanism [26], parallel robot manipulator [27,28], cable-driven robot manipulator [29],
multi-robot cooperation [30], etc. The synchronization technique based on the cross-error
was developed by Y. Koren [24] for computerized numerical control (CNC) machines. Its
main idea is that dependence axes can be controlled by considering the effects of the other
axes through cross-error. In general, in closed-loop mechanism systems, internal tensor
force occurs during the motion of the actuator. This force can degrade the performance or
damage the system. The synchronous technique causes the position error of each joint to
simultaneously approach zero; therefore, it reduces the internal tensor force. In contrast,
serial robots with open-loop mechanisms may not contain the internal tensor force due to
the consideration of the dynamic model. Therefore, the synchronization will not provide
an advantage when it is compared with model-base controllers in open-loop systems.
However, the feature of each position error simultaneously approaching zero still exists
when the synchronization control is applied to a serial robot. This feature will help the robot
system rapidly respond to faults. Therefore, the performance of the robot will increase
when faults occur in the system. Synchronous control techniques applied to fault-tolerant
control of serial manipulators were first introduced in [3,18,23]. Experimental results on real
robotic systems have demonstrated the unique advantages of this technique when dealing
with high-magnitude faults. Despite the proven effectiveness of synchronous control, the
authors have also pointed out limitations when combined with an extended state observer
in AFTC schemes. Specifically, the peaking phenomenon arises when faults initially occur in
the system. This happens due to the delayed response of the controller, which relies on fault
information from the fault estimator. This phenomenon significantly reduces the system’s
performance. Unlike the approaches in [3,18,23], this paper utilizes synchronization within
the PFTC scheme to enhance the response, reduce the peaking phenomena, and improve
the ability to handle high-magnitude faults. A novel synchronization control is proposed.
The stability of the system is proved by Lyapunov theory.

The adaptive methodology based on intelligence techniques has received significant
attention from researchers and engineers across various domains in automatic control. This
approach may rely on either fuzzy logic techniques [31,32] or neural networks [33–35].
Fuzzy logic control typically requires the experience of an operator to design the fuzzy rules,
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while neural networks eliminate the operator’s need for specific knowledge of network
design. Two types of popular neural network architectures in controllers are feed-forward
networks and recurrent networks. However, these kinds of neural networks have some
drawbacks such as local minima, slow convergence, and challenges in selecting learning
rate and initial weight parameters. To address these limitations, researchers have proposed
various solutions, as seen in [36,37], where the authors provided a technique for selecting
initial weights and improving the convergence time. Another strategy to enhance the
convergence time and overcome the local minimum is the use of a momentum part, as
suggested in [38,39]. In addition, orthogonal neural networks (ONNs) were presented by
Yen and Chen in [40] to overcome the drawbacks of traditional neural network architectures.
This kind of neural network has been applied to deep neural networks [41–43] and shown
to be effective in comparison to feed-forward networks. In automatic control, ONNs have
been applied to anti-lock braking systems [44] and robot control [28,45]. In this paper, the
ONN is designed to increase the ability to manage high-magnitude faults and provide fast
responses to faults based on the online compensation of the ONN.

In this paper, an adaptive fault-tolerant control for multi-joint robot manipulators
based on a combination of synchronous techniques and neural networks is proposed to en-
hance performance. Initially, the PFTC synchronous terminal sliding mode controller (PFTC
S-TSMC) is investigated by exploiting the synchronization error with a novel synchronous
sliding surface. Subsequently, an adaptive fault-tolerant control based on the combination
of synchronization controller and ONN (PFTC NN-S-TSMC) is put forward to improve
the ability to manage high-magnitude faults. Finally, both proposed PFTC controllers
are verified on a 3-DOF robot manipulator using MATLAB Simulink to demonstrate the
advantages of the proposed controller. The contributions of this paper can be summarized
as follows:

(1) A passive fault-tolerant control scheme based on a novel robust synchronous
terminal sliding mode control is designed. By simultaneously driving each joint position
error to zero using a synchronization technique, the system exhibits a rapid response to
faults. This approach mitigates the peaking phenomenon typically seen in active fault-
tolerant control methods, which often suffer from slow response times [18]. The proposed
controller demonstrates a faster response to faults and is more effective in handling high-
magnitude faults compared to conventional terminal sliding mode control techniques [46].
The enhanced performance of the fault-tolerant control is attributed to the incorporation of
additional joint information, which further improves the system’s effectiveness.

