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Abstract: Hinged multi-body systems are gaining popularity in the field of ocean engineering. Their
performance is commonly evaluated using numerical simulations, but comparisons with experimental
data are required to ensure the accuracy of the computational tools. However, there is a dearth of
experimental studies on the motion performance of hinged multi-body systems, particularly those
involving more than two hinged floating bodies. This study aims to fill this gap in experimental
data for hinged multi-body systems beyond two bodies. The rectangular box was chosen as the test
model due to its stable hydrodynamic properties and ease of numerical modelling. Five identical
boxes were prefabricated and subsequently tested in the pool in a sequence ranging from one to
five boxes to capture the motion performance. Additionally, a numerical programme based on
potential flow theory was developed for mutual validation with the experimental data. Firstly, the
physical properties of each box were determined through equations calculation and a free decay test,
enabling the acquisition of all parameters for conducting numerical simulations. Then, the response
amplitude operator (RAO) curves for the heave and pitch motion of a single box were depicted, and
the results indicated that the resonant frequency in pitch direction obtained from the regular wave
test was consistent with that obtained from the free decay test. Finally, the motion RAO curves of
hinged multi-body systems were presented and analysed. The agreement between the measured
and computed results confirms the suitability of the experimental data presented in this study as
benchmark data for validating numerical simulations.

Keywords: model test; multi-body arrays; hinge connections; motion responses; response amplitude
operator

1. Introduction

Multi-body systems are emerging as a highly appealing solution for ocean clean energy
production and marine space utilisation [1]. In these multi-body arrays, hinge constraints
are commonly imposed between adjacent structures to mitigate the risk of collisions or
separation [2,3]. Unlike arrays of multiple structures with independent oscillations, these
hinged systems are subject not only to hydrodynamic interactions among different bodies
but also to significant mechanical coupling effects caused by the connectors.

There is a growing body of literature that explores the practical application of hinged
multi-body arrays in engineering. Diamantoulaki and Angelides [4] conducted a study on
the performance of various configurations of hinged floating breakwaters. They compared
the responses of these hinged structures to those of a single floating breakwater without
hinges and found that adding more hinge joints enhanced the performance of the break-
water system, except at very low and very high frequencies. Rogne [5] focused on the
modelling and simulation of a hinged 5-body wave energy converter (WEC), which consists
of a shallow draft cylindrical centre floater hinged to 4 semi-submerged spherical buoys.
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One significant design feature of this WEC is that the hinges are submerged, resulting in
a diagonal-like mode of motion for the buoys. Jiang et al. [6] studied the hydrodynamic
performance of an artificial island composed of hinged multi-modules. They also inves-
tigated the hydrodynamic sensitivity of such multi-body structures to the number and
arrangement of modules, as well as the incident wave angle. Ma et al. [7] investigated
the dynamic responses of a hinged floating aquaculture array subjected to regular waves.
This study indicated that the maximum pitch response is predominantly influenced by the
rotational stiffness of the hinge joint. Overall, the operational performance of these hinged
multi-body systems is strongly linked to the dynamic performance of individual structures.

Numerical simulation plays a vital role in accurately analysing the dynamics of multi-
body arrays with hinge constraints, primarily due to its notable advantages in terms of time
efficiency and practicality. These numerical simulations are commonly conducted utilising
various numerical techniques, which enable precise prediction of the motion responses of
hinged systems. Newman [8] was the first to consider the effect of hinge constraints in multi-
body systems. He applied a generalized mode method to calculate the dynamic responses
of a two-barge system connected by hinge joints. A Lagrange multiplier technique was used
by Sun et al. [9] to study the same hinge problems. Zheng et al. [10] calculated the motions
of hinged multi-body systems in the frequency domain by incorporating a constraint
matrix. Both latter studies validated their findings against Newman’s result and achieved
strong agreement. Compared to numerical simulations, physical model tests can offer more
convincing results as they directly measure the behaviour of the system under realistic
conditions. Therefore, experimental data is commonly employed to validate the accuracy
of the numerical techniques. Jiang et al. [11] conducted both experimental model tests and
numerical simulations to examine the capability of a potential-flow solver in predicting the
motions and loads on hinged two-module systems. The study concluded that the solver’s
application is limited due to the lack of implicit consideration of flow viscosity and strong
nonlinear free-surface typologies. Jin et al. [12] conducted an experimental study of a 1:25
scale-designed hinged raft WEC to explore the physical performance and to investigate the
effect of nonlinear energy dissipations like viscosity, submergence, and overtopping. Their
aim is to update an open-source tool WEC-Sim, to enable it to model any two-body hinged
WECs. Unfortunately, there is currently a scarcity of experimental research on the motion
performance of hinged multi-body systems, particularly with respect to data involving
more than two hinged floating bodies. Moreover, for an experimental test to serve as a
benchmark test for validating the accuracy of numerical procedures, it is essential that
the study can be easily reproducible. However, this aspect is often overlooked in current
experimental studies.

