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Abstract
Quantum computing promises to provide the next step up in computational power for diverse
application areas. In this review, we examine the science behind the quantum hype, and the
breakthroughs required to achieve true quantum advantage in real world applications. Areas that
are likely to have the greatest impact on high performance computing (HPC) include simulation
of quantum systems, optimization, and machine learning. We draw our examples from
electronic structure calculations and computational fluid dynamics which account for a large
fraction of current scientific and engineering use of HPC. Potential challenges include encoding
and decoding classical data for quantum devices, and mismatched clock speeds between
classical and quantum processors. Even a modest quantum enhancement to current classical
techniques would have far-reaching impacts in areas such as weather forecasting, aerospace
engineering, and the design of ‘green’ materials for sustainable development. This requires
significant effort from the computational science, engineering and quantum computing
communities working together.
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1. Introduction

The largest quantum computers are now approaching a size
and capability where it is no longer possible to efficiently
simulate them classically, even using the largest available
near-exascale classical computing capabilities. For most sci-
entific and engineering applications, ‘exascale’ means the
system’s aggregate performance crosses a threshold of 1018

IEEE 754 double precision (64-bit) operations (multiplica-
tions and/or additions) per second (exaFLOPS). To put this
in context, the Sony PlayStation 5 digital edition is listed
as having a peak of ∼10 teraFLOPS (∼1012 FLOPS), a
million times smaller. Classical machines just below exas-
cale have been used to verify quantum supremacy claims.
For example, random circuit sampling and Gaussian boson

sampling methods respectively used the Summit (∼150 peta-
FLOPs) [1] and Sunway TaihuLight (∼93 petaFLOPs) [2]
supercomputers. These supremacy tasks are not yet known to
have any industrial or other useful applications, and the clas-
sical algorithms have since been improved (see section 2.7.2).
However, these supremacy headlines do indicate that we are
nearing the time when a quantum co-processor running a well-
chosen sub-task could provide a significant boost to large scale
computational capabilities.

Reaching for exascale computing calls for a paradigm
shift from traditional computing advances [3, 4]. Historical
advances in computing were achieved via increasing clock
speed and memory performance, adding more cores and paral-
lelization.Moore’s law [5] predicts that the exponential growth
of silicon-based transistors on computer chips is about to hit
physical limits [6, 7]. The growth predicted was borne out by
major chip and computer system vendors until about 2005,
when CPU clock speeds reached around 4GHz (figure 1).
Significantly increasing the clock speed beyond this would
require enormous effort to cool the processor to prevent mal-
function or permanent hardware damage from overheating.

Launched in 1993, the TOP500 project assembles
and maintains a list of the world’s 500 most power-
ful computer systems [9]. As of June 2024, Oak Ridge
National Laboratory’s Frontier system and Argonne National
Laboratory’s Aurora system are the only true exascale
machines worldwide. In recent years, GPUs have enabled a
step change in processing power—all of the GREEN500 [10]
use them. Only Fugaku in the top ten of the current TOP500
list [9] does not use GPUs. Physical constraints and power
requirements are forcing computer vendors to develop new
strategies to achieve more compute power. Novel hardware
systems, including quantum computing, will be required to
significantly extend global computational capacity beyond
current capabilities.

The idea of using quantum systems to process information
more efficiently than classical von Neumann computers was
introduced some 40 years ago [11, 12]. Since then there has
been steady progress in quantum computing, building on the
initial achievements of Shor’s algorithm for factorization [13]
that could break current methods of encryption, and Grover’s
algorithm [14, 15] for searching unsorted data. Quantum
simulation is another promising field of quantum inform-
ation processing [16, 17]. Many near-term applications of
quantum computers fall under this umbrella. Quantum simula-
tion involvesmodelling the quantum properties of systems that
are directly relevant to understanding modern materials sci-
ence, condensed matter physics, high-energy physics (HEP),
and quantum chemistry.

As the practical relevance of quantum computing becomes
clearer, interest has grown beyond the confines of academia
and many countries now have national strategies to develop
quantum computing and quantum technology more gener-
ally, e.g. [18–21]. In June 2024, the United Nations pro-
claimed 2025 as the International Year of Quantum Science
and Technology [22]. The primary goal is to recognize the
importance of quantum science and increase public awareness
of its future impact.
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Figure 1. Microprocessor trend data, 1980–2021. Data up to year 2010 collected by M Horowitz, F Labonte, O Shacham, K Olukotun, L
Hammond, and C Batten, data for 2010–2021 by K Rupp. Both datasets taken from [8].

The consensus is that quantum devices will not simply
replace high performance computing (HPC). It makes little
sense (in terms of engineering and economics) to use quantum
methods for problems that classical computers already do
well. Hence, a hybrid solution is the most efficient, cost-
effective and productive way to approach quantum compu-
tation. Instead of simply sending jobs to one or more CPUs,
hybrid architectures delegate different parts of the problem
to different types of processors, the most common currently
being GPUs. Conceptually, quantum processor units (QPUs)
are a natural extension to enhance the processing power of
HPC. However, increasing the number and diversity of pro-
cessors compounds the challenges for efficient programming
and scheduling. Quantum computing hardware is not yet
mature enough to seamlessly integrate with HPC (see section 5
for discussion of some of the engineering hurdles).

After several decades of largely academic-based theoretical
and experimental development, growing commercial interest
has resulted in venture capital [23–25] providing funding for
many existing and start-up companies focused on aspects
of quantum computing. The current landscape shows grow-
ing collaborations between quantum start-ups, established big
players, and with well-established financial, pharmaceutical
and automotive companies who wish to integrate quantum
technologies into their development and production processes
(figure 2). Notable players include Google, IBM and Rigetti,
who are developing superconducting qubit systems, and Intel
who are building systems based on quantum dots, with chips
that can be made in its existing foundries. Cloud providers
such as Amazon Web Services, are now selling time on dif-
ferent quantum systems, including QuEra, which uses neut-
ral atoms in tweezer arrays, IonQ ion trap quantum pro-
cessors, and superconducting qubit systems from Rigetti.
Current systems are small and imperfect, known as noisy,
intermediate scale quantum computers (NISQ) [26, 27]. They
are not yet powerful enough to solve useful problems, but do

allow researchers to test and develop quantum algorithms and
applications to prepare for more advanced quantum hardware.

Several commercial partnerships are focused on integrat-
ing quantum processors with HPC. Finnish quantum start-up
IQM is mapping quantum applications and algorithms dir-
ectly to quantum processors to develop application-specific
superconducting computers [28]. The result is a quantum sys-
tem optimized to run particular applications such as HPC
workloads. French company Atos and partners Pasqal and
IQM are involved in two major quantum hybridization pro-
jects in France and Germany [29, 30]: the European HPCQS
(Quantum Simulation) project [31] aims to build the first
European hybrid HPCwith an integrated quantum accelerator,
and the German Government’s Q-EXA project to integrate
the first German quantum computer into HPC [32]. NVIDIA’s
cuQuantum software development kit (SDK) provides the
tools needed to integrate and run quantum simulations in HPC
environments using GPUs [33], with the goal of adding QPUs
to the SDK. Quantum software vendor Zapata anticipates the
convergence of quantum computing, HPC, and machine learn-
ing, and has created the Orquestra platform to develop and
deploy generative artificial intelligence (AI) applications [34].

Given the growing government and commercial investment
in the development of quantum computing, it is timely to con-
sider how it might accelerate computational science and engin-
eering. Now considered the third pillar of scientific research
alongside theoretical and experimental science, scientific com-
puting has become ubiquitous in scientific and engineering
applications. It leverages the exponential growth in computing
power of the last decades, and receives even more government
investment than quantum technology, given its essential role
in science, engineering, and innovation.

In the UK, HPC investments by the Engineering and
Physical Sciences Research Council totaled £466million over
10 years up to 2019 [35, 36]. This is anticipated to add
between £3 billion and £9.1 billion to the UK economy. The
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Figure 2. Quantum computing commercial landscape. Some examples of companies (blue) partnered with quantum tech companies
(orange) to advance QC research. Cambridge Quantum Computing (CQC) and Honeywell now merged as Quantinuum (red). We include
CQC, Honeywell and Quantinuum separately as some collaborations were formed before the merger in Dec 2021. Universities, research
institutes and government organizations not shown. Compiled by R Au-Yeung from press releases and publicly disclosed interactions with
end users.