(2) An adaptive fault-tolerant control based on the neural network synchronous
terminal sliding mode is proposed. Due to the combination of the advantages of the
synchronization technique and online adjustment of the neural network, the proposed
controller outperforms the robust proposed controller and conventional terminal sliding
mode controller [46]. By using the orthogonal neural network, the advantages in low-
level control systems are shown. Unlike in [47], using the position error, the input to
the orthogonal neural network in the proposed controller is the synchronization error,
ensuring that the synchronization feature is maintained during the neural network’s online
weight updates.

(3) The stability of the system is proven with Lyapunov theory for both of the pro-
posed controllers.

The rest of this paper is organized as follows. In Section 2, the dynamic model of the
robot, faults, and orthogonal neural network are given. The novel synchronization sliding
surface, proposed robust synchronous terminal sliding mode control, and an adaptive fault-
tolerant control based on synchronization and orthogonal neural networks are proposed in
Section 3. In Section 4, a simulation of the proposed control in a 3-DOF robot manipulator
using MATLAB Simulink is presented. A discussion of the limitations and future work is
provided in Section 5. Finally, the conclusions are given in Section 6.
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2. Preliminaries
2.1. Dynamic Model of Robot Manipulators

The dynamic model of an n-degree robot manipulator is governed by the following
equation [48]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Ξ = τ (1)

where q̈, q̇, q ∈ ℜn are the vectors of joint acceleration, velocity, and position, respectively.
M(q) ∈ ℜn×n, C(q, q̇) ∈ ℜn, and G(q) ∈ ℜn represent the inertia matrix, the centripetal
and Coriolis matrix, and the gravitation force, respectively. τ ∈ ℜn is the torque at the
joints. Ξ ∈ ℜn represents the unknown dynamic uncertainties and external disturbances.

Assumption 1. The matrices M(q) and Ξ are bounded by the following:

Mm ≤ ∥M−1(q)∥ ≤ MM

||Ξ|| < a0 + a1||q(t)||+ a2||q̇(t)||2 + γ||τ||

where Mm, MM, and γ are known as positive constants.

2.2. Model of Joint Actuator Faults

In robot manipulator systems, an actuator joint consists of many electrical and me-
chanical components such as an electronic motor, motor driver, gear, etc. Therefore, the
occurrence of faults/failure at an actuator joint has a high probability. For example, a
decrease in motor torque can result from increased friction of the stator and robot inside
the electric motor after being in use for a long time, or it can result from increased friction
of a mechanical part due to the environment such as temperature or dust. It can be con-
sidered as a loss-effectiveness fault. Generally, faults in robot manipulator systems can be
represented as shown in Equation (2), where two common faults are loss-effectiveness and
bias faults [49]:

τt = (I − ρ(t))τ + f (t) (t > t f ) (2)

where τt ∈ ℜn is the vector of torques at the output joint actuator. τ ∈ ℜn is the vector of
torques at the output controller. ρ(t) = diag(ρi(t)) ∈ ℜn×n, 0 ≤ ρi(t) < 1, i = (1, 2, . . . , n)
denotes the loss-effective rate. f (t) ∈ ℜn is the vector of the bias fault. t f is the time of the
occurrence of faults. I ∈ ℜn×n is an identity matrix.

Substituting Equation (2) into Equation (1), the dynamic model of an n-DOF robot
manipulator with actuator faults can be written as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Ξ = (I − ρ(t))τ + f (t) (3)

In this paper, the investigation is focused on the effects of loss-effective and bias faults
in robot manipulators. In loss-effective faults, when ρi(t) = 1, they are considered as
lock-in-place faults, which are not investigated because the robot manipulator in this paper
does not have a redundancy actuator. Therefore, the robot cannot tolerate this type of fault.

2.3. Orthogonal Neural Network

In this section, the conventional ONN is given. It is based on a feed-forward neural
network (FNN) and polynomial functions as activity functions.

