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ABSTRACT Emerging concepts for sustainable urban development, such as positive energy districts/
neighborhoods (PEDs/PENs), are being implemented in Europe in light of the goal of net-zero carbon
emissions by 2050. From the building to the district/neighborhood scales, these projects are fostering the
implementation of local renewable energy sources (RES), encouraging the adoption of electric vehicles
(EVs) and smart home technologies (SHTs). In this context, a systemic analysis of energy prosumption
in these new urban areas is of paramount importance to evaluate their social and technical impacts. This
dataset from a Norwegian PEN enables such systemic analysis by bringing the following quantitative and
qualitative data: 1) the aggregate loads of six households, 2) the estimated energy production based on
the installed solar panel capacity, 3) the labelling of individual activities, 4) solar irradiance and weather
data, 5) time of use of electric appliance surveys, and 6) in-depth semistructured interviews on household
energy practices. Therefore, this dataset facilitates, multidisciplinary research on the sociotechnical aspects
of PENs and net-positive buildings for their design and implementation, helping to answer the “what,”
“why,” and “how” of energy prosumption.

IEEE SOCIETY/COUNCIL Signal Processing Society (SPS)

DATA TYPE/LOCATION Timeseries, Interviews; Eastern Norway (Østlandet), Norway

DATA DOI/PID 10.15129/7d3ac671-2b97-439b-92cf-ce4021e804d2

INDEX TERMS Energy efficiency, mixed-methods methodology, nonintrusive load monitoring (NILM),
positive energy districts (PED), positive energy neighborhoods (PEN).

BACKGROUND
According to the International Energy Agency (IEA) [1], the
building sector is responsible for 26% of global energy sector
emissions, 18% of which are emissions due to the production
of electricity and heat used in buildings. To meet the net zero

emissions (NZE) by 2050 scenario target [2], the building
sector is under pressure to ensure 20% of the building stock
is zero-carbon ready by then. Zero-carbon-ready buildings
are highly energy-efficient and resilient buildings that either
use renewable energy sources (RES) directly, or rely on a
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source of energy supply that can be fully decarbonized, such
as electricity or district energy. Going beyond zero-carbon
buildings, recent years have also seen an emergence of net-
positive, also known as energy-positive or carbon negative,
buildings that can produce more energy than they consume.
The concept of net-positive buildings aligns with broader
efforts to combat climate change and promote sustainable
development by developing more sustainable and resilient
communities. These buildings are designed not only to
reduce their environmental impact, but also to actively con-
tribute to the generation of clean energy. This is achieved by
incorporating advanced energy-efficient technologies, RES,
such as solar panels, wind turbines, or geothermal systems,
energy storage solutions, and smart building management
systems. Through these means, buildings are designed to
optimize energy consumption, minimize waste, and use
natural resources efficiently.

Within the European Union’s strategic plans for energy
transition [3], [4], emerging concepts for sustainable ur-
ban development are being implemented, which incorpo-
rate clusters of net positive buildings to create positive
energy districts/neighborhoods (PEDs/PENs) that promote
the implementation of local RES, encourage the adoption
of electric vehicles (EVs) and smart home technologies
(SHTs) [5], [6]. In these areas, buildings are designed not
only to reduce their own environmental impact but also
to actively contribute to the generation of clean energy at
the district/neighborhood level or beyond these boundaries.
Through these means, PEDs/PENs are expected to increase
the energy independence of communities by reducing their
reliance on external energy sources; hence, making them
attractive housing solutions due to the significant reduction
of their energy bills/costs and carbon footprint.

Although a number of load consumption datasets exist,
these are usually collected from consumer-only households
that are geographically distributed throughout a country
without forming a single neighborhood. The result of a recent
review of load consumption datasets is presented in Table I
of [7]. Considering the expected increase in PED/PEN a
systemic analysis of energy presumption in these new urban
areas is of paramount importance to evaluate their social
and technical impacts. In this article, we present a dataset
from a Norwegian PEN that enables such systemic analysis
by bringing quantitative and qualitative data together. To the
best of our knowledge, the dataset described in this work
stands apart from other available datasets as follows.

