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Abstract. In recent years, much interdisciplinary research has been con-
ducted exploring potential use cases of neuroscience to advance the field
of information retrieval. Initial research concentrated on the use of fMRI
data, but fMRI was deemed to be not suitable for real-world applications,
and soon, research shifted towards using EEG data. In this paper, we try
to improve the original performance of a first attempt at generating text
using EEG by focusing on the less explored area of optimising neural
network performance. We test a set of different activation functions and
compare their performance. Our results show that introducing a higher
degree polynomial activation function can enhance model performance
without changing the model architecture. We also show that the learnable
3rd-degree activation function performs better on the 1-gram evaluation
compared to a 3rd-degree non-learnable function. However, when eval-
uating the model on 2-grams and above, the polynomial function lacks
in performance, whilst the leaky ReLU activation function outperforms
the baseline.

Keywords: EEG · Transformer· Activation Functions· Decoder· En-
coder· EEG-to-Text

1 Introduction

In recent years, there have been significant advancements in the study of the
human brain. Various researchers have achieved notable success in classifying
mental states, ranging from elementary perceptions like pain to more intricate
cognitive conditions such as assessing the relevance of stimuli [48]. One of the
most recent advancements made in the field of neuroscience was the decoding of
thoughts and inner speech. Such research was motivated by the pressing chal-
lenge of restoring the communication abilities of individuals facing neurological
conditions which impaired them. Several researchers were able to decode human
thoughts using fMRI [51] or EEG [54] data. In the process of doing so, a notion
of what we call "brain embeddings" was formed. The models, in their process of
learning how to decode human thoughts, built inner representations that map
natural language to brain features.

However, using fMRI data is deemed not to be a viable solution for a real-life
Brain-to-Text decoder for two reasons. First, it is costly to record fMRI data,
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and fMRI cannot be used in real-time due to the delay of the BOLD signal that
it relies on to identify activation patterns. Due to these complications, research
started moving towards using EEG for real-time Brain-to-Text decoding. With
the introduction of ZuCo-1.0 and ZuCo-2.0 [14, 13], access to a massive dataset
that can serve as a training collection was given to the community. Previous
research has utilised EEG data from ZuCo to either decode human thought or
construct general EEG embeddings that can be used in downstream tasks e.g.
EEG mental state classification [54, 25, 5]. Wang and Ji [54] attempted first to
build an EEG-to-text decoder using EEG data. Even though the results seemed
promising, there is a lot of room for improvement to achieve good brain-to-text
translation performance.

In this paper, we try to improve the original performance reported by [54]
by delving into the less explored area of optimising neural network performance.
We experiment by testing a set of different activation functions and log their
performance against the original results. Several works [7, 2] showed that us-
ing nonlinear and tunable activation functions can enhance model performance.
They also suggested that there is a gap in the knowledge on using such acti-
vation functions since all the state-of-the-art models use the most well-known
activation functions. However, it is indicated that non-linear and tunable activa-
tion functions might fit better to real-life data. In this paper, we tested a set of
different activation functions and compared their performance. Our results show
that introducing tunable activation functions can enhance the performance of
the model without changing the model architecture. We also show that intro-
ducing higher degree polynomial activation functions enhances the performance
compared to a linear activation function. Our main contribution in this paper is
to show that it is possible to optimise a Transformer Encoder by using different
activation functions either by introducing higher degree polynomial or tunable
activation functions.