According to the theory of orthogonal function [50], an arbitrary function will have an
orthogonal polynomial as follows:

Fn(x) = w1λ1(x) + w2λ2(x) + . . . + wnλn(x) (4)
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such that

lim
n→∞

∫ b

a
( f (x)− Fn(x))2dx = 0 (5)

where ∫ b

a
λi(x)λj(x)dx =

{
0, if i ̸= j
Aj, if i = j

(6)

wi =
∫ b

a
f (x)λi(x)dx/Ai(i = 1, 2, . . . , n) (7)

in which {λ1(x), λ2(x), . . . } is an orthogonal set. The orthogonal functions include Fourier
series, the Bessel function, and Legendre and Chebyshev polynomials.

In the case where there is a function with m variables, an orthogonal function set is
denoted as {Ψ1(x), Ψ2(x), . . . }. Then, each orthogonal function is defined as follows:

Ψi(X) = λ1i(x1)λ2i(x2). . . λmi(xn) (8)

where X = [x1, x2, . . . , xn]T is the input vector.
An ONN based on a feed-forward network with one hidden layer is shown in Figure 1

by [40]. Figure 1 shows (a) multi input–one output and (b) multi input–multi output.
The weight connections between the input layer and hidden layer are 1, and the bias is 0.
λi(i = 0, 1, 2, . . . , m) is an orthogonal function. The weights between them are wij (where i
is number of orthogonal functions and j is number of outputs). The output of the ONN
[40] can be shown as follows:

y = F(X) =
n

∑
i=1

wi(t)Ψi(X) = WT(t)Ψ (9)

(a)

(b)

Figure 1. The orthogonal neural network. (a) Single output, (b) multiple outputs.
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2.4. Definitions

Some definitions are necessary to propose the fault-tolerant control law.

Definition 1. We define
⌈

x
⌋Λ

=
[
|x1|λ1 sign(x1), |x2|λ2 sign(x2), . . . , |xn|λn sign(xn)

]
∈ ℜn,

where λi > 0 and Λ = diag(λi) with (i = 1, 2, . . . , n). x = [x1, x2, . . . , xn]T ∈ ℜn.
y = [y1, y2, . . . , yn]T ∈ ℜn and sign(x) is a signum function, which is defined as follows:

sign(x) =


−1, i f x < 0
0, i f x = 0
1, i f x > 0

(10)

Definition 2. We define x · y = [x1y1, x2y2, . . . , xnyn] ∈ ℜn.

Definition 3. The time derivative of
⌈
x
⌋Λ is d

dt
⌈
x
⌋Λ

= Λ|x|Λ−1 · x = [λ|x1|λ−1x1, λ|x2|λ−2x2, . . . ,

λ|xn|λ−nxn]I and xΛ−1 =
[

xλ1−1
1 , xλ2−1

2 , . . . , xλn−1
n

]
∈ ℜn where I = diag(1) ∈ ℜn×n.

3. Fault-Tolerant Control with Synchronous Terminal Sliding Mode Control

In this part, passive fault-tolerant control based on the synchronous terminal sliding
mode control is proposed.

3.1. Synchronization Error

A synchronization error [18] is given as follows:
ε1 = (1 + ψ1ψn)e1 − ψ1e2 − ψ1en

ε2 = (1 + ψ2ψ1)e2 − ψ2e3 − ψ2e1
...

εn = (1 + ψnψn−1)en − ψne2 − ψne1

(11)

where ei = qdi − qi (i = 1, 2, . . . , n) is the error at each joint, where qdi and qi are the
desired position and current position of the joint i, respectively. ψi(i = 1, 2, . . . , n) is the
corresponding positive gain. In matrix form,

ε = Te (12)

where ε = [ε1, ε2, . . . , εn]T ∈ ℜn, e = [e1, e2, . . . , en]T ∈ ℜn, T ∈ ℜn×n is a transformation
matrix, and

T =


(1 + ψ1ψn) −ψ2 0 · · · −ψn

−ψ1 (1 + ψ2ψ1) −ψ3 · · · 0
0 −ψ2 (1 + ψ3ψ2) · · · 0
...

...
...

. . .
...