European High-Performance Computing Joint Undertaking is
a e7 billion joint initiative between the EU, European coun-
tries and private partners to advance the HPC ecosystem
in Europe [37]. These examples show that governments are
willing to invest significant resources into developing com-
putational technologies that can provide numerous societal
and economic benefits. Future UK plans include a signific-
ant increase in digital research infrastructure across the whole
UKRI remit [38] to enable all disciplines to take advantage
of computational and data based methods in their research,
including quantum computing, when it can offer an advantage.

1.1. Scope of this review

Scientific computing has a broad reach across applications,
so this review necessarily has to select which areas to
focus on. We choose two important applications: electronic
structure calculations as used in computational chemistry,
materials, and life sciences; and fluid dynamics simulations,
important across all length scales from cells to cosmology. In

computational chemistry, the hard problems are fully quantum
and therefore natural for quantum computers [11]. In fluid
dynamics, the problem is purely classical, the hardness stems
from the need to solve nonlinear differential equations. It is
less clear that there will be substantial quantum advantages
here, although there are multiple interesting proposals for pos-
sible quantum algorithms. Our chosen applications make up a
significant fraction of current HPC use. Between them, they
are diverse enough to offer insights for other areas of compu-
tational science and engineering simulations. Althoughwe dis-
cuss quantummachine learning (QML) techniques relevant for
chemistry and fluid simulations, the wider field of ‘big data’
and AI is outside the scope of this review. There are indeed
potential quantum enhancements in AI, but they merit their
own dedicated reviews (see, e.g. [39]).

In this review, we begin by describing the concepts behind
quantum computers and giving examples of important found-
ational quantum algorithms in section 2. For conciseness, we
minimize the amount of mathematical detail where possible.
Interested readers are encouraged to consult references such as
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[40, 41] for details, and refer to the original papers for proofs.
There are already many excellent reviews that cover differ-
ent classes of quantum algorithms (see e.g. [42–44]), includ-
ing a ‘Quantum Algorithm Zoo’ website [45] which cites over
400 papers. In this review, we aim to emphasize the physical
mechanisms and qualitative insights into quantum algorithms
and their real-world applications. We will not discuss abstract
topics such as complexity analysis [46, 47] in depth. We also
cover some of the alternative quantum computing methods,
quantum annealing (section 2.4) for chemistry and materials
science simulations (section 3.2.6) and variational quantum
algorithms (VQAs) (section 2.5).We outline some of themany
proposed performance benchmarks for quantum computers in
section 2.7.

Next, we focus on our two example fields: quantum simu-
lation of quantum chemical systems (section 3), and quantum
algorithms for classical fluids simulation (section 4). We sum-
marize the current (classical) methods and shortcomings, then
explore how quantum computers may improve performance.
With the theoretical potential established, we turn to the prac-
tical challenges of how to combine quantum components into
HPC architectures in section 5. This includes the clock speed
mismatches. and how to encode classical data into quantum
states. Finally, we summarize and set out future research dir-
ections in section 6.

There are other important topics on the road to prac-
tical quantum computing that already have their own reviews.
These include: quantum error correction (QEC) [48, 49]; veri-
fication and testing [50, 51] (we only cover benchmarks in
section 2.7); and comparisons between different hardware and
software platforms available on the market [23]. Quantum
annealing has been well-reviewed recently: Hauke et al [52]
cover methods and implementations while Yarkoni et al [53]
focus on industrial applications of optimization problems.

Despite numerous publications hyping the quantum revolu-
tion (see, e.g. [1, 54, 55]), it pays to read the fine print [56–58].
The methodology in [59] is an instructive example of how to
fairly and objectively evaluate different use cases. This helps
to avoid evaluations that focus on the positives and ignore
weaknesses. A key message from the IQM-Atos 2021 white
paper [60] is that HPC centres must create a long-term stra-
tegic plan to successfully integrate quantum computing into
their workflow. In particular, they recommend establishing a
three-step roadmap:

(i) Gap analysis and quantum solution identification (now).
Where are the bottlenecks in classical HPC? How can we
improve the solution accuracy?

(ii) Quantum solution design and integration (mid-term).
What quantum methods can we use to resolve the issues
identified in gap analysis? How do we integrate this into
HPC architectures?

(iii) Quantum computing use-case development and imple-
mentation (long-term). Which applications and problems
can get the most benefit from quantum speedup?

Our review provides an introduction to the tools and topics
needed to make such plans.

Table 1. Notation in our paper.

Notation Description

a, A Scalar, can be real or complex; greek letters often used
for complex scalars

a(t), A(t) Scalar function defined in terms of variable t
a⃗ Vector, contains elements a⃗0, a⃗1, . . .
A Matrix
|a⟩, |A⟩ Quantum state vector (with scalar label is usually a

basis state)
|ψ⟩ General quantum state vector (with greek letter label)
Â Quantum operator
j, k Index in vector or sum
i Imaginary unit

√
−1

2. Designing quantum algorithms

Developing useful quantum algorithms is extremely chal-
lenging, especially before quantum computing hardware is
widely available. It is like building a car without having a road
or fuel to take it for a test drive. Since quantum computing has
a different logical basis from classical computing, it is not as
straightforward as taking a successful classical algorithm and
mapping it to the quantum domain. For example, a classical
CNOT gate makes a copy of a classical bit. In quantum the-
ory, the no-cloning theorem [61] states that it is impossible to
make copies of unknown quantum states.

In this section, we outline the basic concepts underpin-
ning quantum computing. Then, we describe some existing
quantum algorithms that can potentially be adapted for prac-
tical scientific applications. To avoid confusion, we use the
notation in table 1 to differentiate between different quantities.
These include operators (hats), matrices (bold font), vectors
(arrows), scalars and functions (italics), and bra-ket notation
for quantum states.

2.1. Universal quantum computers

The most widely used model for quantum computing is the
gate or circuit model. The basic unit of quantum informa-
tion is the quantum bit (qubit), a two-state system. Qubits are
the quantum analogue of classical bits. They are two-level
quantum systems that represent linear combinations of two
basis states

|ψ〉= α|0〉+β|1〉 (1)

where α,β ∈ C and |α|2 + |β|2 = 1. In vector notation, we
usually choose

|0〉=
[
1
0

]
, |1〉=

[
0
1

]
. (2)

Multiple qubits can be entangled, forming systems with an
exponentially large state space of sizeN= 2n for n qubits. This
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Figure 3. Bloch sphere representation of qubit state |ψ⟩ with
examples of gate operations.

corresponds to the tensor product of matrices, for example,

|0〉⊗ |1〉=


0
1
0
0

 . (3)

The superposition property means that an N-qubit system can
represent 2N states whereas classical bits represent only one
state at a time (a singleN-bit string).We visualize single qubits
using a Bloch sphere (figure 3). To perform calculations, we
manipulate the qubit state using (reversible) gate operations.
These are analogous to the classical logic gates, such as AND,
OR and NOT.

Gate operations are unitary operators applied to the qubits.
Applying such an operator Û to a qubit state, then its con-
jugate transpose Û† brings the qubit back to its original state
(ÛÛ† = 1). Gate operations can be written as matrices which
act on the state vectors (see examples in table 2). The build-
ing blocks of the transformations are 2× 2 and 4× 4 unitary
matrices on single qubits and two qubits respectively. As in
classical computing, any computation can be built up from a
small set of universal gates. A universal gate set includes at
least one entangling gate acting on two or more qubits, and
one or more single qubit rotations. The subset of gates that are
efficiently classically simulable and thus not sufficient for uni-
versal quantum computing are known as Clifford gates, and
can be generated by the Hadamard, CNOT and a π/2 phase
gate S=

√
Z. The single qubit Pauli gates (X, Y, and Z) are

included in the set of Clifford gates. The addition of a T gate

Table 2. Examples of commonly used quantum gates. Middle
column uses circuit notation where horizontal lines represent qubits.
Boxes, crosses and dots indicate the gate applied. Time flows from
left to right. Right-hand column shows the matrix representation for
acting on computational basis states, (2).

One-qubit gate Circuit symbol Matrix

Pauli-X or NOT (bit
flip)

[
0 1
1 0

]
Pauli-Z (phase flip)

[
1 0
0 −1

]
Hadamard (create
superposition)

1√
2

[
1 1
1 −1

]
T gate

[
1 0
0 eiπ/4

]
Phase shift

[
1 0
0 eiϑ

]
Z-rotation

[
e−iφ/2 0

0 eiφ/2

]
Two-qubit gates Circuit symbol Matrix

CNOT (flip target
qubit if control qubit
is |1⟩)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


SWAP (swap two
qubit states)


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



or a Z-rotation with a well-chosen angle is sufficient to gen-
erate universal quantum computing. Symbols for diagramatic
representation of quantum circuits are also shown in table 2.