2 Related Work

NeuraSearch Research In recent years, a lot of interdisciplinary research has
been conducted exploring potential use cases of neuroscience to advance the
field of information retrieval [34, 40, 41, 9], with such research being named as
NeuraSearch [33]. Potential NeuraSearch applications have previously been ex-
plored in areas such as realising the information need of users [39, 38, 32, 30],
forming search queries [18], modelling user search process as a transition between
different search states [36], evaluating the potential of brain activation for the
provision of relevance feedback [34, 1, 6, 20, 46, 48, 47], satisfying user informa-
tion need [42, 44], and mental workload detection [29, 24, 22, 21] Many different
neuroimaging techniques have been utilised for the purposes of NeuraSearch re-
search, including Magnetoencephalography (MEG) [19], fMRI [26, 35, 37, 39,
42, 43, 44], and Electroencephalography (EEG) [1, 8, 16, 17, 18, 22, 23, 31].
Advantages of some of these techniques and their suitability for the purposes of
our research are discussed below.
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EEG-To-Text Existing research has attempted to decode language in the brain
either from text read or speech listened to [12, 51, 45, 54], which is also the do-
main that the current research expands upon. Here, we focus on some research
that has assessed the possibility of deriving text from non-invasive brain imag-
ing data [51, 54]. By utilising fMRI and MEG recordings, Toneva and Wehbe
[51] attempted to improve the natural language processing (NLP) capabilities
of various transformer models. They used the brain activation representation of
several words from the aforementioned recordings and were able to show that
brain activity can be predicted by aligning transformers with the brain activ-
ity recordings. They also suggest that such an alignment can lead to increased
performance of the transformer model in NLP tasks.

Wang and Ji [54] used EEG recordings from an open vocabulary dataset
which includes tens of thousands of words, and transformer models, to attempt to
derive the text that participants were reading from their EEG recordings. They
also attempted to enhance transformer EEG-based sentiment classification capa-
bilities through the utilisation of the EEG recordings in the fine-tuning process.
They achieved beyond-chance results in decoding participants’ EEG data and
improving transformer EEG-based sentiment classification performance. One ad-
vantage of the data utilised by the latter research is that EEG data has high
temporal accuracy, which can allow for real-time decoding of a person’s brain
activity, in contrast to the delayed temporal representation of fMRI recordings.
Additionally, the acquisition and maintenance costs for EEG devices are much
lower compared to fMRI scanners. Therefore, in this research, we would prefer-
ably utilise EEG in our experiments due to the enhanced real-life applicability
of the data.

This research will be closely aligned to previous research conducted in decod-
ing EEG-to-text by utilising the same dataset and building upon their method-
ology [54, 15]. The aforementioned open vocabulary EEG dataset was collected
and presented in two iterations: ZuCo-1.0 and ZuCo-2.0 [15]. In these datasets,
subjects were asked to read sentences with stimuli presentation, being segmented
into two modalities: standard and task-specific reading. Specifically, ZuCo-1.0
comprises data from 12 healthy adults, encompassing 21,629 words and 1,107
sentences [13]. In contrast, ZuCo-2.0 encapsulates readings from 18 subjects,
summing up to 15,138 words in 739 sentences [14]. The datasets were constructed
by creating eye-tracking features as detailed in the GECO corpus [4], at both the
word and sentence level. Some example features include first fixation duration,
which is how long participants fixated on the current word, and total reading
time, which includes the total of all fixation duration on the current word. Now,
for each eye tracking feature, EEG features, which comprise frequency bands,
were extracted, namely theta1, theta2, alpha1, alpha2, beta1, beta2, gamma1
and gamma2. The dataset also includes the raw EEG data for each word and
each sentence.

Wang and Ji [54] utilised a zero-shot pipeline for the classification of EEG to
text, with their top-performing pipeline utilising the BART transformer. Their
approach is currently yielding a BLEU score of approximately 10% using con-



4 Lamprou et al.

structed word-level EEG features provided in the ZuCo dataset. Even though
the original score obtained by the authors was reported to be around 40% due to
an error in the code, which enforced teacher learning. The revised score obtained
was approximately 10% using features and 7% using the raw EEG recordings.
Thus, as this research will closely follow their research, we will also utilise the
ZuCo datasets, and we will attempt to enhance the performance of their best-
performing pipeline by re-configuring the BART transformer on which it is based.
Instead of utilising constructed features, we will be working with the raw EEG
data. Such data have been found to perform better in classification tasks when
using deep learning or transformer models compared to EEG spectral features
[52, 50], and abolish the need for pre-processing data reducing required resources.