−ψ1 0 0 · · · (1 + ψnψn−1)

 (13)

3.2. Proposed Robust Fault-Tolerant Control with Synchronization Error

In this section, robust fault-tolerant control with synchronization error based on
terminal sliding mode control is proposed.

Equation (3) can be rewritten as follows:

q̈ = M(q)−1(τ − H(q, q̇)− ζ) (14)

where H(q, q̇) = C(q, q̇)q̇ + G(q), ζ = ρ(t)τ + Ξ − f (t) represents the uncertainties, distur-
bances, and fault.
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The proposed synchronous fast terminal sliding mode surface based on novel syn-
chronous error is given as follows:

S = ė + βe + α
⌈
ε
⌋Λ (15)

where S = [s1, s2, s2, . . . , sn] ∈ ℜn is the vector of the sliding surface. α = diag(αi) ∈ ℜn×n,
β = diag(βi) ∈ ℜn×n, and Λ = diag(λi) ∈ ℜn×n are the positive matrix gain, with
0 ≤ λ ≤ 1 and i = 1, 2, . . . , n.

From the novel synchronous sliding surface, the proposed passive fault-tolerant
control with synchronous terminal sliding mode (PFTC S-TSMC) is given as follows:

τ = τ0 + τ1 + τ2 (16)

where
τ0 = M(q)q̈d + H(q, q̇) (17)

τ1 = M(q)(αΛ|ε|Λ−1 ε̇ + βė + Ksign(S)) (18)

τ2 =

{
S

||S||w, ||S|| ̸= 0, w = 1
1−γ (a0 + a1||q||+ a2||q̇||2 + γ||τ0 + τ1||)

0, ||S|| = 0
(19)

where α = diag(αi) ∈ ℜn×n, β = diag(βi) ∈ ℜn×n, K = diag(ki) ∈ ℜn×n, a0, a1, a2, and γ
are positive constants, and γ is given as follows:

γ =
MM − Mm

MM + Mm
, (20)

Theorem 1. Given the uncertain robot manipulator system in Equation (3) and the proposed
controller in Equation (16) and based on the novel synchronization error in Equation (12) and
sliding surface in Equation (15), the tracking trajectory error of the robot manipulator converges
to zero.

Proof of Theorem 1. The Lyapunov function can be selected as follows:

V =
1
2

STS, (21)

The time derivative of V in Equation (21) is as follows:

V̇ = ST Ṡ

= ST(ë + αΛ|ε|Λ−1 ε̇ + βė)

= ST(q̈d − q̈ + αΛ|ε|Λ−1 ε̇ + βė)

(22)

Substituting Equation (14) into Equation (22) we have the following:

V̇ = ST(q̈d − (M(q)−1(τ − H(q, q̇)− ζ)) + αΛ|ε|Λ−1 ε̇ + βė) (23)

Substituting the proposed controller in Equation (16) into Equation (23), we obtain
the following:

V̇ = −ST M−1(q)(
S

||S||w − ζ)− STKsign(S) (24)



Sensors 2024, 24, 6837 8 of 18

We can see that ||τ|| ≤ ||τ0 + τ1||+ ||τ2||, and applying Assumption 1 yields the following:

V̇ ≤ −ST Mm(
S

||S||w − (a0 + a1||q(t)||+ a2||q̇(t)||2 + γ||τ||))− STKsign(S)

≤ −ST Mm(
S

||S||w − (a0 + a1||q(t)||+ a2||q̇(t)||2 + γ||τ0 + τ1||+ γ||τ2||))− STKsign(S)

= Mm(−||S||w + ||S||(a0 + a1||q(t)||+ a2||q̇(t)||2 + γ||τ0 + τ1||) + γ||τ2||)− STKsign(S)

= Mm(−||S|| 1
1 − γ

w + ||S||w + γ||τ2||||S||)− STKsign(S)

= Mm(γ||τ2||||S|| −
γ

1 − γ
||S||w)− STKsign(S)

(25)

Substituting Equation (18) into Equation (25), we have the following:

V̇ ≤ −STKsign(S) ≤ −σV
1
2 ≤ 0 (26)

where σ = λminK. When the sliding surface converges to zero, we have the position error
ei → 0. Therefore, Theorem 1 is proven.

