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Accurate predictions for remaining useful life (RUL) of wind turbine drivetrains are crucial in reducing downtime, 
optimising maintenance strategies, extending operational life and improving costs. The purpose of this study is to 
present a method which utilises SCADA data for RUL estimation. It aims to answer whether, by only having the 
basic SCADA data, normally collected from all wind turbines, valuable RUL prediction results can be obtained. 
The work intends to develop a reliable, accurate, user-friendly and informative tool to enable observation of 
any growing trends in the proposed metrics, such as temperature difference, cumulative sum of temperature 
difference and the moving average of the cumulative sum. These metrics are defined based on the differences 
between the actual temperatures of the components, that might have undergone some damage and the model 
predicted temperatures of those components if they would have remained healthy, throughout years of operation. 
A machine learning model is used, along with selected SCADA input parameters, to predict the healthy state 
temperature of components. The proposed method is implemented on SCADA data collected from an actual wind 
farm over seven years. The results of this study show that while the SCADA data analysis can contribute to fault 
detection, the estimation of RUL purely based on SCADA appears to be uncertain. Such tools however, can be 
used as a monitoring method, during operation, to record abnormality trend of the components over the years 
and can be used as important inputs for the life extension evaluation of wind turbine drivetrains.
1. Introduction

The importance of investing in renewable energy such as solar, wind 
and hydro to name a few, has again been highlighted over the last few 
years due to a variety of reasons and continues to be a hot topic. One 
reason is the energy crisis [1], another is to ensure energy security and 
a third is that in order to achieve the various agreements, targets and 
policies set worldwide, such as the Paris Agreement [2], Net Zero [3]
and REPowerEU plan [4], there needs to be a large and rapid increase in 
the renewable energy capacity. The International Energy Agency (IEA) 
states that within the next 5 years, 2400 GW of renewable energy needs 
to be installed, which is the same amount of capacity that has been 
installed over the last 20 years, in order to meet the set targets [5].

Wind and solar are leading the growth and it is predicted that by 
2027, both wind and solar will provide almost 20% of power genera-
tion worldwide [5]. Looking specifically at wind energy, a report issued 
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by Drax Electric Insights states that in the first quarter of 2023, elec-
tricity generated from wind power surpassed electricity generated from 
gas-fired power plants, for the first time ever in the UK [6]. The impor-
tance of both solar and wind energy, along with their potential growth is 
further highlighted by a number of feasibility studies, [7], [8] and eco-
nomic analyses, [9], [10], that have been conducted. Proton exchange 
membrane (PEM) fuel cells is another area which has also been investi-
gated, [11] and [12], along with turbine power plants [13].

According to the Global Wind Energy Council’s (GWEC) Global Wind 
Report 2023, the total wind energy capacity currently stands at 906 GW, 
with 680 GW expected to be installed by 2027 [14]. 906 GW equates to 
over 300,000 wind turbines, both onshore and offshore, located world-
wide.

A wind turbine’s drivetrain, which is housed within the nacelle, is 
known as the “heart” of the turbine and is extremely important for the 
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wind turbine’s operation. This is because the drivetrain contains all the 
equipment, which is responsible for converting kinetic energy from the 
wind turning the rotor blades, to electrical energy supplying the electri-
cal grid. Therefore, any failures within the drivetrain can have severe 
consequences, so the reliability and smooth continuous operation of 
these turbines are important. In order to ensure the smooth production 
of power with minimum downtime, the operations and maintenance of 
the turbines are all important aspects to continuously monitor, review 
and modify.

One method used to monitor the turbines is via supervisory con-
trol and data acquisition (SCADA), [15]. All wind turbines are fitted 
with a number of sensors, in a variety of locations throughout the tur-
bine and the average value over, typically each ten minute period and 
one second in some modern turbines, is recorded. SCADA data includes 
but is not limited to information such as wind speed, wind direction, 
power and temperature. Temperature measurements can include: am-
bient, nacelle, main bearing, gearbox, generator etc. Then based on the 
data recorded, owner/operators can make decisions with regards to the 
operations and maintenance, to ensure optimum power production and 
minimum downtime.

Due to the fact that SCADA data can be obtained from all turbines, 
methods of detecting failures and predicting a component’s end of life 
using solely SCADA data, can be extremely beneficial, useful and cost 
effective, since they do not add any additional sensors.

As discussed in an earlier paper [16], the first stage of the proposed 
methodology to determine lifetime extension is data collection. It sug-
gests that the amount of data collected affects the accuracy of the results 
and this paper aims to determine if by having the minimum amount of 
data available, useful results can still be obtained, regarding a compo-
nent’s end of life.

Accurately predicting a component’s end of life can provide a num-
ber of advantages, such as enabling maintenance strategies to be op-
timised, reducing the amount of downtime the wind turbine can be 
subjected too and more cost-effective wind turbine operations.

Determining remaining useful life (RUL) and life extension evalua-
tion are related but slightly different processes used in asset manage-
ment, [17]. RUL can be defined as the estimated amount of time a 
component or system will continue to operate, until it fails. Whereas 
life extension evaluation investigates whether a component or system 
will continue to operate beyond it’s specified life expectancy. There-
fore, by finding the remaining useful life of a component or system, it 
can be determined whether this component or system will operate past 
it’s specified lifetime.