Activation Functions The performance enhancement our research will focus
on is the application of several different activation functions, which may improve
the performance of the BART transformer [7, 53, 2]. Goyal et al. [7] highlighted
the existing research gap in devising activation functions for neural networks.
They introduced an innovative strategy that revolves around constructing learn-
able activation functions during training. Such functions pertain to a weighted
sum of known basis elements which can approximate well the ideal activation
function, thereby tailoring to the model’s task and data more effectively.

The incorporation of a novel set of polynomial functions for deep learning was
explored by Wang et al. [53], with their focus being on the domain of precipitation
forecasting. They posited that Chebyshev Polynomial-based activation functions
paired with normalisation to tackle the data flow explosion issue, which causes
them to result in unstable training, might offer a better fit for real-world data,
and with appropriate model training, they can boost performance.

Bilonoh et al. [2] proposed another category of activation functions, as they
aimed to go beyond the universally used activation functions to speed up con-
vergence and improve accuracy. Their proposed function is termed the tunable
activation function, which allows for the modification of its parameters, as well as
the between neuron connection weights during the training process. They were
found to indeed lead to greater flexibility as, due to their polynomial nature,
they can approximate many other types of activation functions. This led to en-
hanced model performance and more rapid convergence. Thus, in this research,
we aim to utilise a variety of the activation functions mentioned above, as it
would be interesting to explore whether these activation functions can improve
the EEG-to-text capabilities of the BART transformer.

3 Methodology

In order to determine if different activation functions can yield better perfor-
mance, we decided to re-train the EEG-to-Text decoder proposed by Wang and
Ji [54]. We used the same architecture but implemented different activation func-
tions and ran the experiment using the raw EEG data. We first train the model



On the Role of Activation Functions in EEG-To-Text Decoder 5

without any modifications to obtain a baseline, and then we compare our results
against that baseline.

3.1 Data

For training our model, we utilised the raw EEG data recorded for each word
in each sentence. While our model’s architecture shares similarities with the
one proposed by Wang and Ji [54], a key distinction is our use of raw EEG
data instead of word-level EEG features. ZuCo dataset also compromises from a
variety of tasks. Wang and Ji [54] showed that by increasing the training sample,
the model performance increases. Thus, following their observation, we used Task
1 and Task 2 from ZuCo-1.0 and Task 2 from ZuCo-2.0 for our training.

To accommodate the differences in data formats, we applied transformations
to our raw EEG data before fitting it into our model for training. Unlike the
word-level features, which are formatted as a 1D series of features, raw EEG data
are inherently 2D. The first dimension represents the number of recordings per
word, and the second dimension represents the activation levels of each electrode.

To transform the data into the required 1D format, we averaged the activation
levels of each electrode across all recordings for a given word. This averaging
process yielded a single average activation value per electrode, resulting in a
1D list of features. This transformation allowed us to effectively utilise the raw
EEG data within our model, ensuring compatibility and facilitating the training
process.

3.2 Model

Our model architecture bears a resemblance to the architecture proposed by
Wang and Ji [54], with a notable difference in the activation functions used
for our Transformer Encoder. This architecture is premised on the translation
task framework, utilising encoder and decoder neural models. The encoder is
composed of a stack of randomly initialised Transformer Encoder layers. These
layers aim to extract high-level features from raw EEG, which are then utilised by
the decoder. Unlike the original study, we employ different activation functions
within these Transformer layers to potentially enhance the feature extraction
process. We specifically used 6 Transformer Encoder layers stacked on top of
each other with a dimensionality of N and S number of attention heads. For
the decoder, we utilise a pre-trained Large Language Model (LLM), specifically
BART, which was also used in the original study by Wang and Ji [54]. BART is
particularly well-suited for generation tasks, making it an apt choice for trans-
lating EEG-derived features into coherent sentences.

Model Operation Encoder: The randomly initialised stack of Transformer En-
coder layers processes the raw EEG data, extracting meaningful features that
encapsulate the information within the EEG signal. Decoder: The BART model
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takes these high-level features from the encoder and generates the correspond-
ing sentences. This combination of a customised Transformer Encoder and a
robust LLM decoder allows our model to effectively perform the EEG-to-text
translation task.

