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Abstract
Dislocations in epitaxial lateral overgrown α-Ga2O3 are investigated using hyperspectral
cathodoluminescence spectroscopy. The dislocations are associated with a reduction of
self-trapped hole-related luminescence (ca. 3.6 eV line) which can be ascribed to their actions as
non-radiative recombination sites for free electrons, to a reduction in free electron density due to
Fermi level pinning or to electron trapping at donor states. An increase in the intensity of the ca.
2.8 eV and 3.2 eV lines are observed at the dislocations, suggesting an increase in
donor–acceptor pair transitions and providing strong evidence that point defects segregate at
dislocations.

Supplementary material for this article is available online
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1. Introduction

Wide bandgap semiconductors offer exciting perspectives for
the fabrication of high-power and high-frequency electronic
devices, as illustrated by their high Baliga and Johnson figures
of merit [1, 2]. One such wide bandgap semiconductor is
Ga2O3 which can form five polymorphs, labelled α, β, γ,
κ and δ [3, 4]. Monoclinic β-Ga2O3 is the most studied
phase of Ga2O3 due to its thermal stability, but corundum α-
Ga2O3 has been gaining popularity recently due to its wider
bandgap in the range of 5.1–5.3 eV [5, 6] and its promise of
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bandgap engineering through alloying with other corundum
sesquioxides [7–12]. However, unlike β-Ga2O3 which can be
grown from the melt, the metastable nature of α-Ga2O3 means
that it can only be produced by epitaxial methods such as hal-
ide vapour phase epitaxy [13–15], molecular beam epitaxy
[16–19], metal-organic chemical vapour deposition [17, 20],
mist chemical vapour deposition [5, 21, 22] and atomic layer
deposition [6, 23, 24]. α-Ga2O3 is usually grown on iso-
morphic sapphire (α-Al2O3) substrates; however, the 4.7%
and 3.3% lattice mismatch between the film and the substrate
in the a and c directions, respectively, results in a high density
of threading dislocations of ca. 10 10cm−2 [5, 14].

The effects of dislocations on the properties of any poly-
morph of Ga2O3 are poorly understood. Kasu et al [25] repor-
ted that dislocations resulted in higher reverse leakage currents
in β-Ga2O3 [25], and Yang et al [26] stated that crystal defects
(including dislocations) can explain the reason why the theor-
etical rectifying limit for β-Ga2O3 has not yet been attained
[26]. In α-Ga2O3, dislocations have been linked to reduced
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electron mobility [27, 28]. The anticipated negative impact of
dislocations has triggered research into the design of meth-
ods to mitigate their occurrence. A promising method cur-
rently employed for α-Ga2O3 is epitaxial lateral overgrowth
(ELOG) [29–33] which allows the reduction of threading dis-
location density from ca. 10 10cm−2 to ca. 10 6cm−2 [29,
31–33]. Despite these efforts to reduce dislocation densities,
it is also important to understand their properties to predict
their impact on future device performance and design effect-
ive strategies to mitigate their effects.

Cathodoluminescence (CL) is a powerful technique used to
probe the optical properties of semiconductors with nanoscale
resolution and correlate thesewith the presence of defects [34].
The method has been successfully used to reveal the optical
properties of dislocations in other wide bandgap semiconduct-
ors like III-nitrides [35–37] but has not yet been employed for
studying dislocations in α-Ga2O3.

The luminescence spectrum of α-Ga2O3 (as well as β-
Ga2O3) is characteristically broad [38–42]. Luminescence
spectra generally do not contain a near-band edge contribu-
tion close to 5 eV [38, 40–43], and instead, the luminescence
spans from ca. 2.0–3.8 eV [38, 41]. Nicol et al [41] reported
H-related luminescence in α-Ga2O3 at 3.8 eV [41]. UV lumin-
escence near ca. 3.2–3.6 eV has been ascribed to the recombin-
ation of self-trapped holes with free electrons [38–40, 42, 44–
46]. Blue luminescence in the range of ca. 2.8–3.0 eV, has been
ascribed to donor–acceptor pair transitions between shallow
donors and acceptors involving gallium or oxygen vacancies
[38, 46–50]. Green luminescence observed in the range 2.0–
2.7 eV has been ascribed to donor–acceptor pair transitions
between deep donors and acceptors, usually formed from com-
plexes of oxygen vacancies, gallium vacancies, gallium inter-
stitials and oxygen interstitials [45, 51, 52]. Finally, red lumin-
escence at ca. 1.7–1.9 eV, has been observed in β-Ga2O3 but
has yet to be observed in α-Ga2O3. In β-Ga2O3, red lumines-
cence has been linked to the presence of dopants such as nitro-
gen, chromium and silicon [45, 53–56]. The effect of extended
defects on the luminescence properties in Ga2O3 polymorphs
has not been widely discussed. Cooke et al [57] assessed the
effect of extended defects on the photoluminescence spectra of
β-Ga2O3 films grown on different substrates, which resulted
in a variation of strain and, by extension, a variation of exten-
ded defect density. In that study, extended defects were linked
to a decrease in intensity and a redshift of the luminescence
[57]. In the present report, we investigate how threading dis-
locations affect the CL spectrum of ELOG α-Ga2O3 with a
nanoscale resolution.