The aim of this paper is to provide benchmark data for validating numerical simula-
tions of the motion results of multi-body systems with hinge connections. Specifically, the
study measures the motion results of a hinged system with up to 5 hinged rectangular boxes
in a pool, filling the gap in experimental data for hinged multi-body systems beyond two
bodies. The accuracy in hinged multi-body computation of our in-house numerical solver,
MHydro, is also validated through comparison with the experimental data. The paper is
structured as follows. Section 2 describes the model tests of hinged multi-body systems
carried out at the University of Strathclyde. Section 3 outlines the numerical methodology
used to mutually validate the experimental results. The measurement results of motion
responses are presented in Section 4, and finally, the conclusions are drawn in Section 5.

2. Model Test Description

To obtain the benchmark data for validating numerical simulations of a hinged multi-
body system, model tests were conducted in a 3-D compact wave tank at the Kelvin
Hydrodynamic Laboratory of the University of Strathclyde [13]. The principal dimension
of this tank is 9 × 3.15 × 1.36 m. Figure 1 shows a photo of the wave tank. The tank is
equipped with 8 flap paddles as the wave maker to generate regular or irregular waves.
Four position-fixed wave probes were placed around the physical model to measure the
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wave elevation history. The time history of each model’s movements in 6 degrees of
freedom (DoFs) was recorded using a Qualisys motion capture system [14]. The present
displacement measurement system included several groups of markers, three high-speed
cameras, and a non-contact optical Qualisys tracking system. These markers are covered
with special materials so they can strongly reflect the infrared rays emitted by the cameras.
Four retro-reflective markers were attached to the upper surface of one physical model
to establish a local coordinate system, which will move with the model. Two high-speed
cameras were positioned above the wave maker, and another one was located near the
wave absorber to cover as much pool area as possible. As shown in Figure 2, several vertical
mesh panels composed of iron wires are installed at the end of the wave tank to dissipate
the transmitted waves. Each grid plate is arranged diagonally, with the vertical edges of
adjacent plates tightly fitted together to form a serrated wave-absorbing device. This design
ensures effective wave attenuation across the entire width of the tank’s end. Additionally,
the serrated device is filled with absorbing material to enhance wave energy dissipation.
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Five series of tests were designed here, varying only in the number of hinged floating
bodies from 1 to 5. The physical model was designed as a rectangular box with identical
geometry dimensions and physical properties due to its ease of numerical modelling. The
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main physical parameters of the model are presented in Table 1. The incident wave direction
was defined as β = 180◦, with an incident wave amplitude of 0.01 m. Taking the hinged
5-body array as an example, a schematic of the physical experiment is shown in Figure 3.
The origin of the global coordinate system was fixed at the calm water surface at the tank
centre, and the positive x-axis pointed to the wave maker. Regardless of the number of
floating bodies in the physical model system, the centre of the entire model system at rest
was located at the origin of the global coordinate system, and the positions of the four-
wave probes remained constant. A horizontal mooring was attached to each corner of the
entire model system to provide extra restoring forces, ensuring that the models could return
to their initial positions after the wave maker ceased operation. Figure 4 shows the hinge
assembly used to connect two adjacent bodies. Two hinges were symmetrically assembled
along the longitudinal direction on the upper surface of the adjacent models, with the
hinge rotation axis located at the midline of the gap. The other three multi-body model
systems in the test were also connected by the same hinge assembly between adjacent
boxes. To prevent relative movement between the hinge joint and the attached box, three
holes were arranged in a triangular pattern on one side of the hinge unit. These holes are
used for inserting screws and connecting the bodies. The distance between two adjacent
box models could be adjusted by changing different holes in the hinge. However, since
the aim of these tests is to provide benchmark data on the motion performances of hinged
multi-body arrays for the validation of numerical simulations rather than conducting a
parametric study, only the results with a fixed gap distance db = 0.08 m are presented in
this study. Additionally, to ensure that the centre of gravity and the centre of buoyancy
of each floating box are aligned as 0 in the horizontal plane of the body-fixed coordinate
system and the models were half submerged in still water. Varying sizes of weights were
used for ballasting.
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Figure 3. Schematic diagram of the experimental setup for hinged multi-box arrays, taking a 5-box
array as an example. The test system consists of 1, 2, 3, 4 and 5 boxes respectively, with the entire test
system arranged in the middle of the test tank. (a) Top view; (b) Side view.
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Table 1. Principal physical parameters of the box model.