The typical indicators of component failure, are an increase in tem-
perature and vibration. Temperature measurements are readily avail-
able within the SCADA data, whereas vibration data is only typically 
part of condition monitoring. Therefore, temperature data will be used 
for this work.

A vast amount of research has already been carried out investigating 
the use of vibration data for failure detection but in addition to this, 
research into numerous models which can use SCADA data has also been 
carried out, specifically temperature data, as the input to predict failures 
and this is shown in Section 2. Therefore, the objective of this paper is 
not to ‘reinvent the wheel’ and develop another model but to develop 
a method for an informative tool, which uses SCADA data along with 
an existing, straightforward model, to detect any temperature changes 
or trends within certain drivetrain components, which can be used for 
life extension evaluation. The method will suggest which SCADA input 
parameters and model provide the most accurate predictions and how to 
display the results. The method aims to be comprehensive, informative 
and easy to implement. Real life data collected from a wind farm will 
be used to test the method. Moreover, the contribution/novelty of this 
work is to provide detailed documentation of the process, to support the 
evaluation of life extension.

The rest of this paper is structured as follows: Section 2 details ex-
2

isting research, Section 3 firstly describes identifying which model is 
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a good predictor and then describes how to identify any trends in a 
component, which indicate that it is reaching it’s end of life. Section 4
documents the results, along with a discussion, Section 5 contains the 
conclusions and Section 6 explains the future work.

2. Background and literature

A large amount of research has already been carried out using vi-
bration data for failure prediction of wind turbine drivetrains, Turnbull 
et al. [18,19], Gómez et al. [20], Joshuva and Sugumaran [21], Igba 
et al. [22], Hussain and Gabbar [23], Teng et al. [24], Zhang et al. [25], 
to name a few because it has been proven to be more efficient/reliable. 
It was also mentioned earlier, that by using temperature data to deter-
mine the remaining useful life or fault detection of either a component 
within the drivetrain or the complete system, would be extremely ben-
eficial because temperature data is typically readily available as part of 
the SCADA data. With this in mind, extensive research has previously 
been carried out investigating a variety of methods, although Carroll 
et al. [26] found that simple trending using temperature rarely high-
lighted potential failures. Yang et al. [27] also mentions that because 
SCADA data varies “over wide ranges under varying operational condi-
tions”, then without “an appropriate data analysis tool” it is difficult to 
detect faults from raw SCADA data. A Condition Monitoring technique 
based upon certain SCADA data correlations was proposed, in which it 
was concluded by Yang et al. [27] worked well in detecting faults within 
the drivetrain.

Murgia et al. [28] investigated the suitability of using SCADA-based 
condition monitoring, in order to diagnose faults within a wind turbine, 
by analysing temperature data. They used normal-behaviour modelling 
and identification of a threshold value and concluded that it is “suit-
able for individuating occurring drivetrain faults with at least months 
of advance, provided that qualifying points are addressed”.

In another example, a normal behaviour model based upon an arti-
ficial neural network (ANN), using SCADA data has been proposed and 
tested on twelve wind turbines by Encalada-Dávila et al. [29] and it 
showed that main bearing faults could be detected several months in 
advance. A “state prediction approach” was used by Herp et al. [30], 
which was based on “bearing temperature residuals” along with Gaus-
sian processes. This method was able to predict a failure approximately 
one month before failure. In addition, Dai et al. [31] looked at four dif-
ferent assessment criteria for assessing the performance of an ageing 
asset. One of the assessment criteria used the main bearing temperature 
data, it looked for changes and processed this data using Kernel Density 
Estimation.

The most commonly used data-driven models include support vec-
tor machines, neural networks, probabilistic models and decision trees 
according to Pandit et al. [32]. They explain that condition monitoring 
based on SCADA data “targets secondary effects of the fault”. They dis-
cuss that the model’s accuracy can be increased with feature selection 
and extraction but that it is a fine line to avoid over-fitting.

With regards to gearbox failures, a gearbox planetary stage failure 
was detected by monitoring gearbox oil temperature, power output and 
rotational speed in Feng et al. [33]. Whereas based on the first law of 
thermodynamics a relationship between temperature, efficiency, and 
either the power output or rotational speed was established by Feng 
et al. [34]. A new algorithm was then developed to detect gearbox fail-
ures based on both oil and bearing temperature measurements. It was 
concluded that the simple algorithms worked well in providing early 
warnings of gearbox failures. A Multivariate State Estimation Technique 
(MSET) was used by Yongjie et al. [35], along with the Moving Window 
Calculation (MWC). Where the MSET was used to estimate the gear-
box temperature and the MWC used to get the dynamic trend of the 
average value of the differences between the estimated and real values. 
This paper concluded that the method was effective in detecting any 
anomalies. Moreover, thermal modelling, as well as thermal modelling 

combined with machine learning was investigated by Corley et al. [36]
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and Corley et al. [37] respectively, where it was found that thermal mod-
elling of the gearbox detected a fault, whereas nothing was obvious with 
just the temperature differences. Zhao and Zhang [38] used a prediction 
method, using temperature to detect faults by comparing the actual run-
ning condition of the gearbox, with the predicted condition and flagging 
any deviation. Gearbox oil temperature was used by Zeng et al. [39]
in an anomaly detection method, based on the Sparse Bayesian Learn-
ing and hypothesis testing. A Support Vector Machine (SVM) regression 
model along with SCADA parameters was used to model the gearbox 
oil temperature by Zhang and Qian [40] and it was concluded that a 
warning approximately ten days before the fault was achieved. A deep 
neural network algorithm was “applied to model the lubricant pressure” 
by Wang et al. [41] and it was found that gearbox failures could be pre-
dicted approximately two to three days in advance. They also concluded 
that monitoring lubricant pressure provided more accurate results than 
monitoring gearbox oil temperature.