3.3. Proposed Neural Network-Based Fault-Tolerant Control with Synchronization Error

In this section, the proposed fault-tolerant control neural network-based synchroniza-
tion error (PFTC NN-S-TSMC) is presented.

The ONN is adaptively used to estimate the lump of uncertainties, disturbances, and
faults ζ in Equation (13).

ζ = WTΨ(X) + ϵ (27)

X ∈ ℜn is the input of the network. ϵ is the approximation error of the neural network. The
Chebyshev polynomial is used as an orthogonal function Ψ(X). The ONN in this proposed
controller has three layers:

1. The input layer:
The input vector is denoted as follows:

X = xT
i = [εi, ε̇i]

T (i = (1, 2, . . . , n)) (28)

where εi and ε̇i are the synchronization error and synchronization velocity, respectively.
Due to the condition of the ONN, the input must be within the range of [1,−1] so that
the input can be transformed as follows:

xi =
2

b − a
xi −

b − 1
b − a

(29)

where a and b are the lower and upper bounds of xi, respectively.
2. The hidden layer:

The Chebyshev polynomial used as an orthogonal function Ψ(X) is shown as follows:

λi(x) = cos(n arccos(x)) (30)

It can be rewritten as follows:

λ0 = 1
λ1 = x
λ2 = 2x2 − 1
λ3 = 4x3 − 3x

...
λm+1 = 2xλm(x)− λm−1(x)

(31)
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3. The output layer:
The output of the ONN is expressed as follows:

y = WTΨ(X) (32)

where Ψ(X) is shown in Equation (7).

The proposed weight update law is given as follows:

˙̂W = −ηST M−1(q)Ψ(X) (33)

where η is the learning rate. The proposed controller based on ONN is given as follows:

τ = τ0 + τ1 + τ2 (34)

where
τ0 = M(q)q̈d + H(q, q̇) (35)

τ1 = M(q)(αΛ|ε|Λ−1 ε̇ + βė + Ksign(S)) (36)

τ2 = ŴTΨ(X) (37)

where Ŵ is the approximation of W in Equation (28).

Theorem 2. Given the uncertain robot manipulator system in Equation (3) and the proposed
controller in Equation (34) and based on the novel synchronization error in Equation (12) and
sliding surface in Equation (15) with the orthogonal neural network using the weight update law in
Equation (34), the tracking trajectory error of the robot manipulator converges to zero.

Proof of Theorem 2. The Lyapunov function can be selected as follows:

V =
1
2

STS +
1
2

ηW̃TW̃ (38)

where W̃ is the error approximation of W. It can be shown as follows:

ζ̃ = ζ − ζ̂

= WTΨ(X) + ϵ − ŴTΨ(X)

= W̃TΨ(X)

(39)

The time derivative of V in Equation (39) is as follows:

V̇ = ST Ṡ + ηW̃T ˙̃W

= ST(ë + αΛ|ε|Λ−1 ε̇ + βė) + ηW̃T ˙̃W

= ST(q̈d − q̈ + αΛ|ε|Λ−1 ε̇ + βė) + ηW̃T ˙̃W

(40)

Substituting Equation (14) into Equation (39), we have the following:

V̇ = ST(q̈d − (M(q)−1(τ − H(q, q̇)− ζ)) + αΛ|ε|Λ−1 ε̇ + βė) + ηW̃T ˙̃W (41)

Substituting the proposed controller in Equation (34) into Equation (41), we obtain
the following:

V̇ = ST(−M−1(q)(ŴTΨ(X)− ζ)− Ksign(S)) + ηW̃T ˙̃W (42)
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Substituting Equation (28) into Equation (42) yields the following:

V̇ = ST M−1(q)(W̃TΨ(X) + ϵ)− Ksign(S)) + ηW̃T ˙̃W

= W̃T(ST M−1(q)Ψ(X) + η ˙̃W) + ST M−1(q)ϵ − STKsign(S)
(43)

Substituting the update law in Equation (33) into Equation (43), we obtain the following:

V̇ = ST M−1(q)ϵ − KSTsign(S))

≤ −K||S||+ ST MMϵ
(44)

V̇ ≤ 0 approximately when the design parameter K ≥ MMϵ with the approximation error
ϵ is sufficiently small. Therefore, Theorem 2 is proven.