Parameters Units Values

Length Lb m 0.4
Width Bb m 0.25
Height Db m 0.2

Draft hb m 0.1
Mass mb kg 10

3. Numerical Modelling

To enhance the credibility of the benchmark data obtained from the present model
test, numerical simulations using the same geometrical cases as those used in the test
were conducted. The results of the numerical simulations were then compared with the
experimental data for validation. These simulations were performed using MHydro [15],
an in-house code developed using potential flow theory and the 3-D Rankine source
panel method. Here, we will provide a brief overview and validation of the methodology,
while more detailed information on how MHydro was employed to solve the problem of
hydrodynamic interactions and motion characteristics of hinged arrays can be found in
Zhang et al. [15].

3.1. Numerical Methodology

Figure 5 illustrates the corresponding right-handed coordinate systems for N bodies
hinged together and oscillating in open sea conditions. The origins of the body coordinate
systems om–xmymzm (where m = 1, 2, . . ., N) are situated on the calm water surface at
midships, with the positive om–zm axis oriented upwards. The wave incident direction β is
the angle between the direction of wave propagation and the positive X-axis. β = 180◦ is
applied in the present study.

The fluid surrounding the system is assumed to be ideal, and its flow is described by
the velocity potential that satisfies the Laplace equation. The velocity potential within the
fluid domain can be represented as

Ψ(
→
X, t) = Re[η0 φ0(

→
X)e−iω0t] + Re

6

∑
j=1

N

∑
m=1

[ηm
j φm

j (
→
X)e−iω0t] + Re[η7 φ7(

→
X)e−iω0t] (1)

where N is the total number of hinged structures; ω0 is the frequency of the incident wave;
φ0 is the unit incident potential and η0 = η7 is the incident wave amplitude; φm

j is the unit
radiated velocity potential in 6 DoFs and ηm

j is the corresponding displacement amplitude
(η1: surge; η2: sway; η3: heave; η4: roll; η5: pitch; η6: yaw); φ7 is the unit diffracted velocity
potential. Generally, the governing equation and linearised boundary conditions for the
diffraction and radiation problems can be solved as
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(1) Diffraction wave potential

∇2 φ7 = 0 in the fluid domain; (2)

g
∂φ7

∂z
− ω0

2 φ7 = 0 on the undisturbed free surface S f ; (3)

∂φ7

∂n
= −∂φ0

∂n
|Sm on the mean wetted body surface Sm; (4)

∂φ7

∂z
= 0 on the seabed. (5)

(2) Radiation wave potential

∇2 φm
j = 0, j = 1, 2, . . . , 6 in the fluid domain; (6)

g
∂φm

j

∂z
− ω0

2 φm
j = 0, j = 1, 2, . . . , 6 on the calm water surface S f ; (7)

∂φm
j

∂n =

{
−iω0nj|Sm

0|Sothers

,

j = 1, 2, . . . , 6 on the mean wetted body surface Sm (Bm is oscillating while others are fixed);
(8)

∂φm
j

∂z
= 0 on the seabed. (9)

To fully address the boundary value problem, it is necessary to apply an appropriate
Sommerfeld radiation condition to the control boundary.