Specifically tested on a generator rear bearing, Hu et al. [42] estab-
lished a performance degradation model using the Wiener process, with 
the maximum likelihood estimation method used for the model param-
eters. The “temperature trend data” was determined from the “relative 
temperature data” using the moving average method. It also established 
a remaining useful life (RUL) prediction model, based on the inverse 
Gaussian distribution. It was concluded that both the degradation model 
and prediction method were very effective with calculating remaining 
useful life.

Sudden fault detection of generator bearings was investigated by 
Velásquez [43]. They firstly used a multi-stage approach consisting of 
multiple regression models, then probability scores, a search grid vali-
dation and then the validated results were ran through “finite element 
modeling, boroscopy, and vibration analysis”. They concluded that fail-
ures could be detected five days prior to vibration analysis, with a high 
accuracy.

Although not related to wind turbines, Apribowo et al. [44] used ma-
chine learning models such as an extreme gradient boosting algorithm, 
along with a temperature variable to predict the RUL of battery energy 
storage systems. It was concluded that this method provided accurate 
results.

Based on the existing literature, the main advantages of using SCADA 
data to estimate RUL are: that SCADA data is available from all wind 
turbines and there is typically a continuous flow of data. Whereas the 
main disadvantages are: the frequency resolution is lower when com-
pared to condition monitoring and the type of data recorded may vary 
across turbines. Additional issues can also include: noise which may af-
fect the SCADA data values, sensor failures or malfunctions which may 
cause gaps in the data due to turbine or equipment downtime, ensuring 
that the most relevant features or values are selected so that an accu-
rate/reliable prognosis can be obtained, negotiating large volumes of 
data. As mentioned earlier, early fault detection is important, whereas 
using SCADA-based wind turbine condition monitoring to detect faults 
early can be challenging, due to subtle changes in the data.

The majority of the existing research summarised above looked at 
methods using quite complicated data-driven techniques, which has the 
advantage of providing more effective RUL predictions. Although, it was 
determined that the failures could only really be predicted a few months 
in advance, as a best case scenario, due to relying solely on temperature 
data, whereas using vibration data or a combination of both could pre-
dict failure much earlier.

The main aim of this work is to develop a method or process, in which 
a readily available machine learning model is proposed and utilised 
along with specific SCADA data input parameters, in order to obtain 
insight into a component’s condition. This method or process will try 
and establish some indicators to help track the condition of components 
and flag up a warning when a component is coming to the end of it’s 
life, then ideally these indicators could be used to compare components 
3

across multiple turbines. Therefore, the advantage of this work is that it 
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provides a comprehensive but straight-forward method/process for de-
termining a component’s end of life based on SCADA temperature data.

3. Methodology

3.1. Selecting a suitable model predictor

The first stage is to determine which model is a reliable and easy to 
use predictor. A flowchart detailing the method of determining a suit-
able model predictor is shown in Fig. 1.

To start this process, labeled data is needed, meaning that “healthly” 
data is required first to build a model.

Prior to passing any data into the model, the first step is to filter the 
data, as shown in Step 1 in Fig. 1. This includes removing any missing 
values and replacing any negative power values with the previous or 
nearest positive value.

Following this step, the nacelle ambient temperature, 𝑇𝑛𝑎 , is then 
deducted from the chosen component temperature, 𝑇𝑐 , (Step 2), in order 
to normalise all the component’s temperature values, 𝑇𝑛𝑜𝑟𝑚 .

𝑇𝑛𝑜𝑟𝑚 = 𝑇𝑐 − 𝑇𝑛𝑎 (1)

The next step (Step 3) begins with selecting the input parameters 
based upon the chosen model, for example, linear regression and polyno-
mial regression models typically only accept one input parameter, along 
with the component temperature values, whereas the support vector 
machine model and regression tree ensemble model can accept multi-
ple input parameters. Once the parameters have been selected, any data 
points that are found to be more than three (3) standard deviations from 
the mean are removed, as the final filtering process. The “healthy” data 
is then randomly split into 70% training data and 30% test data.

The data is then passed through the model, in order for the model to 
determine the predicted component temperatures, as the output.

The simplest regression model, which is the linear regression model, 
was deemed not to be suitable due to the fact that the correlation be-
tween power and temperature is not linear, so instead the following 
models are selected:

1. Polynomial Regression Model.
2. Support Vector Machine (SVM) Model.
3. Regression Tree Ensemble Model.

From the results/model output, the correlation coefficient between 
the actual and predicted temperature values are calculated. If the cor-
relation coefficient is low, the process is repeated using different input 
parameters and/or models, until a respectable correlation coefficient is 
achieved. A correlation coefficient of 0.8 is shown in Step 3 in Fig. 1
and this has been chosen because any value equal to or above 0.8, is 
assumed to be highly correlated, [45].

Graphs are also plotted to visualise the correlation, they include: 
temperature vs. power, actual vs. predicted temperature and tempera-
ture vs. time.