1) The first dataset of households that are located in a
designed positive energy neighborhood (PEN).

2) Besides energy consumption and disaggregated load,
estimated energy production, voltage, and current data
are also provided in a sampling rate of 10-s.

3) The utility billing power consumption vector and the
variable tariff vector are provided in a sampling rate
of 60 min.

4) Weather parameters that can affect consumption and
RES production, including, temperature, humidity, and
solar insolation.

5) Qualitative data including in-depth semistructured in-
terviews and time-of-use surveys with the homeown-
ers, are included in the dataset.

The design and construction of net-positive buildings and
neighborhoods require a multidisciplinary approach, involv-
ing architects, engineers, energy experts, sustainability de-
sign professionals, and social scientists. This dataset is
expected to be valuable to stakeholders involved in the
design process of net-zero and net-positive buildings and
districts, by facilitating quantitative and qualitative energy
analysis, perceived vs actual energy efficiency of designed
PED, as well as to stakeholders involved in the study
and deployment of smart microgrids with RES penetration.
Through this dataset, the effects of hourly variable energy
tariffs in end-users’ consumption practices can be explored
with the dataset already been used to explore the effects of
smart energy technologies and how these affect household
practices and demand shifting [6] as well as on a mixed-
methods data-driven approach for energy-centric evaluation
of net-positive households to answer the “what,” “why,” and
“how” of energy prosumption in net-positive dwellings [8].

COLLECTION METHODS AND DESIGN
The households participating in this study were recruited
in a neighborhood in Eastern Norway (Østlandet), which
is within the general concept of the PED/PEN, that houses
approximately 70 middle-income families. The new urban
area consists of several housing zones that are not yet fully
developed. In this study, we targeted a zone built between
2018 and 2019 with buildings having a range of differ-
ent typologies (including detached, semidetached, and flat-
apartments) and different sizes (ranging from under 100 to
approx. 200 sqm). The total area of the neighborhood of the
aforementioned households is approximately 130 m wide by
325 m long. Sustainable technologies, such as solar panels,
smart energy management systems, and smart charging for
EVs, were installed at the building level, while a ground-
source heat pump system was installed at the community
level. In addition, passive house standards were also taken
into account during the design of the houses. A door-to-door
canvassing recruitment process [6] was conducted through-
out 10 days in April 2022. Nine households were selected
for this study based on two criteria: different demographic
characteristics and housing typology. All selected households
were equipped with three-phase installations, either fully
electric or plug-in hybrid EVs, with some households also
having a fast charge point installed. Adhering to GDPR
guidelines, written consent declarations were obtained to
collect, process, and publish data after anonymization. Out
of the nine households, due to connectivity issues, data were
collected from six households, more specifically houses 1,
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TABLE I. Summary of Households

ID Type (Area) PV (kW) Azimuth (Tilt) Occupants

1 1 (148 m2) 4.8 65o/−115o (15o) 2
3 1 (193 m2) 6.4 35o/−145o (15o) 3
5 2 (90 m2) 14 40o (30o) 4
6 1 (148 m2) 4.8 85o/−95o (15o) 3
7 2 (90 m2) 14 40o (30o) 4
9 2 (130 m2) 9.6 −30o/150o (15o) 3

3, 5, 6, 7, and 9. Table I presents a summary of the selected
households, their typology (detached with 4 rooms= type 1,
semidetached with 2/3 rooms= type 2), and their character-
istics.