4. Simulation Results
4.1. Simulation Setup

In this section, we present and discuss the simulation results for a conventional
terminal sliding mode control and the two proposed FTC S-TSMC and FTC NN-S-TSMC
controllers after applying them to a 3-DOF robot manipulator. The mechanical model of the
3-DOF robot manipulator is constructed using SolidWorks 2024 software . The geometry
parameters were taken from the Staubli TX60L robot manipulator [51]. To reduce the
complexity of the dynamic model calculations of the robot, joints 4, 5, and 6 of the TX60L
were disabled in this study. Subsequently, the robot manipulator model was exported
to a MATLAB simulation environment using the Simmechanics toolbox, as illustrated in
Figure 2. The detailed parameters of the robot manipulator can be found in Table 1.

For this trajectory-tracking simulation, the desired trajectories at each joint are given
as follows: 

q1d = 0.5cos(t/2)− 0.5
q2d = 0.3cos(t/2)− 0.3
q3d = 0.2cos(t/2)− 0.2

(45)

where q̇d and q̈d are the first-order and second-order derivatives of the desired position,
respectively.

Figure 2. Three-degrees-of-freedom (DOF) Staubli TX60L robot manipulator in MATLAB/Simulink
with active joints.
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Table 1. Parameters of 3-DOF Staubli TX60L robot manipulator in MATLAB simulation.

Link Length (m) Weight (kg) Center of Mass (m) Inertia (kg.m2)

Link 1 0.217 19.6 [0.05 0 0.09]
Ix = [0.86 0 0.52]

Iy = [0 1 0]
Iz = [−0.52 0 0.86]

Link 2 0.4 15.2 [−0.01 0 0.1]
Ix = [−0.01 0 1]

Iy = [0 −1 0]
Iz = [1 0 1]

Link 3 0.45 23.1 [0.05 0 0.08]
Ix = [1 0 0.08]

Iy = [−0.01 1 0.08]
Iz = [−0.08 −0.08 0.99]

The uncertainties at each joint are assumed to be as follows:
Ξ1 = 0.2sign(q1) + 0.3q̇1

Ξ2 = 0.3sign(q2) + 0.3q̇2

Ξ3 = 0.32sign(q3) + 0.2q̇3

(46)

The parameters in the two proposed controllers in Equations (16) and (34) are selected as
ψ1 = ψ2 = ψ3 = 2, α = diag(0.5, 0.5, 0.5), β = diag(0.72, 0.72, 0.72), Λ = diag(0.6, 0.6, 0.6),
K = diag(80, 80, 110), γ = 0.2, a0 = 5, a1 = 20, a2 = 5, η = 0.01.

The conventional fast terminal sliding mode control (FTSMC) [46] is given as follows:

τ = τ0 + τ1 (47)

where τ0 = M(q)
(
q̈d + dė + cΛeΛ−1 ė

)
+ H(q, q̇), τ1 = M(q)K1sign(S).

The conventional fast terminal sliding surface [46] is selected as follows:

S = ė + de + ceΛ (48)

The parameters for the conventional FTSMC are suitably chosen as c = diag(0.5; 0.5; 0.5),
d = diag(0.72; 0.72; 0.72), K1 = diag(80; 80; 110), Λ = diag(0.6; 0.6; 0.6).

The active fault-tolerant control with the synchronous terminal sliding mode in [18]
(AFTC S-TSMC [18]) is described as follows. The coupling position error is given as follows:

E = αe + β
∫
⌈ϵ⌉Λ dt (49)

where E = [E1, E2, . . . , En]T ∈ ℜn, α = diag(αi) ∈ ℜn×n, β = diag(βi) ∈ ℜn×n are positive
coupling parameters, and Λ = diag(λi), 0 < λi < 1.