This process is then repeated using the whole “healthy” data set to 
both train and test the model. The results from this process are also 
plotted to see the model sensitivity.

Due to the sheer amount of data, the daily mean values are calculated 
for each parameter, i.e. the power, actual component temperature and 
predicted component temperature. This data is then used to produce 
more graphs to analyse the correlation, to determine if this is a suitable 
model.

As mentioned above, the first model selected is the polynomial re-
gression model to the eighth order. Power and then torque, along with 
the component temperature values in the training data set are used as 
the input parameters to train the model, before the power or torque val-
ues in the test data set are used to predict the component temperature 

values.
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Fig. 1. Flow chart showing how to select a suitable model predictor.
The next model investigated is the support vector machine model, 
mainly because this model can accept multiple inputs. Therefore, the 
same process is followed as described above, using firstly power as the 
only input parameter and then power along with rotor speed as the input 
parameters.

Next the regression tree ensemble model is used, again due to the 
fact that multiple input parameters can be used. Initially, seven different 
4

parameters are selected along with the component temperature, these 
include: power, rotor speed, generator RPM, gearbox speed, nacelle tem-

perature, hub temperature and wind speed. Various combinations are 
used along with the model to determine which parameters give the best 
fit.

Upon completion of this process, the next step is to implement the 
model to assist with identifying components reaching their end of life, 

which is described in Section 3.2.
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Fig. 2. Flow chart showing method used for identifying critical components in the drivetrain.
3.2. Identifying critical components in the drivetrain

The critical components, those which may fail earlier, need to be 
5

identified. One way to do this is to review the failure data but if this 
is not available, then vulnerability maps may be used, such as the ones 
produced by Nejad et al. [46], Nejad et al. [47] and Tartt et al. [48].

The proposed method to try and identify components reaching their 

end of life, is summarised in a flowchart shown in Fig. 2.
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The first step is to collect all the SCADA data from the first turbine. 
The pre-processing discussed in Section 3.1 and as shown in Steps 1 
and 2 in the flow chart (Fig. 2), is carried out on both the training and 
test data. In this method, the training data used for the model is all of 
the “healthy” data, which is typically the turbine’s first year of oper-
ation and the test data is all the data collected in a subsequent year. 
The pre-processing of both the training and test data includes: remov-
ing any missing data, replacing any negative power values with either 
the previous or nearest positive value, as well as deducting the nacelle 
ambient temperature from the component temperature. As mentioned 
in Section 3.1, the nacelle ambient temperature is deducted from the 
component temperature, in order to normalise the temperature values. 
An additional pre-processing step for the training data, is to remove any 
outliers that are more than three (3) standard deviations from the mean.

Once the SCADA data has been pre-processed, the selected input pa-
rameters are then passed into the model (Step 3). From Section 3.1, the 
regression tree ensemble model, using three input parameters from the 
SCADA data: power, rotor speed and nacelle temperature, along with 
the component temperature, are the model and input parameters that 
are shown to be the best predictor.

From the results obtained, the daily mean values of power, actual 
component temperature, 𝑇𝑎𝑑𝑗 and predicted component temperature, 
𝑇𝑝𝑑𝑗

, for each day, j, are calculated from the instantaneous values of 
actual and predicted temperature, 𝑇𝑎𝑖 and 𝑇𝑝𝑖 , respectively, as shown 
in Equations (2) and (3) (Step 4), where n refers to the number of ten 
minute blocks per day (i.e. 6 blocks in one hour, 24 hours a day, there-
fore n = 6x24=144).

𝑇𝑎𝑑𝑗
=

∑𝑥+(𝑛−1)
𝑖=𝑥 𝑇𝑎𝑖

𝑛
(2)

𝑇𝑝𝑑𝑗
=

∑𝑥+(𝑛−1)
𝑖=𝑥 𝑇𝑝𝑖

𝑛
(3)

The daily temperature difference, 𝛿𝑇𝑑𝑗 , is then calculated as shown 
in Equation (4).

𝛿𝑇𝑑𝑗
= 𝑇𝑎𝑑𝑗

− 𝑇𝑝𝑑𝑗
(4)

Once the temperature difference is determined, the cumulative sum 
of the temperature differences, 𝛿𝑇 𝑐

𝑑𝑀
, can then be calculated as per 

Equation (5), where M equals the corresponding time, in this case the 
day. Calculating the cumulative sum of the temperature differences be-
tween the actual and predicted temperatures, is a straightforward way 
to highlight anomalies or change in trends, which then forces further 
6

investigation.

Fig. 3. Location of Kel
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𝛿𝑇 𝑐
𝑑𝑀

=
𝑀∑

𝑗=1
𝛿𝑇𝑑𝑗

(5)

One evaluation method is to plot graphs, therefore, various graphs 
are then plotted using both the temperature difference and cumulative 
sum values against the time in days. These graphs are then reviewed 
for anomalies and to determine if any trends are present, which would 
assist in determining the end of life of the component (Step 5).

The next analysis carried out, is the calculation of the gradient of the 
temperature difference, 𝑔𝑡𝑑 , graphs, for all the turbines, to see whether 
the closer you get to the failure, the gradient of the temperature differ-
ence increases.