Household Aggregate Readings
The household aggregate readings were collected via the
energy provider through smart meters installed within
the households. The data were securely transmitted from
the households to the utility provider and then through
Azure transferred to the Server located in Glasgow, Scotland.
Smart metering data were collected from six households
for a period of two months [2022-02-09 23:00:00–2022-
04-09 22:00:00 (UTC)]. Although it is challenging to ac-
curately estimate the consumption and production profile
of a household by a two-month sample, the period was
selected to minimize the intrusiveness to the house occupiers
and maximize the extracted information. More specifically
the specified two month period was selected because: 1) the
monitored period spans almost uniformly before and after the
northward equinox and therefore the average solar irradiation
is close to the yearly average; 2) the temperature range of the
monitored period is close to the yearly average; and 3) the
monitored period contained both normal working days and a
week of school holidays [8]. The aggregated active/reactive
import/export power and the current and voltage of each
phase were collected. The voltage readings correspond to
the potential difference between each phase and the neutral
line.

The smart meter readings were transmitted every 10 s.
Readings that failed to be transmitted were discarded from
the smart meter and therefore subsequent readings do not
contain information about the nontransmitted readings. Al-
though all households have PV panels installed, these are
wired in a separate circuit and therefore there is no solar
interference in the collected data.

Activities Decomposition
The major activities, including heating, cooking, laundry/
cleaning, and EV charging, were disaggregated from the
aggregated readings using WaveNet [9] and seq2subseq [10]
neural networks designed for energy disaggregation and

TABLE II. Households Used for Training of the Models

Target Loads REFIT [17] ECO [13]

Heating 1, 9, 16 -
Washing machine 1, 6, 8, 9, 18 1

Tumble dryer 1 1
Washer-dryer 9, 18 -
Dishwasher 1, 6, 8, 9, 18 2

Electric hobs - 2
Electric oven - 2

Coffee machine - 1, 3, 5, 6
Kettle 6, 8, 9 1, 2, 3, 5, 6

Microwave 6, 9, 18 4, 5
Fridge 8, 18 -
Freezer 6, 8, 18 1, 2, 3

Fridge-freezer 18 1, 2, 3

EV PECAN [15] Dataset [16]

Low-power (AU) 661, 1642, 4373, 6139, 8156 -
Low-power (NY) 27 -

High-power - 1

based on transfer learning as [11]. The task is simplified due
to the availability of three-phase information [12]. Disaggre-
gation results were validated through time-of-use surveys in
two selected households and manually verified by a nonin-
trusive load monitoring (NILM) expert. The disaggregation
models training was carried out using publicly available
datasets based on the similarity of the load profiles to the
six households in Norway (ECO [13], REFIT [14], PECAN
[15], and the EV consumption dataset [16]). All datasets
were resampled to 10 s by downsampling or upsampling.
The training of the networks was performed using a mixture
of different households with Table II containing a summary
of the households and appliances used. Two different models
were trained for the EV load disaggregation, one for high-
level dedicated chargers (11 kW) and one for standard three-
pin chargers (3 kW).

After disaggregation, the loads were then grouped into
household routines based on known relationships between
activities and the appliances used in those activities to
connect quantifiable data on appliances with the range of
activities that define daily life at home [18]. The following
four energy intensive activities were considered: 1) EV
charging; 2) heating; 3) laundry/cleaning: washing machine,
tumble dryer, washer-dryer, and dishwasher activations; and
4) cooking: kettle, coffee machine, hobs, oven, and mi-
crowave activations.

Due to the relatively more complex nature and relatively
lower power levels, the WaveNet model was used for do-
mestic appliances (top section of Table II containing 13
appliances). On the other hand, the EV charging load, which
is by nature a high-energy event, was disaggregated using
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FIG. 1. House 1: aggregated power and activities breakdown.

the seq2subseq model due to the higher convergence speed
and lower computational costs. The default parameters for
the WaveNet model were used, whereas for the seq2subseq
model, the parameters used are as [11]. The validation of
the energy disaggregation results was performed through soft
labels obtained from time-of-use surveys that were handed
over to the homeowners as well as through manual inspection
of the signal by an energy signal expert. Fig. 1 illustrates a
sample of the results of the disaggregation of activities as
well as a sample of the aggregated active power signal.