2. Experimental methods

We investigated the luminescence properties of dislocations in
an ELOG α-Ga2O3 sample grown using halide vapour phase
epitaxy (HVPE) on c-plane sapphire following the ELOG
recipe detailed by Oshima et al [29]. After the growth of an
initial α-Ga2O3 seed layer, a TiO2 mask consisting of 5µm
wide stripes separated by 1µm wide windows was deposited

with stripes oriented parallel to [11̄00]. This was followed by
the deposition of a ca. 21µm layer of α-Ga2O3. Finally, the
sample surface was etched using HCl gas to reveal pits indicat-
ing where threading dislocations, in particular edge-type, ter-
minate at the sample surface [33].

Secondary electron (SE) and hyperspectral CL imaging
were conducted using a JEOL JXA-8530F field emission elec-
tron probemicro-analyser (EPMA). Themicroscopewas oper-
ated with an acceleration voltage of 8 kV and a beam current
of 5 nA, resulting in an interaction volume size of ca. 240 nm
based onMonte Carlo simulations [58]. The luminescence was
collected at room temperature using a reflecting objective and
was directly coupled to a cooled CCD spectrograph, allowing
a CL spectrum to be recorded for each pixel in the scan. The
resulting CL spectra were corrected for system response using
the transition radiation of pure aluminium [59].

3. Results and discussions

Figure 1(a) shows an SE image of the sample surface. Thewin-
dow (1µm wide) and mask (5µm wide) regions can be easily
identified as regions with high and low densities of etch pits,
respectively. At the centre of the mask region, where the α-
Ga2O3 coalesces, is a thin line of lightly packed etch pits that
also runs parallel to the window regions (i.e. [11̄00]) as repor-
ted by Oshima et al [33]. Figure 1(b) shows the corresponding
panchromatic CL image (photon energies in the range of 1.5–
5 eV) showing the integrated CL intensity recorded at each
pixel. These maps show that the positions of the etch pits in the
SE image seem to correlate with reduced CL luminescence.
More importantly, the map also reveals additional dark con-
trast lines oriented along the ⟨11̄00⟩ directions which propag-
ate from the window region to the etch pits. Kawara et al
[31] previously reported, in dot-patterned ELOG α-Ga2O3,
that dislocations could bend from the window region into
the masked region following the ⟨11̄00⟩ direction [31]. These
studies also observed that the dislocations which bend deep
within the film would terminate at the coalescence boundary
[29, 31]. Such dislocations would therefore not cause an etch
pit at the sample surface, and their bent section would occur
too deep in the sample for the electron beam to probe. This
strongly suggests that the dark contrast lines in our panchro-
matic CL map relate to dislocations bending sufficiently close
the sample surface (i.e. within the 240 nm depth probed by the
electron beam) from thewindow region and terminating at etch
pits in the mask region.

To start assessing how dislocations affect the luminescence
properties of α-Ga2O3, we first look at CL spectra taken away
from a dislocation line (figure 1(c)) and at a dislocation line
(figure 1(d)). Both spectra alignwith the literature onα- and β-
Ga2O3 luminescence, and can be well fitted using 3 Gaussian
peaks in agreement with other examples of luminescence spec-
tra from the literature [40, 41, 45]. We observe a first peak
(labelled ‘Peak 1’) centred at ca. 3.6 eV and attributed to
self-trapped holes, as well as a second and third peak (‘Peak
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Figure 1. (a) SE and (b) panchromatic CL maps of the same area of the sample. Example CL spectra taken on a pixel (c) away from
dislocations, and (d) at a dislocation. Bandpass-integrated CL maps for emission energies (e) above 3.25 eV and (f) below 3.25 eV. To guide
the eye, the positions of etch pits identified from the SE image were manually marked by dots in (e) and (f). An example of an etch pit
linked (not linked) to a dislocation line is highlighted by a square (circle) box.