Once the unknown diffraction and radiation velocity potential are obtained, the
pressure on the wet surface of each structure can be calculated using Bernoulli’s equation,

pm
j = −iωρφm

j (10)

where ρ denotes the density of the surrounding fluid. Then, the wave excitation forces
acting on the floating bodies can be derived as

FWm
i =

x

Sm

(p0 + p7)nidS (11)
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The radiation hydrodynamic forces can be expressed as

FRm
i =

6
∑

j=1

s
Sm

pm
j nidS·

(
N
∑

n=1
ηn

j

)
=

6
∑

j=1

N
∑

n=1

(
ω2

0µmn
ij + iω0λmn

ij

)
ηn

j ,

i = 1, 2, . . . , 6; m = 1, 2, . . . , N
(12)

where µmn
ij and λmn

ij are the added mass and damping coefficients.
The presence of hinge constraints in the multi-body system causes the motion response

of all modules to be coupled rather than independent. If a hinge constraint is applied
along the y-axis, as shown in Figure 6, only pitch motion remains free, while the other
five DoFs are constrained to ensure the continuity of these motions at the hinge point.
Thus, five constraints exist between the interconnected adjacent bodies, specified by the
following equations

ηm
1 + ηm

5 zm − ηm
6 ym = ηm+1

1 + ηm+1
5 zm+1 − ηm+1

6 ym+1

ηm
2 − ηm

4 zm + ηm
6 xm = ηm+1

2 − ηm+1
4 zm+1 + ηm+1

6 xm+1

ηm
3 + ηm

4 ym − ηm
5 xm = ηm+1

3 + ηm+1
4 ym+1 − ηm+1

5 xm+1

ηm
4 = ηm+1

4
ηm

6 = ηm+1
6

(13)

where (xm, ym, zm) and (xm+1, ym+1, zm+1) represent the coordinates of the hinge joint
in coordinate systems fixed on the adjacent bodies, respectively. The frequency motion
equation for the hinged multi-body array can be expressed as[

−ω2
0(M + µ) + iω0(λ + C) + K DT

J
DJ 0

]{
η
FJ

}
=

{
FW

0

}
(14)

where M is the mass matrix of (6N × 6N); K is the stiffness matrix; µ is the added mass
matrix, and λ is the damping matrix, both with dimensions (6N × 6N); C is the vis-
cous damping matrix of (6N × 6N); DJ is the displace constraint matrix with dimensions
(Q × 6N), where Q represents the hinge number; η is the motion response matrix of size
(6N × 1); FJ is the vector of internal forces at the hinge joint, with dimensions (Q × 1); and
FW is the wave excitation force matrix, also of size (6N × 1). In the array mass matrix M,
the mass matrix of the m-th body is placed in the position of rows 6 (m − 1) + 1 to 6 m and
columns 6 (m − 1) + 1 to 6 m. The definition of the array stiffness matrix K is the same as
that of the array mass matrix. The mass and restoring stiffness matrix of the m-th floating
body can be expressed as

Mm
ij =



ma 0 0 0 mazG 0
0 ma 0 −mazG 0 maxG
0 0 ma 0 −maxG 0
0 −mazG 0 M44 0 M46

mazG 0 −maxG 0 M55 0
0 maxG 0 M64 0 M66

 (15)

Km
ij =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρgAw ρgMwx −ρgMwy 0
0 0 ρgMwx ρg(Iw1 + VzB)− magzG −ρgMwxy ρgVxB + magxG
0 0 −ρgMwy −ρgMwxy ρg(Iw2 + VzB)− magzG −ρgVyB + magyG
0 0 0 0 0 0

 (16)

where ma is the body mass; (xG, yG, zG) is the centre of gravity; (xB, yB, zB) is the centre of
buoyancy; M44, M55 and M66 are the roll, pitch and yaw moments of inertia; Aw is the
water plane area; Mwx and Mwy are the first moment of the water plane about the x-axis
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and y-axis, respectively; Mwxy is the second moment about the x–y plane; Iw1 and Iw2 are
the second moments of the water plane around the x-axis and y-axis, respectively; and V
represents the underwater volume.
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Figure 6. Sketch of multiple bodies with hinge connections. (a) Side view; (b) top view.