𝑔𝑡𝑑 =
(𝛿𝑇𝑑𝑗+1 − 𝛿𝑇𝑑𝑗

)

(𝑡𝑗+1 − 𝑡𝑗 )
(6)

Initially the gradient over each day is determined, i.e. 𝑡𝑗+1 − 𝑡𝑗 = 1, 
as shown in Equation (6), then the average over five, ten and thirty days 
are calculated.

Another method used to help identify any trends, is the moving av-
erage method. Therefore, the final analysis to be carried out is a similar 
method to the one used to calculate the moving average, 𝛿𝑇 𝑐

𝑑𝑀
, and that 

is to divide the cumulative sum on any day, 𝛿𝑇 𝑐
𝑑𝑀

, by the number of days 
until then, 𝑡𝑀 , as shown in Equation (7).

𝛿𝑇 𝑐
𝑑𝑀

=
𝛿𝑇 𝑐

𝑑𝑀

𝑡𝑀
(7)

Following a repair, the cumulative sum is reset. This analysis is to try 
and see if a threshold value can be determined, in which if any turbine 
appears above this threshold, then a drivetrain component maybe com-
ing to the end of it’s life. It may be defined as an average accumulation 
of temperature difference.

This model/process is then repeated for all years, with the subse-
quent years as the test data, keeping data from the “healthy” year as the 
training data set, as well as on all the remaining turbines.

3.3. Case study

3.3.1. Data set
Data from the Kelmarsh Wind farm is used for the case study [49]. 

The Kelmarsh wind farm is located in Northamptonshire (see Fig. 3) and 
consists of six (6) onshore 2.05MW Senvion MM92 wind turbines [50]. 
The SCADA data has been collected over a seven (7) year period, from 
2016 to the end of 2022. Status reports/data logs are also available. 
The data logs show two (2) faults occurred within the generators dur-

ing 2022, one in Turbine 2 and one in Turbine 4. Knowing that a fault 

marsh wind farm.
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Fig. 4. Testing the model - temperature vs. power.

occurred and in which component, is extremely useful for evaluation of 
the proposed approach of life extension described here.

3.3.2. Implementation

The methods described in Sections 3.1 and 3.2, are implemented 
using this data set. The SCADA data from the year 2016 is used as the 
training data set and the test data set are each of the subsequent years.

Initially, the method/model is run on each component, including 
the generator rear bearing, generator front bearing, front bearing, rear 
bearing and gear oil inlet, for each year and each turbine. This is to see 
if any one component is following a different trend, which may indicate 
that it may be approaching it’s end of life.

Due to the fact that the data logs record failures in the generator non-
drive end (NDE) bearing, we would expect the generator rear bearing 
to follow a different trend to the rest.

4. Results and discussion

This section displays the results produced when using the data set in 
Section 3.3.1 with the methods described in Sections 3.1 and 3.2.

4.1. Selecting a suitable model predictor

Figs. 4–8, show the fit or correlation of the regression tree ensemble 
model used. These are the results that are produced when all the data 
in the 2016 data set for one of the turbines, are used to both train and 
test the model. Fig. 4 shows both the actual and predicted temperatures 
against power, which is one of the input parameters used. Fig. 5 illus-
trates both the actual and predicted temperatures against rotor speed 
and Fig. 6 displays the temperatures against the nacelle temperature, 
which are the other two input parameters. Fig. 7 presents the actual 
temperature against the predicted temperature and Fig. 8 shows both 
the actual and predicted temperatures per day.

4.2. Identifying critical components in the drivetrain

As mentioned previously, the method described in Section 3.2 is im-
plemented upon a data set consisting of six wind turbines, spanning 
seven years and the results are discussed below.

Section 3.3.2 discussed implementing the method on each compo-
nent, including the rear generator bearing, front generator bearing, front 
bearing, rear bearing and gear oil inlet within each turbine and Figs. 9
and 10 show the results for Turbine 4. The results for the other five 
7

turbines can be found in Appendix B (see Figs. B.28–B.37).
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Fig. 5. Testing the model - temperature vs. rotor speed.

Fig. 6. Testing the model - temperature vs. nacelle temperature.
Fig. 7. Testing the model - actual vs predicted temperature.
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Fig. 8. Testing the model - comparing the actual vs predicted temperature.

Fig. 9. Temperature differences for various components in Turbine 4.

Fig. 9 shows the temperature differences of the various components 
in Turbine 4 and Fig. 10 shows the cumulative sum of the temperature 
differences of the various components in the turbine.

The cumulative sum graph (Fig. 10) shows that the rear generator 
bearing appears to follow a different trend to the other components. 
This trend is the same across all turbines, which corresponds well with 
the status reports indicating failure of these components later on. There-
fore, the rear generator bearing is chosen for further investigation in this 
paper.

All the results for the rear generator bearing will now be collected 
and compared. The graphs shown in Figs. 11 and 12, present both the 
temperature difference and cumulative sum of the temperature differ-
ence respectively, for all six turbines between the years 2016 and 2022.

Fig. 11 shows that the biggest differences in temperature occurred 
in Turbines 1 (red), 2 (cyan), 4 (green) and 6 (black). The status reports 
confirmed that in 2022, the generator NDE bearing failed in Turbines 2 
and 4, so it is expected that the actual component temperature would be 
higher than the predicted temperature in these turbines. Fig. 12 shows 
that the six turbines appear to split into two groups, the first group con-
sists of Turbines 1, 4 and 6 and the second group consists of Turbines 2, 
3 and 5. The first group has a much higher cumulative sum than the sec-
8

ond group and they appear to split into the separate groups around day 
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Fig. 10. Cumulative sum of the temperature differences for various components 
in Turbine 4.