2.2. Quantum computing stack

As with classical computers, we can decompose the quantum
computer architecture in terms of its various levels of abstrac-
tion, called the ‘stack’. In gate-based models, this extends
from the user interface and compiler down to the low-level
gate operations on the physical hardware itself (figure 4).
At the highest levels, quantum algorithms give instructions
for solving the numerical problem. Compiling and translat-
ing quantum gates in the middle levels (software stack) com-
press the algorithms to accelerate performance, while error-
correction techniques mitigate quantum hardware errors. The
lower levels comprise the quantum computer’s building blocks
(hardware) for manipulating and storing qubits [62].

Inside a quantum computer, physical qubits are physical
devices that behave as two-level quantum systems. They are
usually not perfect, and error correction [48] is designed to
combine groups of physical qubits into one or a few logical
qubits with lower error rates. This is implemented at a low
level in the stack, so that users can work with near perfect
logical qubits in a quantum algorithm. Many physical qubits
are needed for QEC procedures [49] to produce one logical
qubit to perform useful computations. Engineering qubits in
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Figure 4. Quantum computer architecture among some sub-fields
of quantum computation. Reproduced with permission from [62].
Copyright © 2013 Owner/Author.

real physical hardware is highly challenging. The require-
ments for scalable quantum computing laid out by DiVincenzo
[63] are still relevant today: scalable, well-characterized
qubits; the ability to initialize the qubits; long decoherence
times; a ‘universal’ set of quantum gates; and the ability to
measure the qubits.

For example, Reiher et al [64] examine the cost of perform-
ing quantum simulations to find the potential energy landscape
of a quantum chemical structure (FeMoco, more details in
section 3.3.2). They estimated 313 physical qubits are needed
for each logical qubit, if there is one error for every 109

quantum gates. By extension, we would likely need thousands
of physical qubits per logical qubit, or much better error rates,
for complicated real-world quantum chemistry simulations. In
the rest of our review, we will discuss in terms of logical qubits
unless otherwise stated.

2.3. Foundational quantum algorithms

In this section, we introduce some foundational quantum
algorithms which can be adapted or used as components in
quantum algorithms for a wide variety of applications. They
also illustrate how quantum algorithms can provide powerful
speed ups over classical algorithms for the same problems.
For readers seeking a comprehensive graduate-level introduc-
tion, we recommend [40, 41, 65] plus IBM’s Qiskit software
documentation [66].

2.3.1. Quantum Fourier transform (QFT). The QFT is a
key subroutine in many quantum algorithms, most promin-
ently Shor’s factoring algorithm [13]. The QFT operation

changes the quantum state from the computational (Z) basis
to the Fourier basis. It is the quantum analogue of the dis-
crete Fourier transform and has exponential speed-up (com-
plexity O((logN)2)) compared to the fast Fourier transform’s
O(N logN) complexity for problem size N. The QFT performs
a discrete Fourier transform on a list of complex numbers
encoded as the amplitudes of a quantum state vector. It stores
the result ‘in place’ as amplitudes of the updated quantum state
vector.Measurements performed on the quantum state identify
individual Fourier components—the QFT is not directly use-
ful for determining the Fourier-transformed coefficients of the
original list of numbers, since these are stored as amplitudes
(see section 5.2 for more details on quantum encoding).

When applying the QFT to an arbitrary multi-qubit input
state, we express the operation as

ÛQFT =
1√
N

N−1∑
j,k=0

e2π i jk/N| j〉〈k| (4)

which acts on a quantum state in N-dimensional Hilbert space
|x〉=

∑N−1
k=0 xk|k〉 and maps it to |y〉=

∑N−1
j=0 yj| j〉. This is a

unitary operation on n qubits that can also be expressed as the
complex N×N matrix

FN =
1√
N



1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωN−1

1 ω2 ω4 ω6 . . . ω2(N−1)

1 ω3 ω6 ω9 . . . ω3(N−1)

...
...

...
...

. . .
...

1 ωN−1 ω2(N−1) ω3(N−1) . . . ω(N−1)2


(5)

where ω = e2π i/N and N= 2n. Note that the Hadamard gate
(table 2) acts as the single-qubit QFT. It transforms between
the Z-basis states |0〉 and |1〉 to the X-basis states

|±〉= 1√
2
(|0〉± |1〉) . (6)

Figure 5(a) shows the quantum circuit for the QFT oper-
ation. Each multi-qubit gate block can be decomposed into a
sequence of single or two-qubit gates. For example, the Bk+1

block is written in terms of controlled operations involving
two qubits (figure 5(b)). The Bk+1 gate is applied to the last
k+ 1 qubits. All controlled-R gates are diagonal matrices
and commute,

RN =

[
1 0
0 e−2π i/N

]
. (7)

So the order in which they are applied does not change the
outcome. The bit-reversal permutation matrix Pn can first be
written in terms of bn/2c swap gates (figure 5(c)). Since each
swap can be implemented with three CNOT gates, Pn requires
b3n/2c CNOT gates. Hence the QFT requires O(n2) element-
ary gates in total.

The semi-classical nature of the QFT circuit means it can
be efficiently simulated on classical computers [68, 69] when
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Figure 5. Quantum Fourier transform operation on n qubits. QFT = FN , (5). [67] John Wiley & Sons. © 2020 John Wiley & Sons Ltd.

used at either the start or end of a quantum computation. The
idea is to measure a qubit, then use the result to produce a
classical signal which controls a one-qubit transformation on
the next qubit before it is measured, and so forth.

2.3.2. Quantum phase estimation (QPE). Kitaev’s QPE
algorithm [70] is a core component of many quantum
algorithms and an important technique in algorithm design.
While the standard procedure is based on the QFT circuit, vari-
ous improvements can reduce the dependence on QFT while
retaining its accuracy by using, for example, approximations
to relax the QFT constraints [71] or a modified algorithm from
quantummetrology [72].We outline theQPE algorithm below.

The basic phase estimation problem is, given a unitary
operator

Û|ψ〉= λ|ψ〉. (8)

We want to find an eigenvalue λ of the eigenvector |ψ〉.
Because Û is unitary, the eigenvalue can be expressed as
λ= e2π iθ and the real aim is to estimate the eigenvalue
phase θ.

The phase estimation algorithm contains two main steps
(figure 6). In the circuit, the top register contains n ‘count-
ing’ qubits in state |0〉. The second register contains as many
qubits as needed to store |ψ〉, the eigenstate of Û. We apply a
set of Hadamard gates to the first register (this is equivalent to
a QFT on the all zeros state) and controlled-Û operations on
the second register with Û raised to successive powers of two.
The final state of the first register is

1√
2n

2n−1∑
k=0

e2kπ iθ|k〉. (9)

Figure 6. Structure of quantum phase estimation circuit, where
iQFT is the inverse of the QFT operation.

Applying the inverse QFT (iQFT) gives

1√
2n

2n−1∑
k=0

e2kπ iθ|k〉|ψ 〉 → |θ̃〉|ψ 〉 (10)

where θ̃ is an estimate for θ. The final stage is to read out the
state of the first register by measuring in the computational
basis. Hence, we estimate θ to n bits of precision.

QPE is equivalent to simulating quantum system dynamics.
Given an eigenstate |ψ〉, we can estimate the eigenvalue for
Hamiltonian Ĥ by applying Ĥ via the time-evolution operator
Û= e−iĤt. When the algorithm implements Ûk for increasing
powers k, this corresponds to evolving the system for increas-
ing times kt [73]. The phases θ are eigenvalues of time evolu-
tion operator Ûwhichwe canmap back on to the eigenenergies
E of Ĥ [73],

Û|ψ〉= eiĤt|ψ〉= e2π iθ|ψ〉, (11)

E= 2πθ/t. (12)

8
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Figure 7. Quantum circuit schematics for Shor’s algorithm.

Computational chemistry often requires finding the eigenen-
ergies, as they can help deduce many chemical properties
like ionization potential and equilibrium constants.We discuss
some of these applications in section 3.

The phase estimation circuit outputs an eigenphase as the
measurement outcomes of the top register. It also prepares the
corresponding eigenstate |ψ〉 in the lower register. This is a
useful starting point for calculating other observables besides
energy. Once we have the eigenstates and eigenenergies of
interest, we can understand how a (closed) system evolves in
time by decomposing the initial state into a sum of eigen-
states and evolving each eigenstate according to the phase
found in QPE. The final state is an interferometric sum of all
components.