3.2. Validation of the Numerical Methodology

Before comparing the results obtained by the model tests and numerical simulations,
it is crucial to conduct a rigorous validation of the numerical programme. Unfortunately,
only very limited motion data of hinged multi-body systems is available from the pub-
lished resources. This further underscores the importance and necessity of conducting the
present study.

A problem of two hinged rectangular barges, previously solved using numerical
methods with a mode expansion technique by Newman [8] and a boundary element method
with a Lagrange multiplier technique by Sun et al. [9], serves as a common benchmark
to validate the accuracy of the numerical programme. The configuration and principal
dimensions are shown in Figure 7. The geometry of two barges is identical, where the length
Lb2, the width Bb2 and the draft Db2 of each barge are 40 m, 10 m, and 5 m, respectively.
The detailed mass matrix MB

ij and stiffness matrix BB
ij of each barge are expressed as

MB
ij =



2.050e6 0 0 0 0 0
0 2.050e6 0 0 0 0
0 0 2.050e6 0 0 0
0 0 0 2.135e7 0 5.949e−8

0 0 0 0 2.776e8 0
0 0 0 5.949e−8 0 2.904e8



KB
ij =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 4.018e6 −1.183e−1 −1.270e1 0
0 0 −1.183e−1 −1.675e7 0 0
0 0 −1.270e1 0 4.858e8 0
0 0 0 0 0 0
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Figure 7. Configuration of the hinged barges.

The gap between two barges is 10 m, and the water depth is assumed to be infinite. A
hinge is located at the horizontal midline of the gap to connect the two separated barges
and to allow the barges to rotate about the horizontal hinge axis. The response amplitudes
of the hinge motions and the vertical internal forces exerted on the hinge are shown in
Figure 8. To compare the results given by the present model with the published results, the
vertical motion amplitude of the hinge ξ3 is non-dimensionalized by A, while the hinge
rotation α is non-dimensionalized by 2kA. Here kA is the wave steepness. And the vertical
force in the hinge is non-dimensionalized by ρgALb2Bb2. Although differences with the
motion results published by Newman [8] can be found below the wave period T = 6 s,
the present motion and force results are in very satisfactory agreement with those of Sun
et al. [9]. The discrepancy with Newman’s results could be attributed to the different values
taken for the wave period spacing, where no periods were taken between 5 s and 6 s in
Newman’s results. It indicates that the present in-house programme is applicable to predict
the hinge motions and forces.
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Figure 8. Motions of the hinge and vertical force in the hinge. (a) Vertical motion at the hinge;
(b) relative rotation of the hinge; (c) vertical force acting in the hinge [8,9].

4. Results and Discussions

Compared to numerical simulations, the results obtained from physical model tests
are generally considered to be more convincing and trustworthy. This is due to the fact that
physical model tests directly observe and measure the behaviour of the system under real-
world conditions, providing tangible and empirical evidence of its performance. Detailed
information on the present hinged multi-body model test and comparison with numerical
simulations will be described in this section. It is important to note that the pitch results for
the five-body array with hinge connections have been previously reported as validation
data by Zhang et al. [15]. However, the heave and pitch experimental results for the single
floating body, as well as the hinged two-, three-, and four-body arrays, are presented for
the first time in this paper. Additionally, the heave results for the hinged five-body array
are also reported here for the first time.
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4.1. Physical Properties of Single Box

In the present study, with the incident wave angle set to β = 180◦ for a head wave
condition, six DoFs for each structure’s motion can be simplified to just three: surge, heave,
and pitch. Thus, the mass and restoring stiffness in the roll and yaw direction are not
provided in the present study. However, since the horizontal displacement can be affected
by the four horizontal moorings imposed on the model system, the focus is primarily on
the heave and pitch motions.