The synchronous terminal sliding surface is given as follows:

S = Ė + Γ⌈E⌉Λ (50)

where S = [S1, S2, . . . , Sn]T ∈ ℜn, Ė = [Ė1, Ė2, . . . , Ėn]T ∈ ℜn, Γ = diag(γi) ∈ ℜn×n, γi > 0.
AFTC S-TSMC [18] is given as follows:

τ = τeq + τ0 + τob (51)

where τeq = M(q)
(
q̈d + α−1βΛ|ϵ|Λ−I · ϵ̇ + α−1ΓΛ|ϵ̇|Λ−I · Ė

)
+ H(q, q̇), τ0 = M(q)K1sign(S),

τob = −M(q)ϕ̂ which K1 = diag(k1i) ∈ Rn×n. We obtain ϕ̂ as follows:
x̂1 = x̂2 +

α1
ϵ (x1 − x̂1)

x̂2 = f̂ (x1, x̂2, τ) + α2
ϵ2 (x1 − x̂1) + ϕ̂

ϕ̂ = α1
ϵ3 (x1 − x̂1)

(52)
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where x̂1, x̂2, f̂ , and ϕ̂ are the estimates of x1 = q ∈ ℜn, x2 = q̇ ∈ ℜn, f = M−1(q)(τ −
H(q, q̇)), and ϕ = −M−1(q)ζ, respectively, α1, α2, α3 are positive constants, and 0 < ϵ < 1.
The parameters for the AFTC S-TSMC [18] were obtained as follows: ψ1 = ψ2 = ψ3 = 2,
α = diag(1; 1; 1), β = diag(0.5; 0.5; 0.5), Λ = diag(0.6; 0.6; 0.6), Γ = diag(7; 7; 7), and
K1 = diag(80; 80; 110).

Remark 1. To avoid a singularity, the terms containing power Λ − I in Equations (16), (34), (47),
and (55) are replaced with the saturation function.

sat(u f , us) =

{
us if u f ≥ us

u f if u f < us
(53)

where us = 0.3 is a positive constant, and u f = Λ|x|Λ − I · ẋ with x = ε.

Remark 2. To avoid chattering, the signum functions in Equations (16), (34), (47), and (55) are
replaced with the saturation function:

sat(s) =

{
sgn(s)δ if |s| ≥ δ

s if |s| < δ
(54)

where δ = 0.8.

4.2. Simulation Results

In this subsection, the two kinds of actuator faults occurring at joint 2 are considered.
The assumed fault function is shown as follows:

τt1 = τ1

τt2 = (1 − ρ2(t))τ2 + f2(t) if t ≥ 5
τt3 = τ3

(55)

where ρ2(t) = 0.5 sin(πt), f2(t) = 80 sin
(

π(t−5)
2

)
.

The results in Table 2 illustrate the effectiveness of the two proposed PFTC approaches.
It is evident that the PFTC NN-S-TSMC significantly outperforms the two robust PFTCs.
This superior performance can primarily be attributed to the online adaptability afforded
by the neural network. Additionally, the AFTC S-TSMC [18] achieves a comparable per-
formance level to that of the proposed PFTC NN-S-TSMC. This capability arises from its
effective fault estimation processes, which enable the system to compensate for faults and
maintain operational efficiency. However, despite AFTC S-TSMC’s competence, PFTC
NN-S-TSMC retains distinct advantages over it, particularly in its ability to reduce the
peaking phenomena due to the use of the PFTC scheme. This advantage can be seen in
detail in Figure 3.

Table 2. Mean squared error MSE = 1
n ∑n

i=1(ei)
2 (n is the number of samples).