Fig. 11. Temperature differences for all turbines over all years.

Fig. 12. Cumulative sum of the temperature differences for all turbines over all 

years.
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Fig. 13. Turbine 2 - Cumulative sum of the temperature differences.

Fig. 14. Turbine 2 - Cumulative sum of the temperature differences continuing 
from previous year.

1000, which corresponds to the first quarter of 2019. Again, Turbines 
1 and 6 follow the trend similar to Turbine 4, which had a generator 
NDE bearing failure, so it appears that these two turbines also had some 
issues, which will be discussed later.

The results from each turbine are now plotted individually to identify 
any further trends.

The graphs in Figs. 13, 15 and 17, show the cumulative sum of the 
temperature difference between the actual and predicted rear generator 
bearing temperature values for Turbines 2, 4 and 1, starting from zero 
at the start of every year, whereas Figs. 14, 16 and 18, show the cumu-
lative sum of the difference in actual and predicted temperatures, that 
are a continuation from the previous year. Both styles of graphs have 
been shown, in order to show that no matter how much data is avail-
able, whether it is only a few years which would mean the graph starts 
from zero or many years meaning a continuation between the years can 
be plotted, any anomalies or trends can be seen. The graphs for the re-
maining three turbines can be found in Appendix C.

Starting with Turbine 2, in which it is known that a generator NDE 
bearing failure has occurred, it can be seen from both Figs. 13 and 14, 
that there is an obvious trend change in 2022. This wasn’t seen as clearly 
in Fig. 12 but there was a large change in temperature observed in 
9

Fig. 11 towards the end of 2022. From Table A.1, the scheduled down-
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Fig. 15. Turbine 4 - Cumulative sum of the temperature differences.

Fig. 16. Turbine 4 - Cumulative sum of the temperature differences continuing 
from previous year.

time occurred in the second half of November 2022, which matches 
the findings shown in the graphs. The trend appears to initially change 
around day 120 in the year 2022, which is approximately 200 days be-
fore the failure occurred. Then there is another change at around day 
300.

With regards to Table A.1, which can be found in Appendix A along 
with Table A.2, this table shows a summary of the scheduled mainte-
nance for each turbine over the last three years and Table A.2 shows a 
summary of the forced outage for each turbine over the last three years. 
This data has been taken from the status files, which were included with 
the turbine data files. The tables show the total number of downtime 
hours over the year per turbine, along with the maximum number of 
hours in any one occurrence, along with the month it occurred, when 
the total number of hours was above fifty.

The next turbine in which it is known that a generator NDE bear-
ing failure has occurred is Turbine 4. There is an obvious rising trend 
for Turbine 4 in year 2021 (Fig. 15). The cumulative sum in this year is 
significantly different and higher than the other years, followed by the 
continuation of the increasing trend in early 2022 (Fig. 16) when the 
failure has occurred and been reported in the log documents/status re-
ports. Table A.1 shows the downtime occurred in February 2022, with 

the replacement taking place in March 2022.
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Fig. 17. Turbine 1 - Cumulative sum of the temperature differences.

Fig. 18. Turbine 1 - Cumulative sum of the temperature differences continuing 
from previous year.

Figs. 17 and 18 show the results for Turbine 1. Turbine 1 is one of 
the turbines which shows a trend similar to Turbine 4 in Fig. 12, which 
is known to have had a bearing failure. The abnormal higher operat-
ing temperature of the rear generator bearing in this turbine starts to 
appear towards the end of 2019 (Fig. 17). This becomes more obvi-
ous in 2020 (Fig. 17), whose trend shows a surge in cumulative sum 
in Fig. 17. This rise in operating temperature continues in year 2021, 
which is more obvious in Fig. 18, as the continued cumulative sum is 
higher than the previous year. This is followed by a sharp rise in year 
2022 (a sudden change in trend compared to the past years about day 
120 onwards), leading to the scheduled downtime as reported in the log 
documents/status reports. The log documents/status reports show there 
was a scheduled downtime in June 2022, due to the proactive replace-
ment of the NDE bearing. This is the same bearing that failed and had 
to be replaced in Turbines 2 and 4.

Figs. 19–24, show plots of the annual cumulative sum values (re-
set to zero and continued) in six separate figures, for years 2020, 2021 
and 2022, respectively. Each figure corresponds to one year but includes 
all turbines. These compare the cumulative sum values and demonstrate 
those with higher temperature cumulative sum values, will be more sus-
10

ceptible to failure.
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Fig. 19. All turbines - Cumulative sum of the temperature differences for year 
2020.

Fig. 20. All turbines - Cumulative sum of the temperature differences continuing 
from previous year for year 2020.

Fig. 21. All turbines - Cumulative sum of the temperature differences for year 

2021.
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Fig. 22. All turbines - Cumulative sum of the temperature differences continuing 
from previous year for year 2021.

Fig. 23. All turbines - Cumulative sum of the temperature differences for year 
2022.

Fig. 24. All turbines - Cumulative sum of the temperature differences continuing 

Fig. 25. Gradient of temperature difference for all turbines per day.

Fig. 26. Gradient of temperature difference for all turbines as per every 30 days.