To obtain numerical results of the heave and pitch motion, the mass and restoring
stiffness in these two directions should be determined. Since each floating box is half
submerged in still water, as shown in Figure 9, the centre of buoyancy in the z-direction is
at zB = −0.05 m. The centre of gravity in the z-direction is measured through an incline test
using a swing set, as shown in Figure 10. Figure 11 shows a schematic diagram of the swing
cline test. The upper part of the swing is equipped with horizontal cutters at the front and
back along the y-axis, supported at the origin o. After the physical model is placed in the
swing, both the swing and the model are supported by the cutters and can swing freely
around the y-axis of the support point. The dotted lines illustrate the initial positions of the
swing and the physical model at rest. G1 represents the position of the centre of gravity of
the swing, G2 is the position of the gravity of the physical model, and G is the position of
the centre of gravity of the system consisting of both. A weight of P is placed on the swing
at a horizontal distance d from the origin o, which causes the swing and model system to
tile together. According to the principle of moment balance, the coordinate of the centre of
gravity of the physical model can be obtained by

Pdcosθ = −zG1W1sinθ − zG2mbsinθ (17)

where θ is the angle at which the swing tilts after the weights are placed; W1 is the weight
of the swing; zG1 is the z-coordinate of the swing; zG2 is the z-coordinate of the physical
model; mb is the mass of the physical model.
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Drawing from the swing incline test, the z-coordinate of the centre of gravity is
confirmed to be zG = −0.027 m in the body-fixed coordinate system. Since the x–y plane
section of the physical model is a standard rectangle, the second moment around the y-axis
Iw2 can be derived from

Iw2 = BbL3
b/12 (18)

Once the Iw2 = 0.0013 m4 is obtained, the restoring stiffness in the pitch direction can
be calculated by Equation (16), and the result is K55 = 10.4881 N·m/rad. Moreover, the pitch
moment of inertia M55 can be derived from the motion equation as given in the following;

ω55 =

√
K55

M55 + µ55

√
1 −

(
λ55

2
√

M55K55

)2
(19)

where ω55 is the natural frequency in pitch direction; µ55 and λ55 are the added mass
and potential damping at this natural frequency, respectively. To determine the natural
frequency in pitch, a free decay test in calm water is performed in this direction without
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applying any external moorings or other constraints on the model. The test starts by
applying an external load to the floating box model to displace it from its static equilibrium
position. This load should be applied to the longitudinal midline of the model to induce
pitch motion only. Then, after the load is released, the model starts to oscillate about the
equilibrium position at its natural frequency. Figure 12 presents the time history of the
decaying pitch motion of a single floating box model. It can be found that the values in
Figure 12 are small. This is due to the fact that the model used in the test exhibits high
restoring stiffness in the pitch direction and a minimal external load applied. Based on the
results of the free decay test shown in Figure 12, the natural frequency of the box model
in pitch is obtained as ω55 = 7.306 rad/s. As a result, the pitch moment of inertia can be
confirmed as M55 = 0.128 kg·m2, which is equal to the measured values.
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Introducing damping terms into numerical simulations enhances the alignment of
numerical results with experimental data. The damping of the model structure can be
quantified using the following equation:

c = 2maωξ (20)

where ξ represents the logarithmic decrement, defined as

ξ = ln
Ai

Ai+1
(21)

where Ai is the i-th peak amplitude in the time history of the free decay test, and Ai+1 is
the amplitude of the next peak.

From Figure 12, the damping in the pitch direction is determined as 4.65 N·s·m.
Similarly, the damping in the heave direction is calculated to be 10.59 N·s/m.