Utility Billing Vector and Hourly Tariff
Apart from low-frequency readings (10 s), the utility
provider collected an hourly sample for billing purposes.
The hourly sample included the cumulative active and re-
active import and export energy, with the active energy
samples measured in Watt-hours (Wh) and the reactive en-
ergy samples in volt-ampères-reactive-hours (VARh). These
variables are used by the utility provider to bill the end-
users. The transmission and collection of these readings are
more robust as these are required to meet the utility require-
ments. Therefore, these readings can be used to estimate and
interpolate missing values in the dataset. The hourly price
vector of electricity in the region where the households that
are located is also included in the dataset. The price vector
(in Norske Krone, NOK) reflects the price of the energy
consumed in the past 1 hour without the inclusion of the
value-added tax (VAT). Fig. 2 shows the hourly price vector
for the monitored period.

At the time of data being collected the VAT rate was 25%,
the grid fees for importing energy from the grid were approx.
0.4 NOK/KWh and the compensation for providing energy
to the grid when exporting was approx. 0.1 NOK/kWh. Note
that VAT is charged only when importing energy from the
grid and not when energy is exported to the grid.

FIG. 2. Hourly electricity price for the monitored period, VAT excluded.

Weather Data
The weather data were collected from The Norwegian Me-
teorological Institute [19], including the following variables:
air temperature (oC), relative humidity (%), surface pressure
(hPa), precipitation [in mm/h], wind speed (m/s’) and wind
direction (deg) sampled at 5-min intervals.

The dew point Td was calculated through the vapor pres-
sure and saturation vapor expression of the relative humidity
as

RH = 100%× E

Es
(1)

where, based on the Clausius-Clapeyron [20] relation, the
vapor pressure is given by

E = E0 × e((L/Rv)×(1/T0−1/Td)) (2)

and the saturation pressure by

Es = E0 × e((L/Rv)×(1/T0−1/T )) (3)

with the saturation vapor pressure E0 = 0.611 kPa, the latent
heat of vaporization L = 2.453× 106 J/kg, the gas constant
for moist air Rv = 461 J/(kg×K), L/Rv = 5423 K, T0 =
273.15 K and T being the air temperature. By solving for
the dew point, Td, it will be given in Kelvin by

Td =
1

1
T − L

RV
× ln

(
RH
100%

) . (4)

The dew point was converted to Celsius by subtracting the
constant 273.15 from the Kelvin temperature. Temperature,
dew point, and relative humidity for the entire monitored
period are presented in Fig. 3.

The solar data were generated using Copernicus Climate
Change Service information 2024 [21] in 1-min intervals1.

1Neither the European Commission nor ECMWF is responsible for any
use that may be made of the Copernicus information or data it contains.
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FIG. 3. Weather data for the monitored period.

FIG. 4. Solar radiation data sample.

The collected data were the global (GHI), the direct (BHI),
and the diffuse (DHI) solar irradiance, the direct normal
irradiance (BNI), the cloud coverage, the cloud type and the
albedo. A sample of the collected data is presented in Fig. 4.
The zenith angle of the solar disc was calculated as

θZ = cos−1 (cos(ϕ)cos(δ)cos(ω) + sin(δ)sin(ϕ)) (5)

where ϕ is the latitude, δ is the declination of the Sun and ω
is the hour angle. The declination [22] of the Sun (δ), with
a range −23.5o ≤ δ ≤ 23.5o, is given by

δ = Φ× cos

(
C (d− dr)

dy

)
(6)

where Φ is the tilt angle and equal to 23.5o, C = 360o, d
is the Julian Day, dr is the Julian Day for summer solstice
(equal to 172 for nonleap years), dy is the number of days
per calendar year (i.e., 365 days or 366 days for leap years).

The hour angle, ω, is given by

ω = 15o × (t− 12) (7)

where t is given by

t = hours + minutes/60 + seconds/3600. (8)

Solar Production Estimation
As solar production was not monitored, PV production was
estimated based on the installed solar capacity, roof tilt,
and azimuth angle (Table I) and the local weather and
solar data. PV panels are either installed in a fixed tilted
rooftop (30o) or on flat rooftops with dual-tilt system (15o).
The azimuth angle is measured from South with positive
values toward the West and negative toward the East. The PV
production estimation was performed using the Global Solar
Energy Estimator [23] with a granularity level of one hour.
The power output from the PV panels was calculated through
the direct and diffuse plane irradiance with an average
temperature-dependent solar panel efficiency of 93% [24]
and an inverter efficiency of 90%.