There are two important performance metrics for the QPE:
maximum run time, and total run time over all repetitions
from each circuit in the algorithm. Maximum and total run
time approximately measure the circuit depth and total cost
of the algorithm respectively. The QPE algorithm in figure 6
is unsuitable for early fault-tolerant quantum computers since
these devices can only implement low circuit depths and lim-
ited numbers of logical qubits [72].

2.3.3. Shor’s algorithm. While Feynman’s 1982 arguments
[11] formalized the idea of using quantum computers to solve
quantum problems, what really caught people’s attention was
Shor’s prime factoring algorithm in 1994 [13, 74]. It provided
a way for large enough (future) quantum computers to break
RSA encryption [75], then considered unbreakable due to the
exponential computational cost of factoring large numbers.
RSA encryption works by multiplying two large prime num-
bers p and q. The product C= pq is so large that the computa-
tional cost of factorizing—and hence recovering the encrypted
message—is impractical. Shor’s algorithm showed that factor-
ing could be solved by quantum computers in polynomial time.

Shor’s factoring algorithm reduces the factorization prob-
lem into an order-finding problem. Given the modular expo-
nential function

f(x) = axmodC, 0< a< C (13)

where a is a random number coprime to C, the order-finding
problem involves finding the period r of function f (x). For an
even r and if ar/2 6=−1modC, at least one prime factor of C is
given by gcd(ar/2 ± 1,C).

There are two main components of Shor’s algorithm: mod-
ular exponentiation (calculating axmodC) and iQFT. Figure 7

shows a high-level circuit diagram of the algorithm. First we
initialize the registers: we use n= dlog2(C+ 1)e qubits to
store the number C. To extract the period r of f (x), we need
one register initialized as |0〉 and containing 2n qubits to store
values x, and another register initialized as |1〉 with n qubits to
store f (x).

Applying the Hadamard gate on the qubits in |0〉 pro-
duces a superposition state of all integers, such that |0〉 →∑2n−1

j=0 | j〉/
√
2n. Then the unitary Û associates each input jwith

the value a jmodC (13), for some random awhich has no com-
mon factors with C, to get

1√
2n

2n−1∑
j=1

| j〉|a jmodC〉. (14)

The first register is in a superposition of 2n terms | j〉 and the
circuit calculates the modular exponentiation for 2n values of
j in parallel. Next, iQFT on the first register gives

1
2n

2n−1∑
k=0

2n−1∑
j=0

e2π i jk/2
n

|k〉|a jmodC〉, (15)

where interference causes only k terms with integer multiples
of 2n/r to have a substantial amplitude. This is analogous to the
QPE in (9) and (10). Finally, measuring the first register gives
the period r. Ideally, the measurement outcome is an integer
multiple of 2n/r with high probability. We can then deduce r
classically, with continued fractions.

Note that Kitaev’s QPE algorithm [70] gives an alternate
derivation of Shor’s algorithm. It reduces the order-finding
problem to one involving phase estimation by essentially
replacing the unitary Û (figure 7) with a QPE subroutine.

Classical computers have to date factored semi-primes up
to 829 bits long [76]. Each extra bit doubles the classical com-
putational cost. However, quantum computers large enough to
beat this are still some way into the future. This is due to the
error correction overheads required to carry out the quantum
computation accurately enough [77].

2.3.4. Grover’s algorithm. Grover’s algorithm [14, 15] is
a technique for searching unstructured data. The canonical
example is finding the name corresponding to a given phone
number. It can be used as a building block in other applic-
ations, such as database search and constraint satisfaction
problems [78]. Suppose there are N items labelled by bit
strings x= 0 to N− 1, and there is a unique element x0 such
that f(x) = 1 if and only if x= x0. The quantum algorithm uses
n-qubit basis states |x〉 corresponding to the labels of the items,
with n= dlog2Ne.

Grover’s algorithm uses an oracle, which in computer sci-
ence is a mathematical device for providing part of the com-
putation that is not included in the analysis. Consequently,
Grover’s algorithm is only of practical use in situations where
we can perform the oracle function efficiently, i.e. f (x) can be
evaluated for a superposition of all possible inputs |x〉. This
can happen when the algorithm is used as a subroutine, but is
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Figure 8. Grover’s algorithm. (a) Initial state vector |d⟩ with angle ϑ/2. (b) Vector |d⟩ after inversion and reflection. (c) Final state
vector |ψ⟩.

not generally possible when the data are classical. The oracle
Ô = (−1)f(x) has the effect

Ô|x〉=

{
−|x0〉, x= x0
|x〉, otherwise.

(16)

Figure 8 illustrates in two dimensions the amplitude amp-
lification part of Grover’s algorithm, through inversion about
the mean. The initial state

|d〉= 1√
N

∑
x

|x〉 (17)

is an equal superposition of all |x〉. For large N, note that |d〉 is
almost orthogonal to the marked state |x0〉. In figure 8(a), the
small angle ϑ/2' 1/

√
N. The oracle Ô acts on only |x0〉 by

inverting the sign of its amplitude. Geometrically, Ô reflects
vector |d〉 about the horizontal axis. Then applying the Grover
operator

ÛG = 2|d〉〈d| −1 (18)

reflects Ô|d〉 about the axis defined by |d〉. Figure 8(b) shows
the action of Ô and ÛG. Since ϑ is a small angle, this achieve-
ment is modest. Solving for rϑ= π/2 gives an approximate
number of required iterations,

r=
⌊ π
2ϑ

⌋
=
⌊π
4

√
N
⌋

(19)

to reach the final state within ϑ/2 of |x0〉. The probability of
measuring |x0〉 is then better than 1− 1/N. Since the number
of iterations r in (19) scales as

√
N, Grover’s algorithm gen-

erally provides a square root speed up over a classical search,
which would need to check on average N/2 items to find x0.
There are alternative quantum algorithms that solve the search
problem, such as quantum walks [79] (section 2.3.6). These
are easily generalized to find multiple items [80] and are intu-
itive for graph-based search problems.

2.3.5. Quantum amplitude amplification (QAA). Grover’s
algorithm was subsequently generalized to the framework of
QAA [81]. We can understand QAA as an iterative process
that starts with a uniform superposition of all states. Then

the algorithm uses a generalization of the Grover operator to
increase the probability amplitude of some target state while
reducing all other probability amplitudes at each iteration.
Amplitude amplification is a valuable subroutine that appears
in many quantum algorithms. In the Harrow–Hassidim–Lloyd
(HHL) algorithm for solving linear systems (section 2.3.7),
the variable time QAA algorithm reduces the number of repe-
titions needed to obtain the correct solution, which reduces
the algorithm run-time [82]. QAA also appears in applica-
tions that involve optimization [83, 84], determining graph
connectivity [85], pattern matching [86], quantum counting
[87], and crypto-key search [88].

2.3.6. Quantum walks. In the last few decades, classical
random walks and Markov chains have generated powerful
new algorithms in computer science and mathematics [89].
They were thus a natural place to look for quantum equival-
ents. Early in the development of quantum algorithms both
discrete-time [90, 91] and continuous-time quantum walks
[92] were introduced with algorithmic applications in mind.
The first proven speed ups for quantum walk algorithms
came soon after, with a search algorithm [79] equivalent to
Grover’s algorithm [14] providing a quadratic speed up, and
an algorithm for transport across a particular type of dis-
ordered graph [93] that provides an exponential speed up with
respect to an oracle. There are many comprehensive reviews
of quantum walks and their applications, including [94, 95].

Quantum walks are widely studied for their mathemat-
ical properties, and for providing simple models of phys-
ical phenomena. In an algorithmic context, they provide
quantum speed up for sampling problems. The quantum
walk dynamics provide both faster spreading [91] and faster
mixing [90], but also localization. These are exploited in the
search algorithm [79]. The fast mixing dynamics can also be
exploited in a quantum annealing (section 2.4) context, see, for
example, [96].

Quantum walks also provide models of universal quantum
computing [97, 98], but they are not suitable for physical
implementation. Instead these are mostly useful for complex-
ity proofs. Quantumwalkswithmultiple non-interactingwalk-
ers and quantum particle statistics include the boson sampling
model [99], a computational model intermediate between clas-
sical and quantum computing. Quantum walks with multiple
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Figure 9. High level HHL circuit. Reproduced with permission from [104].

interactingwalkers [100] are a full universal model of quantum
computing. They are a special case of quantum cellular auto-
mata (see, for example, [101]) and can provide an alternative
physical architecture for quantum computing, most suitable
for neutral atoms in optical lattices [102].