4.2. Acquisition of Response Amplitude Operators

The amplitude response operator (RAO) is a crucial parameter in the design and
response analysis of marine structures. It provides information about how a structure
responds to the applied wave forces at different frequencies and is defined as the ratio
of the amplitude of the structure’s motion to the amplitude of the incident wave. One
approach to acquiring motion RAOs for laboratory models is through conducting tests
under regular wave conditions. During the regular wave tests, four horizontal moorings
are applied to fairleads on the physical model system, as shown in Figure 9, to ensure the
system reverts to its initial position once the wavemaker ceases operation. This is achieved
by applying additional surge, sway, and yaw restoring forces. To ensure accuracy, data



J. Mar. Sci. Eng. 2024, 12, 1791 13 of 19

collection should cover at least 10 wave cycles. This accounts for any transient effects
that may occur during the initial cycles and achieves a statistically significant sample size.
Figure 13 shows the time series of pitch motions for the single box with a wavemaker
frequency of 1.276 rad/s. A Sine function is applied to extract the response information.
From this fitting, the amplitude of the response in Figure 13 is calculated to be 0.3847◦, with
a frequency of 1.2750 rad/s and a phase of −0.034 rad. However, due to the limitations of
the wavemaker and tank, replicating the incident wave precisely may not be possible. Thus,
it is necessary to record and fit the free surface elevation using a sine function. In this study,
limited by the length of the 5-model array, wave probe No.1 (WP1) was positioned too
close to the wavemaker, resulting in disturbances in the waves it measured. Therefore, the
data collected by wave probe No.2 (WP2) is used for further analysis in the present study.
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1.276 rad/s.

Figure 14 shows the panel distribution of the single-box numerical model. The free
surface is truncated at 1.5λ upstream, 1.5λ downstream, and 3Bb sideward. Figure 15
presents the heave and pitch motion RAOs of the single-box model system. The comparison
with the Rankine source panel method is also included. The numerical results presented
include two scenarios: one without considering the influence of viscous damping and
another that incorporates the effects of viscous damping. To facilitate the comparisons with
numerical simulations using the RAO results obtained from the present model test, the units
of the parameters in the RAO curves should be unified. The unit of the heave motion RAO
is converted to m/m, while the pitch motion RAO is given in rad/m. The wave frequency
is presented in rad/s and then non-dimensionalized by

√
g/Lb. It can be observed that the

measured and computed results show overall good agreement, particularly between the
model test results and the numerical results that incorporate viscous damping effects. Both
numerical simulations accurately predict the peak periods. However, the peak values of
the numerical results that omit the viscous damping effect are noticeably higher than those
of the experimental data. Obvious discrepancies can be observed around wave frequencies
of ω0

√
Lb/g = 0.5 and 1.45, respectively. Additionally, a small peak can be found at wave

frequency ω0
√

Lb/g = 0.53 in the measured heave motion RAO and at wave frequency
ω0

√
Lb/g = 0.45 in the pitch motion RAO from experimental data, respectively. It is likely

due to the presence of the fairleads and the moorings. It can also be seen that the resonant
frequency is well predicted by the numerical simulations; however, larger motion RAO
results are presented compared to the experimental data. These discrepancies are attributed
to the exclusion of the viscous effect in the present numerical simulations. Furthermore,
the resonant frequency of the single model’s pitch motion obtained from the regular wave
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tests generally coincides with the natural frequency obtained from the pitch-free decay test,
which can be used to mutually verify the accuracy of the model tests.
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Figure 14. Panel distribution of the single box system with a wavelength of λ/Lb = 2.5.
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4.3. Motion Responses of Multi-Box Arrays

When calculating the motion response for an array of hinged floating structures, it is
crucial to accurately account for both the hydrodynamic interactions between the bodies
and the mechanical coupling of the connectors. This obviously differs from the motion
response calculation for a single-body system. However, the results obtained from numeri-
cal simulations often suffer from errors due to the adoption of certain assumptions, such
as the neglect of the fluid viscosity effect. To provide benchmark data for validating com-
putational tools used to evaluate the motion of multi-body arrays with hinge constraints,
the motion performance of four multi-body systems with different numbers of floaters
are tested separately under regular wave conditions. In this section, the numerical results
of hinged multi-body arrays that incorporate the viscous damping effect are presented
alongside the experimental data. The viscous damping coefficients are applied only to the
main diagonal of the damping matrix.