3.3 Activation Functions

During our training and evaluation phase, we tested several different activation
functions. Below, we give a brief explanation of each activation function. We
look for activation functions that outperform ReLU because this is the default
activation function used in the Transformer Encoder implementation.
Swish. Swish activation function [49] is a smooth, non-monotonic activation
function. We chose swish because as a smooth, non-monotonic alternative ac-
tivation function in deep learning models. Swish has gained popularity after
outperforming ReLU on a variety of tasks, such as image classification on Ima-
geNet, and it is reported that it can capture more complex relationships between
the data.
GELU. GELU [11] is a smooth and non-monotonic activation function. GELU
weights inputs according to their value and produces richer gradients than ReLU.
It outperforms ReLU in a variety of deep learning tasks, particularly when it
comes to NLP models like BERT, and that is why it was chosen.
ELU. ELU [3] offers improved performance in various deep-learning applica-
tions, such as vanishing gradients and biased activations. The Exponential Lin-
ear Unit (ELU) is a smooth, non-monotonic activation function that combines
properties of ReLU for positive inputs with a curved exponential saturation for
negative inputs, controlled by a parameter α.
Leaky & Parametric ReLU. We chose Leaky ReLU [28] and Parametric
ReLU(PReLU) [10] because they permit non-zero gradients for negative inputs
in an effort to solve the dying ReLU problem. While PReLU discovers the ideal
slope during training, Leaky ReLU uses a preset slope, which could result in
improved performance at the expense of more complexity.
Sine. As most of the functions mentioned are monotonic, we decided to use
a non-monotonic activation function. The sine function and its variations add
oscillatory behaviour to neural networks, which may be advantageous for periodic
input and tasks requiring non-monotonic modelling skills. However, they are not
as popular as ReLU or other activation functions.
Chebysev Polynomials. Chebyshev polynomials are a significant family of or-
thogonal polynomials with many analytical features and uses in scientific com-
puting, numerical analysis, and approximation theory. They are defined by a
trigonometric cosine formula. As mentioned in Section 2, Chebysev polynomials
improved the performance of predicting real-life weather data [53], so they are
deemed to be a good candidate for improving the performance of the model.
Learnable Polynomials. Learnable polynomials are polynomial equations whose
constants are learned during training. In recent research [2], their effectiveness
was explored, so this makes them a strong candidate to be included in our ex-
perimental set-up.
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3.4 Training process and Evaluation

Our training process is divided into two identical training runs. In the first run,
the learnable parameters of BART are frozen, and we utilise the loss generated
from BART to train the parameters of our Transformer Encoder. This loss is
the standard loss provided by BART. During this phase, high-level features are
extracted from the Transformer Encoder. These features are then used as input
to our BART model. They enable the Transformer Encoder to learn to extract
and align EEG signal features effectively with the textual information used by
BART. This initial training run ensures that the Transformer Encoder captures
meaningful representations of the EEG data that can be used in the subsequent
stages of the model.

The second run follows a similar approach, but this time, we fine-tune BART
alongside our Transformer Encoder. This allows the weights of BART to be
trained during this phase. The purpose of conducting two training runs in this
manner is twofold: firstly, to train the Transformer Encoder by leveraging the
information from BART, enabling it to align EEG information with textual
information effectively. Secondly, after this alignment is achieved, we fine-tune
BART to perform the EEG-to-text translation as a downstream task. Once the
model training is completed, we use it to generate sentences from BART using
beam search. The generated sentences are then evaluated by comparing them
to the actual sentences. Metrics such as the BLEU score and Rouge score are
computed to assess the quality of the generated text.

We trained the model for each activation function for 10 epochs for each run,
for a total of 20 epochs. We used a batch size of 16 and a learning rate of 5e-5
for both runs. To evaluate our model, we concatenated all the data from all the
subjects and then performed a random 80% (train), 10% (validation), and 10%
(test) split. For both stages of our training, we used a stochastic gradient decent
optimiser with a learning rate of 5e− 5.

3.5 Evaluation Metrics

We use two different evaluation metrics for our evaluation process. The first
metric was BLEU (Bilingual Evaluation Understudy) [50].BLEU score is a widely
used metric for evaluating the quality of text generated by machine translation
models, such as those used in NLP tasks. It measures how closely the generated
text matches one or more reference translations. The BLEU score ranges from 0
to 1, where a score closer to 1 indicates a higher quality of translation.