2’ and ‘Peak 3’) centred at ca. 3.2 eV and 2.8 eV, respect-
ively, attributed to donor–acceptor pair transitions [38, 40, 42].
We can already observe differences depending on the posi-
tion relative to the dislocation, where the CL spectrum taken
at the dislocation exhibits an overall weaker and redshifted
luminescence compared to that of the region away from the
dislocation—we analyse these variations in more detail in the
next section. Figures 1(e) and (f) show bandpass-integrated
CL maps of the sample extracted from the hyperspectral CL
map, discriminating emission of photons >3.25 eV (i.e. dom-
inant contribution from Peak 1, figure 1(e)) from emission of
photons <3.25 eV (i.e. dominant contribution from Peaks 2
and 3, figure 1(f)). To guide the eye, red-bordered dots are used
to indicate the locations of the etch pits. These two maps show
a contrast inversion, where the dislocation lines appear dark
in the map for emission >3.25 eV (figure 1(e)) and bright in
the map for emission <3.25 eV (figure 1(f)), in line with our
observation of individual CL spectra (figures 1(c) and (d)).

Further investigation identifies two different categories of
etch pits. The first category corresponds to pits connected to a
dislocation line in the CLmap (an example of which is marked
by a square in figure 1), while the second category corresponds
to pits that are not linked to a dislocation line in the CLmap (an
example of which is marked by a circle in figure 1). We calcu-
lated a density of etch pits of ca. 1.5× 106 cm−2 in the mask
region, which is in line with the value reported by Oshima et al
[33], and we estimate that ca. 85% of etch pits fall into the first
category of pits, with the remainder ca. 15% falling into the
second category.

To better understand the luminescence properties of the dis-
locations, we acquired a linescan to investigate the evolution of
the luminescence spectrum as the electron probe scans across
dislocation lines, shown in figure 2. While we note that the
dislocation line and the etch pit terminating it exhibit the same

luminescence, analysing the dislocation line, which is a sub-
surface feature, allows us to rule out the potential impact of
the HCl etching on the CL data. As discussed previously, each
CL spectra was fitted using 3 Gaussian peaks, and the evol-
ution of the integrated intensity and energy of each Gaussian
peak was monitored across the linescan (figures 2(d) and (e)).
The deconvolution of each individual spectrum from the lin-
escan is shown in the supplementary information (figure S1).

The first peak, centred at ca. 3.6 eV can be seen to vary sig-
nificantly across the linescan.We observe that compared to the
region away from the dislocation, the intensity decreases by a
factor ca. 2 at the dislocation and redshifts by ca. 0.04 eV. This
luminescence line is commonly ascribed to radiative recom-
bination of free electrons with self-trapped holes [38, 40, 42,
44–46, 60]. Given that self-trapped holes are strongly local-
ised at O sites [45], it is reasonable to interpret this decrease in
intensity as a reduction of the density of free electrons, which
would therefore be involved in competing recombination path-
ways near the dislocation. One interpretation could be that
these electrons get more efficiently trapped at donor states. If
this was the case, we should expect to see an increase in donor–
acceptor pair transitions at dislocations, which we observe
to some extent with variations of Peaks 2 and 3. However,
that increase in donor–acceptor pair transition does not com-
pensate for the reduction of Peak 1 luminescence, suggesting
an additional recombination pathway is at play. The reduction
of free electron recombination with self-trapped holes could
also be caused by an increase in non-radiative recombina-
tion at the dislocation, as has been widely observed in other
semiconductors [35, 61, 62]. One last interpretation could be
that the electrons drift away from the dislocation region due to
Fermi level pinning at the dislocation, for example, because of
a charged dislocation core [63]. A comprehensive assessment
of the correct interpretation necessitates knowledge of the
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Figure 2. Analysis of a linescan taken across 2 dislocation lines. (a) CL (above 3.25 eV) and (b) SE showing the position of the linescan.
Evolution of the (c) CL spectra, (d) integrated intensity, and (e) centre energies of the different Gaussian peaks across the lines scan.

atomic structure of the dislocation core (which could depend
on the dislocation type, growth method conditions, etc.) sup-
ported by theoretical modelling of its electronic structure. We
attribute the redshifts of the luminescence to strain variations
in the vicinity of the dislocation, as the redshift is consist-
ent with the predicted bandgap energy reduction induced by
a small percentage of strain [64].