2.3.7. Harrow-Hassidim-Lloyd (HHL) algorithm. In 2009,
Harrow, Hassadim and Lloyd [103] presented their eponym-
ous algorithm to solve one of the most basic classical prob-
lems in scientific computing. The HHL algorithm efficiently
calculates the solution x⃗= A−1b⃗ of the linear system Ax⃗= b⃗
for a sparse, regular N×N Hermitian matrix A. The hard part
of this problem is to invert A and obtain A−1. To see how a
quantum method might help, we present a high level descrip-
tion of the HHL algorithm. For further details and analysis, see
[41, 104].

We start with the ancilla, clock, and input registers
(figure 9). The HHL algorithm represents b⃗ as a quantum state
in the computational basis

|⃗b〉=
∑
j

bj|j〉. (20)

And stores it in the input register with the amplitude encoding
method (section 5.2). Then using Hamiltonian simulation, we
apply

Û= eiÂt (21)

to |b〉 for a superposition of times t determined by the clock
register. This step corresponds to QPE which expresses |b〉 in
terms of the eigenbasis |uj〉 of A and finds the corresponding
eigenvalues λj which are stored in the clock register. Now we
can express the system state as∑

j

βj|uj〉|λj〉 (22)

with βj = 〈uj |⃗b〉 and

|⃗b〉=
∑
j

βj|uj〉. (23)

Note that we do not know what the eigenstates |uj〉 are.

In the next step, we perform a controlled rotation on the
ancilla register with the clock register as the control. The pro-
cedure extracts the eigenvalues of A−1 by performing a σy
rotation, conditioned on λj. It is equivalent to the linear map,
|λj〉 → λ−1

j |λj〉. This transforms the system to

∑
j

βj|uj〉|λj〉

(√
1− c2

λ2
j

|0〉+ c
λj
|1〉

)
(24)

with normalization constant c.
The final step uses inverse QPE to uncompute the |λj〉 con-

tained in the clock register. This leaves the remaining state as

∑
j

βj|uj〉|0〉

(√
1− c2

λ2
j

|0〉+ c
λj
|1〉

)
. (25)

Measuring and post-selecting on the ancilla qubit being |1〉
outputs the state

|x〉= A−1|b〉 ≈ c
∑
j

βj
λj
|uj〉, (26)

so we have the solution amplitude encoded in the input register
as a quantum state. If the post-selection is unsuccessful and
the ancilla measurement outputs |0〉, we have to rerun the
algorithm.

There are many limitations of the HHL algorithm [58, 104].
Key examples include the requirement to be able to efficiently
prepare the state |b〉 by somehow loading the vector com-
ponents into the quantum computer. This may be easy if the
state is an output from another quantum subroutine but in gen-
eral this is not trivial. Additionally it must be possible to effi-
ciently implement unitaries of the form eiÂt to carry out QPE.
Moreover, the matrixAmust be Hermitian with unit determin-
ant, although this can be somewhat relaxed by virtue of the fact
that any non-Hermitian matrix can be padded into Hermitian
form and the determinant can be re-scaled. However, even if
these requirements are met, it is not possible to efficiently
recover the full solution |x〉. Instead, we may carry out further
processing to compute the expectation value of some operator
M̂, such as 〈x|M̂|x〉.

The importance of HHL for practical applications has led to
many improvements on the original algorithm, such as using
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time variable amplitude amplification to increase the success
probability during ancilla measurement [82]. This is a more
general case of amplitude amplification (section 2.3.5), bet-
ter suited to quantum algorithms where individual branches
finish at different times. Individual components, such as
Hamiltonian simulation in the QPE step (21), have also been
improved. QPE remains a bottleneck by requiring O(1/ϵ)
applications of a unitary operation to estimate its eigenvalues
to precision ϵ. Hence, even if we use the fastest Hamiltonian
simulation methods, the overall improvement would likely be
modest with total complexity still being polynomial in (1/ϵ).
One remedy involves directly applying the matrix inverse to
bypass the phase estimation subroutine. This can be achieved
by decomposing the inverse operator into a linear combina-
tion of unitaries (LCU) that are easier to apply, using Fourier
or Chebyshev expansions [105]. This approach exponentially
improves dependence on the precision parameter and has sub-
sequently found good use in applications ranging from accel-
erating finite element methods (FEMs) [106] to approximating
the hitting times of Markov chains [107].

Alternatively, HHL can be ‘hybridized’ into a quantum–
classical method. Given the resource limitations of NISQ-
era hardware, hybrid approaches will likely pave the way
for meaningful applications in the near future. For example,
an iterative-HHL approach [108] contains a classical iterat-
ive process to improve accuracy beyond the limit imposed
by number of qubits in QPE. However, the convergence rate
for more general cases remains uncertain. Other approaches
include streamlining the algorithm, such as using a classical
information feed forward step after the initial QPE to reduce
the circuit depth for subsequent steps in HHL [109]. Of course,
if the reduced circuit is not applicable, it would then require
repeatingQPE to determine an appropriate reduction. A hybrid
approach can achieve comparable precision to conventional
HHLwith fewer qubits andmultiple phase estimationmodules
[110]. It can also improve phase estimation itself to mitigate
the long coherence times [111].

Solving dense matrices, particularly relevant in machine
learning and kernel methods [112], has been tackled by
using quantum singular value estimation to gain a polyno-
mial advantage over traditional HHL approaches [113, 114].
There are many QML algorithms where HHL is an import-
ant subroutine, such as data classification using quantum
support vector machines [115], quantum principal compon-
ent analysis [116], or quantum linear discriminant analysis
[117]; quantum ordinary linear regression (QOLR) [118, 119]
and QOLR for prediction [120]; quantum ridge regression
[121]; quantum recommendation systems [122]; quantum sin-
gular value thresholding [123]; and quantum Hopfield neural
networks [124]. See section 2.5.4 for more on quantum neural
networks (QNN).

In a classical context, it is usually the complete solution
state that is the desired output from solving a system of lin-
ear equations. This could be the velocity at each point in a
fluid simulation for example. Thus, it is not immediately clear
how recovering the expectation value of some operator such
as 〈x|M̂|x〉 could be meaningful. Moreover, extracting the indi-
vidual components of |x〉 is a costly process that can severely

mitigate the inherent speedup offered by the HHL algorithm
[58]. Thus, while HHL has proven useful as a subroutine for
other quantum algorithms, direct application to classical prob-
lems requires detailed consideration of the bottlenecks associ-
ated with data transfer between classical and quantum realms
[125] (see section 5). Although for some configurations it is
possible to efficiently prepare the quantum state by exploit-
ing an underlying functional form [126], this is not always
possible and usually requires some knowledge of the problem
a priori.

2.4. Quantum optimization

Combinatorial optimization problems are widely encountered
across industry [53], academia [52], and medical science
[127]. Typically, the problem is to find the best of an expo-
nentially large set of solutions. Mathematically, a basic optim-
ization problem consists of the objective (cost) function which
is the output we want to maximize or minimize, the input vari-
ables, and optional constraints. Many optimization problems
can be expressed as quadratic unconstrained binary optimiz-
ation (QUBO) problems. These are encoded using an upper-
triangular N×N real matrix Q and vector of binary variables
x⃗. The aim is to minimize the cost function

f(x) =
∑
j

Qjj⃗xj+
∑
j<k

Qjk⃗xj⃗xk. (27)

Many cost functions contain a large number of false local min-
ima, making it difficult for classical algorithms to find the true
global minimum.

Classical simulated annealing [128] is based on the idea
that thermal fluctuations move the system out of local min-
ima and toward the lowest potential energy state as temperat-
ure decreases. The simulated annealing algorithm simulates a
random walker that travels through the search space or optim-
ization landscape. The rate at which the temperature is reduced
determines how fast the system evolves and how likely it is
to avoid becoming stuck in local minima. Quantum annealing
[129, 130] was conceived as an alternative that adds quantum
tunnelling to the system evolution, allowing it to escape from
local minima more easily. Figure 10 illustrates the quantum
annealing process.