BLEU calculates the precision of n-grams (contiguous sequences of n items
from a given sample of text) in the generated text compared to the reference text.
Commonly, n-grams of sizes 1 to 4 are used. The second metric was ROUGE
(Recall-Oriented Understudy for Gisting Evaluation) [27]. The ROUGE score
is a set of metrics used to evaluate the quality of summaries and translations
generated by NLP models. Unlike BLEU, which focuses on precision, ROUGE
primarily emphasises recall and overlap between the generated text and reference
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Table 1: BLEU Scores results table
Bleu Scores

Activation Functions BLEU-Score 1 BLEU-Score 2
plain 0.074 0.0096
swish 0.07 0.0057
gelu 0.04 0.008
elu 0.083 0.017
leaky relu 0.091 0.028
swish norm first 0.08 0.001
parametric relu 0.075 0.021
sine 0.004 0.0010
chebysev degree 3 0.087 0.02
chebysev degree 3 norm first 0.008 0.001
chebysev degree 2 0.095 0.016
torch poly 2 0.083 0.017
torch poly 3 0.098 0.023
negative positive poly 0.07 0.015
negative positive poly norm first 0.008 0.001

texts. ROUGE scores are widely used in summarization tasks and other text-
generation evaluations.

There are different variations of the ROUGE-Score. In this paper, we use
ROUGE-N, which measures the n-gram overlap between the generated text and
reference text. Common n-grams include uni-gram (ROUGE-1) and bi-gram
(ROUGE-2). We also used ROUGE-L, which measures the longest common sub-
sequence (LCS) between the generated text and reference text, capturing the
order and relationship of words.

4 Results

To evaluate the performance of our models, we use the BLEU score and Rouge
score. These metrics are commonly used to access the machine translation and
question-answering tasks, and that is why we adopted them as well. An overview
of their implementation can be found in Section 3.5. We compare our results
against the original pipeline [54], and in our results tables and figures, we referred
to that baseline as "plain". It is worth noting that we combine data from all the
subjects even though inter-subject variability and noise are major obstacles in
EEG. We did that since in the original research [53], it was shown that increasing
the training data can yield better results. We also wanted to have almost the
same parameters as the original research in order for our comparison to be most
accurate.

Observing Figure 1 and 2 show that the configurations "torch poly 3", "head
same as layers", have the highest BLEU scores, clustered around the 0.09 to
0.10 range. This indicates that these configurations are the most effective in
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achieving higher translation quality. On the other hand, configurations involving
custom activation functions, such as "use custom activation Chebysev degree 3"
and "use swish activation function", generally have lower BLEU scores, mostly
below 0.08. This wide variance in scores demonstrates the differing levels of
effectiveness among the configurations.

Table 2: Rouge Scores results table
Activation Function Rouge Score 1 Rouge Score 2 Rouge Score L

P R F P R F P R F
plain 0.04 0.009 0.001 0.000 0.000 0.000 0.041 0.009 0.015
swish 0.051 0.013 0.021 0.000 0.000 0.000 0.050 0.013 0.020
gelu 0.087 0.060 0.067 0.0026 0.0023 0.0022 0.079 0.055 0.061
elu 0.156 0.046 0.069 0.0037 0.0016 0.0021 0.150 0.044 0.066
leaky relu 0.155 0.115 0.126 0.01420.01240.01220.130 0.098 0.106
swish norm first 0.018 0.013 0.015 0.0002 0.0001 0.0002 0.018 0.013 0.014
parametric relu 0.158 0.114 0.114 0.0102 0.0065 0.0074 0.131 0.083 0.095
sine 0.009 0.008 0.008 0.0002 0.0001 0.0001 0.009 0.008 0.008
chebysev degree 3 0.170 0.053 0.078 0.0070 0.0028 0.00370.161 0.050 0.074
chebysev degree 3 norm
first