Peaks 2 and 3, centred at ca. 3.2 eV and 2.8 eV, respect-
ively, are also observed to vary across the linescan. Both peaks
follow a similar trend, whereby their intensity approximately
doubles at the dislocation (consistent with the bright contrast
lines seen in figure 1(d)). Since these luminescence lines are
normally assigned to donor–acceptor pair transitions [38, 46–
50], the increased intensity of Peaks 2 and 3 is a strong sign
that point defects segregate at the dislocation. Given the high
density of point defects present in current Ga2O3 samples, it
is not surprising to see an accumulation of point defects near
dislocations as a mechanism for partial strain release. As men-
tioned above, the greater density of donor and acceptor states
induced by this point defect segregation can provide a com-
peting recombination pathway for the free electrons in the
conduction band, partially explaining the decreased intensity
of Peak 1 at the dislocation. Looking at the centre energy of
Peaks 2 and 3, we observe that both peaks redshift by ca.
0.08 eV and 0.1 eV at the dislocation, respectively. It is diffi-
cult to interpret this energy shift as it combines several effects,
including a reduction of donor–acceptor separation and a vari-
ation of strain. While a greater density of donors and acceptors
should result in a blueshift of the luminescence, the impact of
strain is impossible to predict at present. Donor–acceptor pair
luminescence energy is determined by the bandgap energy as
well as the donor and acceptor ionisation energies, which are
all strain-dependent. However, the strain dependence of these
ionization energies is currently unknown, especially when the

donor–acceptor pair luminescence is not assigned to one par-
ticular defect but rather to a library of defects.

Figure 3 shows a linescan performed on an etch pit not
connected to a dislocation line, i.e. the second category of
etch pits. In figure 3(c), we can see that there is no clear
variation of the luminescence spectra across the etch pit,
which is confirmed in figures 3(d) and (e) with the plots
of the integrated intensities and the centre energies of the
peak deconvolution—each individual deconvoluted spectrum
from the linescan is shown in the supplementary informa-
tion (figure S2). This further supports the negligible effect
of etching on the luminescence. The lack of variation of the
integrated intensity and energy of Peaks 1, 2, and 3 indicates
that this second category of etch pits must have a different
nature than the etch pits connected to dislocation lines (first
category of etch pits) analysed in figure 2. Instead of termin-
ating a dislocation that bends from the window region, this
second category of etch pit could relate to a different cat-
egory of dislocation, such as dislocations that nucleate from
the coalescence boundary of the ELOG windows [31]—thus
having a different atomic environment than a dislocation that
bends from the window region. It could also be that this type
of etch pit does not relate to dislocations at all, as Oshima
et al [33] reported that 1.5% of etch pits were not associ-
ated with dislocations [33]. This value does not match the
15% proportion of etch pits we associated with the second
category, but we must bear in mind that the pit categorisa-
tion was based on the presence of (or lack of) a dark line con-
necting them in the panchromatic CL image. It is possible that
some etch pits were wrongfully associated with the second cat-
egory because the dislocation line they relate to was bending
slightly deeper in the sample than what the interaction volume
would probe, thus appearing in the CL images as not connected
to any line.
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Figure 3. Analysis of a linescan taken across an etch pit not connected to a dislocation line. (a) CL (above 3.25 eV) and (b) SE showing the
position of the linescan. Evolution of the (c) CL spectra, (d) integrated intensity, and (e) centre energies of the different Gaussian peaks
across the lines scan.

4. Conclusion

In conclusion, we conducted the first investigation of the
luminescence properties of dislocations in ELOG α-Ga2O3

using CL. The luminescence spectrum at dislocations devi-
ates from that of the regions away from dislocations. We
observe a reduction of self-trapped hole-related luminescence
(ca. 3.6 eV line), which we ascribe to dislocations acting as
non-radiative recombination sites for free electrons, to a reduc-
tion in free electron density due to Fermi level pinning or to
carrier trapping at donor states. An increase in the intensity of
the ca. 3.2 eV and 2.8 eV lines is also observed, which sug-
gests an increase in the rate of donor–acceptor pair transitions
and stands as strong evidence that point defects segregate at
dislocations.
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