Figure 16a,c,e,g depict photos of four hinged multi-box model systems, each consist-
ing of a different number of floating bodies in the model systems ranging from 2 to 5.
The computational domains and boundary discretization are shown in Figure 16b,d,f,h,
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respectively. Figures 17 and 18 present the heave and pitch motion RAOs of four hinged
arrays, respectively. It can be seen that the present numerical programme could accurately
predict the peak period of the motion responses and roughly predict the peak amplitude.
The omission of viscous damping effects outside the diagonal led to incomplete agreement
between the predicted amplitudes and the experimental results. It should be noted that
for smaller floating bodies, their viscous effects are usually significant, whereas for larger
floating structures, the influence of viscous terms is weaker. Keulegan–Carpenter number
can be used to quantify the ratio of viscous to inertia force. For small KC numbers, the
inertia dominates, while for large numbers, the (turbulence) drag forces are important.
However, there is generally good agreement between the measured and computed results,
indicating that the model tests and numerical simulation results can be effectively validated
against each other. As a result, the present experimental data can serve as benchmark data
for other numerical programmes aiming to calculate the motion of hinged multi-bodies.
From Figure 17 it can be found that the RAO of the heave motion tends to be 1 at low
frequencies in all hinged systems since the floating structures will move with the waves
when the wavelength is sufficiently long. With an increasing number of hinged bodies,
more peaks appear in the heave and pitch motion RAOs. This can be attributed to the
increased interaction among the floaters in systems with more bodies. However, based on
the present results, it is not possible to draw a clear conclusion regarding the effect of the
number of hinged floaters on the motion responses. This is similar to the findings of Zhang
et al. [15], who also reported that a uniform trend for the effect of the number of hinged
floaters could not be identified when there were fewer floaters in the hinged multi-body
array. They also found that when more than 7 bodies are hinged, the entire array tends to
exhibit a consistent trend in heave and pitch motions as the number of floaters continues to
increase along the array layout direction.
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Figure 16. Photos and numerical domains of the hinged multi-box model systems. The numerical
domains are at wavelength λ/Lb = 2.5. (a) Photo of the two-box model; (b) numerical domain of
the two-box system; (c) photo of the three-box model; (d) numerical domain of the three-box system;
(e) photo of the four-box model; (f) numerical domain of the four-box system; (g) photo of the five-box
model; (h) numerical domain of the five-box system.
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Figure 17. Heave RAOs of the hinged systems. (a) Two boxes; (b) three boxes; (c) four boxes; (d) five
boxes.
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5. Conclusions

In this paper, we conducted model tests in a tank at the University of Strathclyde
to obtain benchmark experimental data on the motion RAOs of hinged multi-body sys-
tems. An in-house code was also developed to calculate the motion RAOs of the same
hinged multi-body systems for mutual validation with the experimental data. The models
employed in this study were identical rectangular boxes with the same physical properties.

To determine the parameters of the mass, restoring, and viscous damping matrices
of the rectangular boxes for numerical simulations, a moment of inertia equation for the
rectangular water plane and a free decay test were performed. These procedures were
essential to obtain the relevant physical properties and to verify the measured values. An
illustrative example is provided using a single-box test under regular waves to explain
the process of obtaining the motion RAO of the model from the collected motion time
history data. Whether or not viscous damping is considered in numerical simulations,
both scenarios can accurately predict the peak period. However, incorporating viscous
damping results in peak amplitudes that more closely align with experimental results.
Furthermore, the pitch resonant frequency obtained from the single-box regular wave test
was consistent with that obtained from the free decay test in pitch motion. Then, hinged
model systems consisting of 2 to 5 boxes were sequentially tested under regular waves,
and the heave and pitch motion RAOs were presented. Additionally, due to the stability
and ease of numerical modelling of the rectangular box, the motion results obtained from
the present hinged multi-box model tests can serve as benchmark data to validate other
numerical programmes.
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