0.018 0.013 0.015 0.0002 0.0001 0.0001 0.018 0.013 0.014

chebysev degree 2 0.136 0.048 0.069 0.0007 0.0002 0.0003 0.126 0.045 0.063
torch poly 2 0.106 0.041 0.057 0.0005 0.0002 0.0003 0.097 0.037 0.052
torch poly 3 0.173 0.61 0.087 0.0055 0.0024 0.0031 0.159 0.056 0.079
negative positive poly 0.142 0.044 0.065 0.0027 0.0010 0.0014 0.140 0.043 0.063
negative positive poly
norm first

0.018 0.013 0.015 0.0002 0.0001 0.0002 0.018 0.013 0.014

After interpreting the results described above, we made several observations.
First, the difference in the performance of the Chebysev and Torch polynomials
is large even though they use the same 3rd-degree polynomials. We hypothesise
that this difference occurs because the torch polynomial has learnable parame-
ters. By adjusting the activation functions’ parameters to be learnable, we can
see that the performance of the model can be enhanced. Moreover, the "head
is the same as layers" configurations that can happen in combination with a
custom activation function. "Head same as layer" initialises a Transformer En-
coder that has the same attention head as the number of its layers. By applying
that transformation, the learnable activation function outperforms both, which
highlights the importance of having a learnable activation function.

However, the above observation can be seen only if we look at the BLEU
score when assessing the performance using a 1-gram evaluation. That implies
that our model is good at identifying words in the sentence but is prone to
identifying the wrong position of the word. When we look closely at the BLEU
score for 2-gram and 3-gram heads, the same layer has the best performance,
and the leaky ReLU activation function is the best-performing metric.
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Another observation that can be made is that, by changing the normalisation
layer of the encoder to be at the start, the performance drops dramatically to a
10th of the performance regardless of the activation function. As you see in table
1, using the Chebysev polynomial of 3rd degree with the normalisation layer first
drops the performance from 0.087 to 0.008. The same observation can be made
when using a negative-positive polynomial as well.

Fig. 1: 1-Gram BLEU-Score Evaluation

To evaluate our models, we also use ROUGE-Score as well. The results can
be seen in Table 2. The same observation can be seen for the BLEU-Score.
Even though Rouge is a more recall-prone metric for evaluation, we can see that
using ROUGE-1 shows that the best performance is achieved when utilising a
learnable activation function or using the same head as layers configuration.
However, moving up to 2-grams, the leaky ReLU activation function is the best-
performing one.

5 Conclusion & Future Work

In this paper, we utilise a set of different activation functions and two different
transformations to enhance the current performance of an EEG-to-Text decoder
model that utilises EEG data. Our results showed that using a different acti-
vation function can make the model perform better in real-life data. We also
showed the value of using learnable activation functions. Leaky ReLU seemed
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Fig. 2: 2-Gram BLEU-Score Evaluation

to be performing better when assessing the 2-gram and above performance in
both ROUGE and BLEU scores. The learnable 3rd-degree polynomial function
performed better on the 1-gram evaluation. We believe that using different acti-
vation functions to train a model and yield better results is an area that has not
been vastly explored yet, and our results suggest that it should receive greater
attention.

We also believe that even though the results of the EEG-to-Text decoder
seemed encouraging, we are still not close to a real-life model that can accu-
rately generate text from raw brain data. However, preliminary research shows
that it is possible to generate text from the brain, and this is something we
aim to explore in the future. One limitation we identified, and we believe that,
if addressed, can improve the model, is the lack of repetition of sentences in
the current dataset. Each subject sees each sentence one or two times at most.
However, deep learning models rely on repetition in the sample set to learn,
so we believe that introducing a repetition to the dataset with more EEG can
improve the performance even more. Furthermore, because EEG data tends to
be very noise-prone, we hypothesise that a reason that the model doesn’t learn
better representations is that it doesn’t learn the noise because it’s too simple.
Another improvement we aim to explore is to introduce a more complex encoder
to capture high-level EEG features before providing those features to the large
language model. Lastly, we only tested our different activation functions using
one seed due to time constraints. Thus, in the future, we aim to test different
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seeds and determine if the reported performance changes because of the random
seed.
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