Conveniently, classical optimization problems can be effi-
ciently mapped to finding the ground state of a classical Ising
Hamiltonian [132, 133]. This leads naturally to a quantum ver-
sion using the transverse field Ising Hamiltonian,

ĤIsing = A(t)
∑
j

σ̂xj︸ ︷︷ ︸
Ĥ0

+B(t)
∑
j,k

(
hjσ̂

z
j + Jjkσ̂

z
j σ̂

z
k

)
︸ ︷︷ ︸

Ĥp

(28)

with the Pauli x- and z-matrices σ̂x,z, symmetric interaction
strength Jjk = Jkj of qubit spins qj and qk, and on-site energy
hj. Note that the qubit spin basis states are |±1〉. There is a
straightforward translation fromQUBO x⃗ to Ising q⃗, using x⃗j =
(⃗qj+ 1)/2. The resulting values of the {hj,Jjk} variables then
encode the problem into the Ising Hamiltonian Ĥp.
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Figure 10. The full quantum annealing process from problem formulation to solution. The graphs illustrate how the initially uniform
distribution evolves under the driver Hamiltonian to concentrate in the global minimum representing the solution. Reproduced from [131].
CC BY 4.0.

The transverse field in the x-direction Ĥ0 provides the
dynamics that rotate the qubits from their initial state to
the final target state, ideally the ground state of problem
Hamiltonian Ĥp. The control functions A(t) and B(t) must be
specified. Usually A(t) varies from 1 to 0, and B(t) from 0 to
1. The choice of how they vary determines the method used to
find the ground state and hence the problem solution.

Adiabatic quantum computing (AQC), introduced by Farhi
et al [134] in 2001, uses the quantum adiabatic theorem
to guarantee that the system remains in the ground state.
It assumes that the control functions A(t) and B(t) are var-
ied slowly enough to keep the system in the instantaneous
ground state. A useful property of AQC is that it is inher-
ently robust against noise [135]. When used with more general
Hamiltonians than in (28), it is computationally equivalent to
gate-based quantum computers [136], making it a universal
quantum computing paradigm [137].

While AQC provides a sound theoretical underpinning
for quantum annealing, in reality, the adiabatic conditions
imposed by AQC are rarely met. Meeting them would require
long run times that are inefficient and impractical. At the
other extreme, continuous-time quantumwalk algorithms [92]
(section 2.3.6) can locate ground states for certain problems
[96] where it is viable to make many short repeats. Further
diabatic methods, which use other mechanisms with shorter
run times, are reviewed in [138]. Many of these, including

the quantum approximate optimization algorithm (QAOA) or
quantum alternating operator ansatz [139, 140] use classical
optimization in the controls to produce an efficient quantum
process. We describe QAOA in section 2.5.1 after introdu-
cing VQAs more generally. Exploiting the non-adiabatic and
open system effects in quantum annealing is the topic of
many recent efforts to derive efficient controls [141, 142]. For
more details, Albash and Lidar [43] provide a comprehensive
introduction to AQC and quantum annealing. Hardware cur-
rently available for quantum annealing includes superconduct-
ing systems, trapped ions, and Rydberg atoms (see [52] for an
overview).

2.5. Variational quantum algorithms (VQAs)

VQAs distribute the job of solving a problem between a para-
meterized quantum circuit (PQC) and a conventional clas-
sical optimizer. Figure 11 shows schematically how it works;
for a detailed recent review, see Cerezo et al [143]. The
quantum circuit is defined by a set of parameters θ⃗ that determ-
ine the quantum gates. We evaluate a classical cost function
C(θ⃗) that can be calculated from the measured outputs of the
quantum circuit. Classical optimization then updates the para-
meters θ⃗, guided by the cost function. Mathematically, the aim
is to minimize a linear cost function which typically takes
the form

13

https://creativecommons.org/licenses/by/4.0/


Rep. Prog. Phys. 87 (2024) 116001 Review

Figure 11. High level diagram of hybrid quantum–classical training
algorithm for variational circuit. Quantum device (yellow)
calculates terms of a cost function, then classical device calculates
better circuit parameters θ⃗ (blue, green). Repeat cycle until desired
accuracy is achieved.

C(θ⃗) = tr(Û(θ⃗)ρÛ†(θ⃗)Ĥ) (29)

with initial state ρ, trainable PQC Û(θ⃗), and Hermitian oper-
ator Ĥ. This general framework can be applied to a wide range
of linear optimization problems and extended to solve nonlin-
ear variational problems [144, 145]. Applications include our
chosen example of electronic structure for quantum chemistry
and materials science [146, 147], for which we present further
details in section 3).

The past years have seen rapid developments in the vari-
ational approach, and it is clear there are beneficial properties
for NISQ-era devices [143]. It is possible to use many separ-
ate repeats of a shallow (short) quantum circuit. This avoids
the need for long coherence times. Moreover, the variational
parameter tuning can compensate for several types of errors.
Suitable error mitigation strategies have been developed for
NISQ devices [148, 149] that can be integrated into VQA
circuits.

In this section, we discuss the most relevant VQAs for
computational science: the QAOA (section 2.5.1); variational
quantum eigensolvers (VQE) (section 2.5.2); and simulation
of quantum systems (section 2.5.3). We also briefly cover
QNNs in section 2.5.4. Then we outline some known limita-
tions common to all VQAs, due to noise and the barren plateau
problem (section 2.5.5), alongwith pointers to current research
to overcome these and extend VQAs in multiple directions.

2.5.1. Quantum approximate optimization algorithm (QAOA).
The QAOA was originally introduced to solve combinatorial
optimization problems [139] on gate-based architectures. This
was generalized as the quantum alternating operator ansatz
[140]. Instead of applying the full Hamiltonian Ĥ= ĤM + ĤP

continuously in time, the aim is to map some input state to
the ground state of a problem Hamiltonian ĤP by sequentially
applying the ansatz

Û(γ,β) =
∏
k

e−iβkĤMe−iγkĤP , (30)

with mixer Hamiltonian ĤM. The ansatz is applied in short
discrete steps, that approximate the continuous time evolu-
tion, with parameters θ⃗ = (γ⃗, β⃗) to be optimized. The full
Hamiltonian is often the transverse Ising Hamiltonian (28), i.e.
ĤM = Ĥ0, and ĤP = Ĥp, but the method can be applied more
generally to any Hamiltonian with non-commuting parts.

In-depth studies of QAOA performance [150, 151]
developed an efficient parameter-optimization procedure
to find high-quality parameters. This becomes increasingly
important as the depth and complexity of the QAOA circuit
increase. The original QAOA proposal suggests a random
selection of initial parameters within a range believed to be
close to the optimal parameters. However, this method can
often hinder the algorithm performance when the cost func-
tion landscape is rugged and contains numerous local minima
or barren plateaus (section 2.5.5). Blekos et al’s review [152]
outlines various methods that address QAOA optimization.
For example, we can provide a good initial guess [150] by
warm-starting initial parameters [153] or through parameters
transfer [154], or by developing a more efficient optimization
subroutine [155–158]. Other approaches involve exploiting
the problem structure and symmetries to enhance the optimiz-
ation process [159, 160].

Note that many proposed techniques rely on heuristics
and empirical observations rather than theoretical guarantees.
However, Brady et al [161] (building on the work of Yang et al
[162]) put the method on a sound theoretical base by showing
that QAOA converges to an optimal quantum annealing sched-
ule in the limit of many stages. Gerblich et al [163] used the
same methods to show that a sequence of quantum walks also
approximates optimal quantum annealing in the limit of many
stages, and shows better convergence for the same number of
stages. Each stage requires its own parameters to be optimized,
so it is helpful to minimize the number of stages to keep the
parameter tuning costs down. Most studies focus on the few-
stage regime where the theoretical results do not apply and are
thus based on numerical simulations. It is important to count
the optimization costs correctly to assess the full quantum cost,
since each round of classical optimization requires at least
one quantum run to evaluate the cost function. In a slightly
different setting (quantum annealing approximated by Bézier
curves), Schulz et al [142] show how ignoring optimization
costs can distort the apparent scaling in numerical results, and
they also show how to account for the optimization costs in the
full analysis, recovering the expected scaling.