The additional analysis that is carried out with regards to calculating 
the gradient of the temperature difference of all the turbines, as shown 
in Figs. 11 and 12, to see if the gradient increases the closer you get to 
the failure. Fig. 25 shows the results of calculating the gradient over one 
day and Fig. 26 uses the gradient value calculated per day, to average the 
value over thirty days. These graphs show that by averaging over thirty 
days, the temperature trends appear smoothed out. Fig. 25 suggests that 
the rear generator bearing in Turbine 2 has obviously suffered a drastic 
temperature rise within a short time, indicating a different failure type 
compared to that observed in the other turbines – this component failed 
in day 2370. With regards to Fig. 26, Turbine 2 failed in November, 
which equates to day 79, Turbine 4 failed in February, which equates 
to day 69 and the proactive replacement in Turbine 1 occurred in June, 
which equates to day 73.

4.3. Component life predictions

The aim of this final analysis, as discussed in Section 3.2, is to calcu-
late the moving average in order to see if there is an obvious threshold, 
in which if the turbine crosses this, then a component’s end of life is 
near and whether it can be predicted.

As mentioned earlier, Turbines 1, 4 and 6 follow a very similar trend 
11

from previous year for year 2022.
 and it is known that two of the Turbines, both 1 and 4, required the 
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Fig. 27. Moving average of the cumulative sum.

generator NDE bearing to be replaced. From Fig. 27, on the day that 
Turbine 4 failed, the value of the moving average of the cumulative 
sum is 1.2. Turbine 1 also crosses this threshold value, around the same 
time Turbine 4 failed and then went on to have the same component re-
placed approximately four months later, although we do not have any 
insight as to why this component was replaced proactively. Turbine 6 
crosses this threshold value much earlier in March 2020 and then ap-
proximately eleven months later, at the beginning of February 2021 
scheduled maintenance was carried out, which again we do not have 
detailed information on. Therefore, it can be predicted that a threshold 
value of approximately 1.2, may indicate that a component is coming to 
the end of it’s life in this wind farm. The advantage of the proposed 
moving average cumulative sum of temperature difference, over the 
cumulative sum, is that the values of the latter are dependent on the 
length of time of monitoring up to any given time. However, the former 
gives the current fraction or rate of accumulated temperature accumu-
lation values at any time. As such, through extrapolating the trend of 
the moving average cumulative sum, it will be feasible to predict when 
the moving average will exceed the threshold, which turns out to be the 
component’s end of life. It is noted that the method is restricted to start 
the monitoring, where the specific components are in the healthy state. 
While the mentioned extrapolation is outside the scope of this work, 
proposing this indicator followed by this discussion is aimed to provide 
a means for end of life prediction for turbine operators, and informing 
the requirement for additional condition monitoring to possibly extend 
the service life of drivetrain components.

5. Conclusion

The aim of this paper, was to develop a method to utilize large 
amounts of annual SCADA temperature data to investigate possible life-
time extension of the drivetrain, by detecting any growing trends in 
temperature difference, which could indicate that a component is reach-
ing the end of it’s life. It was determined that by applying a regression 
tree ensemble model, using three SCADA input parameters: power, rotor 
speed and nacelle temperature, along with a component temperature, 
to wind farm data spanning multiple years, the predicted component 
temperature could be calculated, which could then be compared to the 
actual temperature.

From the dataset which was used to test the proposed method, the 
rear generator bearing was identified as the component which was more 
vulnerable to fail. The results i.e. temperature difference between the 
actual and predicted temperatures and cumulative sum of the temper-
12

ature differences, for this component, for all turbines across all years, 
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was not so conclusive for those rear generator bearings that failed due 
to operating at higher temperatures over a long period (i.e. Turbine 4), 
but it can be helpful to identify those components that undergo sud-
den, sharp temperature rises such as in Turbine 2 which shortly failed 
after that incident. The final set of results i.e. the moving average of 
the cumulative sum, found a suitable threshold value of 1.2. Although 
three turbines crossed this threshold value and either failed or under-
went maintenance/downtime, the time between crossing this point and 
failing varied.

In conclusion, a method to employ SCADA data for life extension has 
been proposed and has been tested on real life wind farm SCADA data, to 
try and predict when a component is going to reach it’s end of life. In line 
with earlier research on SCADA data, the results suggest that using only 
SCADA temperature data, may not be a good indicator for estimating the 
remaining useful life long in advance, [40], [41], however, the results 
of this paper provide a method which can help the operator to identify 
problematic components over the year, from historical data or those 
which need to be replaced in order to use the drivetrain in a longer run.

6. Future work

As part of the future work, it would be interesting to extend the pro-
posed method to take the model prediction offset/model uncertainty 
into account. The offset between the actual and predicted temperatures 
can be calculated, similar to the values in Table D.3. It would be im-
portant to determine this offset, to quantify the uncertainty that the 
predictor model will introduce in the statistics of life estimate results.

Further intriguing work, could be applying the method to a set of 
data with very little information, other than knowing that there was a 
failure, as well as using both SCADA and condition monitoring data, to 
see if a more accurate prediction can be found.