Qualitative Data
The qualitative data consists of in-depth semistructured in-
terviews on household energy practices and a time of use of
electric appliances survey. Interviews were conducted face-
to-face over 10 days in April 2022, simultaneously with the
recruitment process. They lasted an average of 67.5 min
and were audio-recorded and transcribed ad verbum. Minor
language editing was performed after the transcriptions,
considering that the interviews were conducted in English,
though neither the researcher nor the participants were native
English speakers. Due to the semi-structure character of the
interviews, the questions were arranged into six themes:

1) “walking through” the smart homes and smart apps to
understand how technologies mediate energy practices;

2) motivations for buying a smart home in the new
neighborhood;

3) motivation for buying an EV, both to uncover meanings
and ways of engagement;

4) understanding changes in energy practices due to new
materialities—old house versus new house;

5) heating and cooling practices;
6) sociodemographics.

The themes of the interview guideline were drawn from
previous studies on household energy practices within the
theoretical framework of social practice theories. In this
sense, the interviews aimed to go beyond the traditional
occupants’ behavior and lifestyle approaches and focus on
variations of energy practices (individual energy-consuming
habits and routines) that are rooted in collective socio-
material structures [25]. Interviews were conducted with all
nine households; however, only four interviews are included
in this dataset paper, namely households 1, 3, 5, and 9.
As interviews with households 6 and 7 included extensive
sensitive information, anonymization of the interviews so
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TABLE III. Energy Data Availability as the Number of Available (Actual)
and Expected Samples

Metering Data Billing Data
ID Actual/Expected Ratio Actual/Expected Ratio

1 505 708/509 400 99.28% 1415/1416 99.93%
3 505 073/509 400 99.15% 1415/1416 99.93%
5 486 485/509 400 95.50% 1416/1416 100%
6 505 835/509 400 99.30% 1415/1416 99.93%
7 490 564/509 400 96.30% 1414/1416 99.86%
9 499 672/509 400 98.09% 1415/1416 99.93%

Total 3 481 320/3 565 800 97.63% 9904/9912 99.92%

that they could be understandable was not feasible. In the
period following the interviews, a survey on the time of use
of electric appliances was sent by phone message or email
to the participants; two responses were obtained. A time-of-
use survey was developed based on [26] and consisted of
type of appliances, frequency of use, time of use during the
week, weekend use, weekday use, and appliances for long-
term illness.

VALIDATION AND QUALITY
In this study, energy data from six different households
with a total of 34 852 816 samples were collected from a
total expected energy-related samples of 35 697 648, which
corresponds to a missing data rate of 2.36%. A summary
of the actual versus the expected timestamps during which
data were collected is presented in Table III. Each timestamp
corresponds to 10 readings for the metering data and four
readings for the billing data. As expected, the hourly billing
vector has statistically less missing values, partly due to the
fact that billing data are collected every hour (compared
with 10 s for the metering data) and partly due to the
prioritization of the collection of billing data to preserve
utility and accurate billing.

In addition to data availability, the quality of the collected
data was explored by estimating the length of missing data
gaps. Table IV includes the percentage of the data that the
maximum gap interval does not exceed a period spanning
10 s to 6 h. The majority of the gaps within the dataset are
in the range of 10 s to 1 min, with very few gaps having a
duration greater than 1 min per household. There has been no
gap interval of more than 6 h for any of the six households.
Small gaps can be filled through an interpolation method,
whereas longer gaps can be filled from average average
historical consumption data. All the collected and generated
disaggregated streams were manually inspected (visual in-
spection) by an energy expert to assess the validity of the
data. No erroneous spikes were identified in the collected
energy readings. The expected accuracy of the disaggregated
data is expected to be similar to the demonstrated accuracy of
the used disaggregation algorithms as already demonstrated
in the literature [9], [10], [11], [12]. As electricity tariff data