Joints Conventional TSMC AFTC S-TSMC [18] PFTC S-TSMC PFTC NN-S-TSMC

Joint 1 1.7027 × 10−8 6.0705 × 10−11 8.4325 × 10−9 8.4292 × 10−10

Joint 2 1.5918 × 10−6 3.9397 × 10−9 1.7215 × 10−8 2.2357 × 10−9

Joint 3 2.1176 × 10−6 5.9448 × 10−9 1.0103 × 10−8 3.4783 × 10−9

The tracking trajectory results are illustrated in Figure 3. In Figure 3a, the error levels
of the four controllers are generally similar, remaining within 10−4 radians. This joint is less
affected by faults due to gravity. Notably, AFTC S-TSMC [18] exhibits superior performance
compared to the other controllers due to the robustness of its fault estimation. In Figure 3b,c,
prior to the fault occurrence, the position errors of all four controllers are comparable.
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However, after the fault occurs at the 5th second, joints 2 and 3 are significantly impacted
due to both the fault and the effects of gravity on joint 3. The conventional TSMC maintains
acceptable performance, keeping the error within 10−3 radians. Nevertheless, compared
to the three proposed controllers, it still exhibits higher error levels. This difference arises
because the internal constraints of the synchronization technique facilitate a rapid response,
thereby mitigating the effects of the fault. When focusing on the 5th second, it is evident that
the peaking phenomenon is effectively reduced in the two proposed controllers utilizing
the PFTC scheme, in contrast to AFTC S-TSMC, which displays a slower response to faults
due to delayed feedback from the fault estimation. Beyond this point, AFTC S-TSMC
and PFTC NN-S-TSMC demonstrate similar performance due to the effectiveness of fault
estimation compensation and the online adaptability of the neural network.

Overall, the four controllers exhibit fault tolerance. However, PFTC NN-S-TSMC
outperforms the other comparative controllers.

In Figure 4, the synchronization performance is shown. In Figure 4a, the conventional
TSMC does not exhibit synchronization. In Figure 4b,c, synchronization occurs. This
shows that the errors at each joint tend to become similar. However, in PFTC NN-S-TSMC,
the error trends at each joint occasionally differ due to the online adaptive nature of the
neural network. Nevertheless, the effectiveness of the synchronization technique in the
two proposed controllers is verified.

In Figure 5, the weight values of the neural network are presented. It can be seen that
before the fault occurs at the 5th second, the weights nearly converged to a constant, as
the synchronization errors were relatively small. However, when the fault occurred, the
weights were automatically adjusted to suppress the increasing error in the system.

(a)

(b)

Figure 3. Cont.
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(c)

Figure 3. Tracking trajectory errors. (a) Joint 1, (b) joint 2, (c) joint 3.

(a)

(b)

Figure 4. Cont.
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(c)

Figure 4. Synchronization performance. (a) Conventional TSMC, (b) PFTC S-TSMC, (c) PFTC
NN-S-TSMC.

Figure 5. The online update weights of the neural network.

5. Discussion and Future Work

Despite the superior fault-tolerant performance of the two proposed controllers, there
are certain limitations in their designs. First, the chattering issue in sliding mode control
was mitigated using a saturation function, which unfortunately increased the system’s
convergence time and introduced a small steady-state error. Second, selecting the control
gains and coefficients for synchronization error remains a significant challenge. In this
paper, the trial-and-error method used for optimizing the controller parameters is time-
consuming and requires both design expertise and in-depth knowledge of the robotic
system. These limitations will be addressed in future work.

To reduce chattering, higher-order sliding mode techniques, which are effective at
minimizing chattering, accelerating convergence, and eliminating steady-state error, could
be investigated. For the parameter selection, methods such as adaptive tuning may be
employed to reduce manual effort, while intelligent techniques like neural networks or
fuzzy logic could be used to automatically adjust control parameters. Furthermore, it
is crucial to explore how synchronization error design parameters impact fault-tolerant
control performance.

Applying the synchronization control techniques to real-world robotic systems presents
several challenges, such as sensor and actuator noise, computational time, and the practical
limitations of sliding mode control. These challenges must be overcome to verify the practi-
cal viability of the proposed technique. Finally, expanding the application of this control
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strategy to multi-robot manipulator systems or multi-quadrotor systems in coordinated
tasks will further demonstrate its broader applicability.

6. Conclusions

In this paper, two passive fault-tolerant controllers for a robot manipulator are pro-
posed. The first controller, utilizing the robust synchronous terminal sliding mode control,
demonstrates an advantage in reducing the peaking phenomenon when compared to active
fault-tolerant control architectures. It also performs better than the conventional terminal
sliding mode control. This improvement is due to the internal constraints on the joint errors
imposed by the synchronization technique, which ensures that the position errors at each
joint converge to zero simultaneously. This feature allows the robotic system to quickly
and effectively mitigate the impact of faults, maintaining performance even when faults
occur. The second proposed controller, which combines the synchronization technique with
online adjustments using an orthogonal neural network, further improves fault tolerance
by reducing the effects of faults more effectively than both the first proposed controller and
the conventional terminal sliding mode control.
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