2.5.2. Variational quantum eigensolvers (VQEs). VQEs
were originally developed to find the ground state energy of
molecules [147, 164, 165]. They have since been adapted to
solve a wider range of problems, including optimization [143,
166]. The cost function is defined as the expectation value of
the quantum state energy, 〈ψ(θ)|Ĥ|ψ(θ)〉. The aim is to min-
imize the expectation value of Hamiltonian Ĥ over a trial state
|ψ(θ)〉= Û(θ)|ψ0〉 for ansatz Û(θ⃗) and initial state |ψ0〉.
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The Rayleigh–Ritz principle states that the lowest eigen-
value of a Hermitian operator Ĥ is upper-bounded by the min-
imum expectation value found by varying the state |ψ〉. In
other words, the statement

〈Ĥ〉(θ⃗)≡ 〈ψ(θ)|Ĥ|ψ(θ)〉 ≥ E0 (31)

is valid with the equality holding if |ψ(θ)〉 is the ground state
|E0〉 of Ĥ. Hence, the optimized vector θ⃗ that approximates
the ground state (or eigenvector corresponding to the lowest
eigenvalue) is the choice that minimizes 〈Ĥ〉. Using this prin-
ciple, we can break down the VQE methodology into three
distinct steps, which are then repeated:

(i) Prepare a parameterized initial state as the starting ansatz
Û(θ⃗)|ψ0〉 using initial values of θ⃗.

(ii) Estimate expectation value 〈Ĥ〉(θ⃗) in the quantum pro-
cessor (this may require multiple runs using QPE).

(iii) Use a classical optimizer to find a new set of θ⃗ values that
decreases 〈Ĥ〉(θ⃗).

(iv) Repeat the above procedure to achieve convergence in
〈Ĥ〉(θ⃗). The final values of the parameters θ⃗ at conver-
gence define the desired state.

An application in quantum chemistry uses VQEs to gen-
erate PQCs which can be used to produce ansätze states
to approximate molecular ground states [147]. These are
an improvement over unitary coupled-cluster (UCC) circuits
[167] based on the coupled-cluster method in computational
chemistry, which are too deep to be easily implemented on
NISQ quantum computers. See section 3.2.5 for more details
and context. PQCs are composed of gates that are natural oper-
ations on the quantum hardware and hence more efficient than
standard quantum circuits.

2.5.3. Variational quantum simulation (VQS). Simulating the
dynamics of quantum systems is expected to be one of the
first useful applications of quantum computers. Variational
approaches make best use of limited quantum hardware
by optimizing the parameters classically. There are two
basic algorithms for VQS, specifically for solving real- and
imaginary-time evolution of quantum systems. These can be
described respectively by the time-dependent Schrödinger
equation

d|ψ (t)〉
dt

=−iĤ|ψ (t)〉 (32)

with Hamiltonian Ĥ and state |ψ(t)〉, and normalized Wick-
rotated Schrödinger equation

d|ψ(τ)〉
dτ

=−(Ĥ−〈Ĥ〉)|ψ(τ)〉, (33)

where τ =−it, and 〈Ĥ〉= 〈ψ(τ)|Ĥ|ψ(τ)〉 preserves the norm
of state |ψ(τ)〉.

The direct approach to quantum simulation is to apply a
unitary circuit e−iĤt to the initial state, using numerical integ-
ration. However, this increases the circuit depth polynomially
with respect to the evolution time t [168] which is difficult to
achieve in hardware with short coherence times. On the other
hand, variational quantum simulations use an ansatz quantum
circuit

|ϕ(θ⃗(t))〉= Û(θ⃗(t))|ϕ0〉 (34)

applied to an initial state |ϕ0〉 to represent |ψ(t)〉. Therefore,
we must choose the variational parameters to map the time
evolution of the Schrödinger equation for |ψ(t)〉 on to the evol-
ution of parameters θ⃗(t). The aim is to obtain a shorter circuit
than would be needed for direct simulation. How the paramet-
ers evolve and simulate the time evolution depends on the vari-
ational principle used [169].

The variational method for generalized time evolution can
also be used to perform matrix multiplication and to solve lin-
ear systems of equations [170]. It is an alternative method
to those presented in [114, 171], or the HHL algorithm
(section 2.3.7).

2.5.4. Quantum neural networks (QNNs). Artificial neural
networks (NNs) [172] allow us to classify and cluster large
datasets by training the parameters associated with the neural
connections. This is analogous to the learning process in the
brain. QNNs combine artificial neural networks with quantum
principles [173]. NNs are highly nonlinear models, whereas
QNNs obey the laws of quantummechanics and contain linear
operators acting on quantum states. QNNs can offload nonlin-
earities to classical computers, or use quantum kernels. The
latter option encodes classical data into Hilbert space using a
nonlinear transformation, the quantum feature map [174].

There are many different proposals for QNN architec-
tures, such as the fully quantum, feed-forward neural networks
[175], and convolutional neural networks [176]. Most QNNs
follow similar steps [177]: initialize a neural network architec-
ture; specify a learning task; implement a training algorithm;
and simulate the learning task.

There are similarities between QNNs and kernel methods
[174, 178], which are well-established machine learning tech-
niques. Kernel methods map the features of a dataset into a
high-dimensional space through functionϕ(⃗x), then uses a ker-
nel K(x1,x2) to measure the distance between two data points
in high-dimensional space. We observe the same behavior in
QNNs: when the features aremapped on to a high-dimensional
Hilbert space, we find the level of similarity between two
points in the space by calculating the overlap of two encoded
states.

For QNNs constructed using quantum circuits, the paramet-
ers that perform an accurate mapping are defined by a set of
gate operations [179], corresponding toV(θ) (figure 12). There
are typically three steps. First, encode the input data, which is
usually classical, into a quantum state using a quantum feature
map [180] ϕ, applied to the initialized qubits through unitary
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Figure 12. Example of quantum neural network using variational
quantum circuit.

operation Uϕ(x) (figure 12). The choice of feature map aims
to enhance the QNN performance.

Ûϕ(x)|0〉⊗n = |ϕ(x)〉. (35)

Second, we use a variational model parameterized by vector θ⃗
to transform the quantum state

|ψ(x, θ⃗)〉= V(θ⃗)|ϕ(x)〉. (36)

It contains parameterized gate operations that are optimized
for a particular task, analogous to classical ML techniques
[39]. The aim is to choose parameters θ⃗ to minimize a loss
function. Third, we measure an observable M̂. Classical post-
processing procedures on the measurement outcomes z⃗=
[z1,z2, . . .,zn] extract the output of the model,

f(⃗z) = 〈ψ(x, θ⃗)|M̂|ψ(x, θ⃗)〉. (37)

The main advantage of variational circuits actually arises from
the feature map: when Ûϕ(x) cannot be simulated efficiently
on classical computers, the overall quantum speedup can be
up to exponential.

Many types of QNNs have been proposed for different
types of data analysis, such as quantum Boltzmann machines
[181, 182] which are a natural fit for quantum annealing [183,
184] hardware, as are quantum support vector machines [185,
186]. Constructing QNN architectures is currently an active
area of research. For a concise review of QML, see [187] and
references therein.

2.5.5. VQA limitations and enhancements. VQAs are a very
active area of current research, and face a range of problems
(see [143, 187] for an overview). In general, there is a trade-
off between the expressivity and trainability of the circuit
[188]. Performance decreases significantly when qubit num-
ber and circuit depth increase. Using more quantum resources
to implement the ansatz results in greater expressivity of the
ansatz, which increases the likelihood of finding the cor-
rect solution [189–191]. However, large circuit depth means
the classical optimizer would receive noisy and potentially
unusable gradient information, which can lead to divergent

Figure 13. Ideal solution landscape (blue) corrupted by (a) noise
and (b) barren plateau, both orange.

optimization or barren plateaus [192, 193]. We illustrate these
two common problems in figure 13.

The barren plateau phenomenon occurs when the non-
convex loss function landscape becomes exponentially flat
(on average) as qubit number increases. At the same time,
the valley containing the global minimum also shrinks expo-
nentially with problem size, leading to a narrow gorge [194]
(figure 13(b)). The cost function gradient is exponentially sup-
pressed except in an exponentially small region. For cost func-
tions in (29), barren plateaus can be caused by circuit prop-
erties Û(θ⃗) such as its structure and depth [192, 193, 195],
expressibility [188, 196] and entanglement power [197–199].
The effects on parameter optimization can potentially destroy
any quantum speedup.

There have been considerable efforts to understand andmit-
igate the effects of barren plateaus, for a review, see Larocca
et al [200]. These include building shallow circuits [193,
201, 202], developing gradient free algorithms [203], using
error mitigation techniques [204, 205], and developing more
sophisticated state preparation strategies when initializing the
variational parameters [206–208]. Others have presented the
mathematical foundations for a unified Lie algebraic theory
to explain the sources of barren plateaus and quantify the
ultimate expressiveness of parameterized circuits [209, 210].
There is also ongoing work to develop a more general barren
plateau theory [211].