CRediT authorship contribution statement

Kelly Tartt: Writing – review & editing, Writing – original draft, 
Project administration, Methodology, Investigation, Formal analysis, 
Conceptualization. Abbas Mehrad Kazemi-Amiri: Writing – review & 
editing, Supervision, Conceptualization. Amir R. Nejad: Writing – re-
view & editing, Supervision, Conceptualization. James Carroll: Writing 
– review & editing, Supervision. Alasdair McDonald: Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

I have shared the link to the dataset in the Acknowledgement Sec-
tion.

Acknowledgements

Thanks go to the EPSRC for supporting this work through the EPSRC 
Centre for Doctoral Training in Wind and Marine Energy Systems and 
Structures (Grant Number EP/S023801/1).

Thanks also goes to Charlie Plumley and Cubico Invest for releasing 
the Kelmarsh wind farm dataset (https://zenodo .org /records /5841834) 
and providing support.

Appendix A. Summary of turbine downtime
In this appendix, Tables A.1 and A.2 are presented.

https://zenodo.org/records/5841834
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Table A.1

Summary of the scheduled downtime for each Turbine.

2020 - Downtime Hours 2021 - Downtime Hours 2022 - Downtime Hours

Turbine Total Max Total Max Total Max

1 30 29 101 25 (June)
2 62 49 (Dec) 26 218 165 (Nov)
3 20 122 77 (Nov) 40
4 21 36 710 673 (Feb-Mar)
5 14 309 260 (Nov) 58 27 (Oct)
6 23 642 600 (Feb-Mar) 32

Table A.2

Summary of the forced outage for each Turbine.

2020 - Downtime Hours 2021 - Downtime Hours 2022 - Downtime Hours

Turbine Total Max Total Max Total Max

1 57 28 (Mar) 118 92 (July) 31
2 41 3 66 48 (Nov)
3 76 51 (Oct) 21 3
4 72 48 (Aug) 12 61 60 (Feb)
5 30 300 240 (Nov) 32
6 45 118
Fig. B.28. Temperature differences for various components in Turbine 1.

Appendix B. Graphs showing the results of various components 
for Turbines 1-3, 5 and 6

In this appendix, Figs. B.28–B.37 are presented.

Appendix C. Graphs showing the results of temperature 
difference and cumulative sum for Turbines 3, 5 and 6

The other turbine which follows a similar trend to Turbines 1 and 
4 is Turbine 6. Figs. C.38 and C.39 show anomalies at both the start of 
2021 and 2022. Table A.1, shows 600 hours of scheduled maintenance 
in February and March 2021, in which once the turbine was back online 
the temperature difference had reduced. Table A.2 shows 221 hours of 
forced outage in March 2022 due to pitch motor failure and a pitch fault.

Fig. 12 shows that the remaining two (2) turbines, Turbine 3 and 5 
appear to follow the same trend as Turbine 2 and a more detailed look 
at each one, as shown in Figs. C.40–C.43 shows some anomalies.

Turbine 3 shows an anomaly towards the end of 2020. The anomaly 
in year 2020 shows decreasing cumulative sum trend (colder tempera-
tures) and the cumulative sum trends of the years seem to be more or 
less similar in Figs. C.40 and C.41. Aligned with this, for this turbine no 
13

failure was reported.
77 (Feb) 605 221 (Mar)

Fig. B.29. Cumulative sum of the temperature differences for various compo-
nents in Turbine 1.
Fig. B.30. Temperature differences for various components in Turbine 2.
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Fig. B.31. Cumulative sum of the temperature differences for various compo-
nents in Turbine 2.

Fig. B.32. Temperature differences for various components in Turbine 3.

Fig. B.33. Cumulative sum of the temperature differences for various compo-

Fig. B.34. Temperature differences for various components in Turbine 5.

Fig. B.35. Cumulative sum of the temperature differences for various compo-
nents in Turbine 5.
14

nents in Turbine 3.
 Fig. B.36. Temperature differences for various components in Turbine 6.



Results in Engineering 24 (2024) 102921K. Tartt, A.M. Kazemi-Amiri, A.R. Nejad et al.

Fig. B.37. Cumulative sum of the temperature differences for various compo-
nents in Turbine 6.

Fig. C.38. Turbine 6 - Cumulative sum of the temperature differences.

Fig. C.39. Turbine 6 - Cumulative sum of the temperature differences continuing 

Fig. C.40. Turbine 3 - Cumulative sum of the temperature differences.

Fig. C.41. Turbine 3 - Cumulative sum of the temperature differences continuing 
from previous year.
15

from previous year.
 Fig. C.42. Turbine 5 - Cumulative sum of the temperature differences.
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Fig. C.43. Turbine 5 - Cumulative sum of the temperature differences continuing 
from previous year.

With regards to Turbine 5, although some anomalies start in 2021 
with a rising trend but insignificant cumulative sum values are perceived 
if comparing Fig. C.43 with Fig. C.39.

Appendix D. Table showing the percentage offset values for each 
turbine to determine the model uncertainty

The average offsets for each turbine are shown in Table D.3. These 
values have been calculated by taking both the mean and median val-
ues for both the predicted and actual component temperatures, for the 
“healthy” data and determining the percentage difference or offset.

Table D.3

Average offset/uncertainty percentage of the model for each turbine.

Turbine Number

1 2 3 4 5 6

Offset (Mean) -2.1E-12 5.8E-13 -4.9E-13 -0.02 3.3E-13 -2.8E-13
Offset (Median) -0.06 -0.31 -0.07 -0.34 -0.34 0.43
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