TABLE IV. Quality of Energy Data: Length Data Gaps as % of Samples
With Data Gap Lengths Less Than the Given Time Period

House ID 10-s 1-min 30-min 1-h 6-h

1 99.18% 99.93% 99.93% 99.93% 100%
3 99.00% 99.88% 99.88% 99.88% 99.88%
5 95.32% 99.74% 99.84% 99.84% 99.84%
6 99.10% 99.83% 99.84% 99.84% 99.84%
7 96.13% 99.79% 99.84% 99.84% 99.84%
9 97.97% 99.90% 99.91% 99.91% 99.91%

were obtained through the energy provider, the tariff data do
not suffer from missing values, and all 1415 hourly pricing
readings are available. PV data were cross-validated through
the Prediction of Worldwide Energy Resource (POWER)
[27] portal with an average deviation of the solar irradiance
data of less than 1%.

The technical validation of qualitative data, such as inter-
views, is not as objective as the quantitative data. The results
that may be obtained from this data rely on the content
analysis techniques that will be deployed as well as the
theoretical framework chosen by researchers. Nonetheless,
since the interview guideline was created based on a the-
oretical framework of social practices, we can highlight
relevant connections between materials, skills, and meanings
(i.e., the elements of practices according to [28]) that can
be obtained from the interviews. The data reveal several
meanings ascribed to RES, EVs, and SHTS, as well as
different ways of engagement with such technologies for
energy management. Competencies and skills to handle such
technologies can also be found throughout the interviews.
We summarise a few themes that can be potentially explored
in the data below: Materials: PVs, ground source heat
pumps, smart home technologies, electric vehicles, and smart
apps in general. Skills/Competencies: Basic tech skills are
needed to run the smart home. Some households enjoy ac-
quiring tech skills through interaction with technology, while
others prefer/need digital or in-person technical assistance.
As a community, the relationship with neighbors in the
process of acquiring knowledge on energy technologies was
also uncovered. The smart system’s complexity and load of
information can exclude certain households, such as elderlies
and others who do not have time to learn how to handle such
devices and mobile apps. The systems can be complex even
for households with previous knowledge of energy and IT.
Meanings/engagement: Affordability, energy efficiency, and
convenience are some of the meanings that may be found in
the interviews as drivers of households’ engagement with
their smart homes, EVs and neighborhood. Exclusionary
design, unmet expectations, technical issues, time demanded
to set up/learn how to set up features and automation, as
well as gender issues in handling smart technologies, can be
found as some of the reasons for households’ disengagement
with energy demand.
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FIG. 5. Dataset structure.

RECORDS AND STORAGE
Adhering to the FAIR principles [29], the recommended
file formats by the UK data service for data sharing, reuse,
and preservation [30], and the practices in NILM literature
[31] the data are made available in the form of CSV and
TXT files. There are four CSV files for each household,
one containing the household total energy consumed data,
one containing the disaggregated activities, one containing
the solar production data, and one containing the utility
billing vector data. Fig. 5 represents the structure of the
dataset. All timestamps are in Coordinated Universal Time
(UTC) [YYYY-MM-DD HH:mm:ss] format. UTC format
was selected as it is the primary global standard to regulate
time. The CSV files (“Aggregate #.csv”) containing the
aggregate data have the following columns.

1) Timestamp: timestamp of the data point.
2) ActivePowerPositive: positive aggregated active

power [W].
3) ActivePowerNegative: negative aggregated active

power [W].
4) ReactivePowerPositive: positive aggregated reac-

tive power [VAR].
5) ReactivePowerNegative: negative aggregated reac-

tive power [VAR].
6) PhaseOneCurrent: phase 1 current [A].
7) PhaseTwoCurrent: phase 2 current [A].
8) PhaseThreeCurrent: phase 3 current [A].
9) PhaseOneV oltage: phase 1 voltage [V].

10) PhaseTwoV oltage: phase 2 voltage [V].
11) PhaseThreeV oltage: phase 3 voltage [V].

The CSV files (“Activities #.csv”) containing the disaggre-
gated activities data have the following columns.

1) Timestamp: timestamp of the data point.
2) Heating: estimated heating power [W].
3) Cooking: estimated cooking power [W].

4) LaundryDishwashing: estimated laundry/dish-
washing power [W].

5) EV : estimated EV charging power [W].
The CSV files (“PV #.csv”) containing the solar production
data have the following columns.

1) Timestamp: timestamp of the collected data point.
2) PV : estimated PV power production [W].

The CSV files (“UtilityBilling #.csv”) containing the utility
billing vector energy data have the following columns.

1) Timestamp: timestamp of the data point.
2) CumulativeActiveImportEnergy: aggregated ac-

tive energy imported from the grid from the date of
the installation of the meter [Wh].

3) CumulativeActiveExportEnergy: aggregated ac-
tive energy exported to the grid from the date of the
installation of the meter [Wh].

4) CumulativeReactiveImportEnergy: aggregated re-
active energy imported from the grid from the date of
the installation of the meter [VARh].

5) CumulativeReactiveExportEnergy: aggregated re-
active energy exported to the grid from the date of the
installation of the meter [VARh].

Further to these, a single CSV file containing the hourly
billing vector, a single CSV file that includes the weather
variables and a single CSV file containing the solar
data are provided. The CSV file (“ElectricityPrice.csv”)
containing the hourly billing vector has the following
columns.

1) Timestamp: end timestamp of the billing period.
2) Price: hourly market price [NOK] excluding VAT.

The CSV file (“WeatherData.csv”) containing the weather
data has the following columns.

1) Timestamp: end timestamp of the data point.
2) Temperature: air temperature in Celsius [oC].
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3) RelativeHumidity: atmospheric relative humid-
ity [%].

4) Dewpoint: dewpoint obtained from (4) [oC].
5) SurfacePressure: surface pressure [hPa].
6) Precipitation: rain precipitation [mm/h].
7) WindSpeed: wind speed at 10 meters from the ground

[m/s].
8) WindDirection: wind direction at 10 meters from the

ground [o].
The CSV file (“SolarData.csv”) containing the solar data has
the following columns.

1) Timestamp: end timestamp of the data point.
2) GHI: global solar irradiance, i.e., the total irradiance

on a horizontal surface at ground level [W/sqm].
3) BHI: direct solar irradiance, i.e., the beam irradiance

on a horizontal surface at ground level [W/sqm].
4) DHI: diffuse solar irradiance, i.e., the diffuse irradi-

ance on a horizontal surface at ground level [W/sqm].
5) BNI: direct solar irradiance on a mobile plane at

normal incidence that follows the sun [W/sqm].
6) Zenith: solar zenith angle [o].
7) Albedo: reflective coefficient on ground [%].
8) CloudCoverage: cloud coverage [%].
9) CloudType: cloud type, −1= no value, 0= no clouds,

5= low-level cloud, 6=medium-level cloud, 7= high-
level cloud, and 8= thin cloud.

Further to the quantitative data, the qualitative data are
organized in interviews and questionnaire data as follows:
1) the semistructured interviews are organized in a single
folder containing the four interviews in PDF format; and
2) the questionnaire template and the replies to the time
of use survey are made available in PDF and CSV file
accordingly. Last, there is a single TXT read-me file that
summarises the content of the dataset.

INSIGHTS AND NOTES
The dataset is made available in CSV format, which can be
easily accessed by the majority of the scientific computing
packages, including MATLAB, SPSS, R, and Python.

SOURCE CODE AND SCRIPTS
The code was developed using MATLAB and Python
3.8 and deployed on a Windows machine. Code from
public repositories that have been used in this dataset
can be accessed at: https://github.com/DLZRMR/seq2subseq
[10], https://github.com/jiejiang-jojo/fast-seq2point [9] and
https://github.com/renewables-ninja/gsee [23].
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