In addition, there have been considerable efforts in design-
ing suitable ansätze. Quantum architecture search (QAS)
dynamically designs optimal ansätze for VQAs [212–214].
Given a search space (possibly constrained by quantum
hardware properties), performance criteria, and the under-
lying problem, QAS aims to automatically find an optimal
quantum circuit with parameters θ⃗ ′ that maximize the VQA
performance. For VQEs, there are approaches which con-
struct variational models constrained to a (smaller) symmetry-
respecting solution space to preserve the problemHamiltonian
symmetries [215–217]. This results in smaller circuits more
suitable for NISQ hardware. This has been extended to QML
models [218–220].

Quantum optimal control (QOC) theory [221, 222] has also
inspired work into finding connections with VQAs [223]. For
example, the quantum-optimal-control-inspired ansatz [224]
goes beyond symmetry-preserving methods by introducing
a set of unitaries that break the symmetries of the problem
Hamiltonian.
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2.6. Quantum software

As well as quantum hardware, making use of quantum com-
puters also needs new software at various levels of the quantum
computing stack, see figure 4. This includes programming
languages, compilers, operating systems, and low level clas-
sical control software. Quantum software start up companies
are promising seamless integration into existing programming
languages, such that you will not need to know you are using
a quantum computer. HPC users will be well aware that this
is hype. Good performance is only achieved with some con-
sideration of how best to map an application to the hardware.
For large scale HPC, this is increasingly becoming a profes-
sional team effort, requiring research software engineers spe-
cialized in tuning applications to the specific HPC hardware it
is running on. This is especially true for using GPUs, and for
task scheduling to ensure all available compute nodes are kept
busy. Since adding QPUs to HPC increases the hardware com-
plexity, we can expect to need the same level of professional
team support to fully leverage future large scale quantum com-
puters. Nonetheless, current quantum computers that are avail-
able for use in the cloud have not yet reached this level of com-
plexity, and writing and executing test bed applications is well
within reach of the average computational scientist or engin-
eer. There are many tutorials available: each available platform
provides its own, and there are guides and open source code
for specific applications, see, for example, [225] for optimiz-
ing crystal structures on D-Wave Systems.

Currently available commercial quantum computers tend to
use Python modules for the user-level programming language,
and provide simulators, compilers and optimizers specific to
their platform. In particular, Qiskit from IBM [66] is open
source and has been adapted for other platforms such as ion
traps and neutral atoms. As one of the first online services,
IBM has the most comprehensive set of online resources,
and also provide a visual drag and drop interface for creat-
ing quantum circuits, which is especially suitable for pedago-
gical uses. Programming gate by gate is very low level, about
equivalent to assembler code for classical computers, despite
the high level interface. This is indicative of the early stage
of development of quantum hardware with only tens or hun-
dreds of qubits, where circuit optimization by hand is still pos-
sible. Indeed, hand optimization will tend to beat the auto-
mated compilers for specific applications (the automated com-
pilers are generic), and is necessary to obtain optimal per-
formance from the limited capabilities of NISQ systems. On
some platforms (including IBM), it is even possible to experi-
ment at the hardware pulse control level to optimize quantum
gate operations. Equivalently low level control is used for non-
circuit model hardware, such as quantum annealers, where the
programming consists of mapping the problem to the hard-
ware settings (fields and couplers) and shaping the annealing
schedule. Higher level tools to map the problem to the hard-
ware graph across 5000 qubits are available [226, 227], but
do not necessarily beat a hand-crafted assignment for specific
problems.

There are are several software start ups specializing in oper-
ating systems and control software designed to operate equally

well on multiple platforms and provide a similar interface
regardless of the underlying hardware, even recommending
the best choice if multiple platforms are available. While we
are still some way from this being viable for using quantum
computers, the automated lower level control techniques are
showing promise when integrated correctly [228]. Meanwhile,
those who are ready to be quantum computing pioneers will
find ample support and opportunities online, while those who
prefer to wait for the next advances can be assured that soft-
ware at an appropriate level will be available, either commer-
cially or open source, when the hardware is ready.

2.7. Performance benchmarks: quality, speed, scale

Benchmarking for high performance computers is well estab-
lished, and essential for managing HPC facilities and optim-
izing their throughput. For example, the High Performance
Linpack benchmark [229] solves a dense linear system to
measure the throughput of a computing system. Running the
same computational tasks on different HPC hardware can
provide some level of side-by-side comparison of different
facilities. However, the results from standard benchmarks can-
not fully predict performance for a specific application, and
bespoke tests are often run to tune performance on a per-
application basis.

Benchmarks for quantum computers are under active devel-
opment. Fair comparisons of quantum hardware are evenmore
challenging than for classical hardware, given the diverse
types of qubits under development. Hardware based on super-
conducting qubits [230, 231] is arguably the most popu-
lar choice [232, 233], followed by ion-trap-based systems
[234–236]. Semiconductor-based spin qubits [237, 238] are
less advanced but potentially offer more scalability in future.
Photonic platforms [239, 240] require less stringent cooling
regimes but other aspects of the engineering (e.g. single photon
sources and photon loss) are challenging. Neutral atoms, espe-
cially using highly excited Rydberg states [241], are versatile
and already showing impressive results for directly simulat-
ing quantum many-body systems [242, 243]. Further types of
hardware are under active development, and it is not clear yet
which will prove the most useful and scalable in the long term.

The criteria for good quantum computer hardware are fairly
straightforward [63]. It must have as many high quality qubits
as possible. Qubits must be individually controlled to gener-
ate complex (entangled) states. We must be able to apply a
large number of sequential operations before the qubits lose
coherence. The control and gate operations are characterized
by the quality of single- and two-qubit gates. Scaling up to
obtain good performance on large numbers of qubits requires
error correction [48, 49] to be implemented in the hardware.
This needs mid-circuit measurements to be possible, as well
as measuring the qubit states at the end of the computation.

2.7.1. Low- and high-level benchmarks. Low-level bench-
marks measure the performance of individual qubits,
single- and two-qubit gate fidelities, state preparation and
measurement operations. We can often directly measure the
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T1,2 decoherence times, gate speed or gate operation reliability
(gate fidelity). However these characteristics do not provide
an accurate benchmark of quantum processor performance.
Using low-level benchmarks alone can label a slow high-
fidelity quantum computer as equivalent to a fast low-fidelity
quantum computer [244].

For more thorough testing of gate operations, there is ran-
domized benchmarking [245, 246], cycle benchmarking [247],
or gate set tomography [248]. Efficient methods to verify the
output state are now available [249], when the expected state is
known. Randomized benchmarking protocols typically char-
acterize the quality of Clifford operations, which are classic-
ally simulable (see section 2.1). For non-Clifford operations,
random circuit sampling and direct randomized benchmark-
ing can be used [250, 251]. These methods may not be scal-
able to large numbers of qubits as it is difficult to classically
simulate non-Clifford operations to check the test outcomes.
A class of methods that aims to circumvent this issue is mir-
ror benchmarking [252, 253]. The trivial ideal output of the
circuits involved in these benchmarks makes the results easily
verifiable and scalable to large numbers of qubits.

At a slightly higher level, specific quantum circuits can
be used to test hardware performance for gate sequences.
The circuits can be random, application-agnostic circuits [254,
255], or circuits run as part of certain algorithms [256–258].
Other types of gate sequences can be used including iden-
tity operations and entanglement generation circuits [259]. For
non-gate-based hardware, a generalized form of randomized
benchmarking can be used, for example in programmable ana-
logue quantum simulators [260].

Qubit layout and connectivity constrain the implementa-
tion of gate sequences and hence affect algorithm efficiency.
Some types of hardware (e.g. neutral atoms [241]) can eas-
ily be reconfigured between runs. Other platforms, such as
superconducting or semiconductor qubits have connectivity
baked in at the manufacturing stage. Algorithm- [261] or
application-level [262, 263] benchmarks are thus important for
a full understanding of hardware performance. Such bench-
marks require knowing the ideal output in order to evalu-
ate the solution quality. In some cases, analytical solutions
are available for suitable problems. For example, the one-
dimensional Fermi–Hubbard model is exactly solvable using
the Bethe ansatz [264]. For a comprehensive assessment of
performance, there are benchmarks comprising a suite of
many different applications (e.g. [265–267]). Most include
well-known algorithms such as the QFT (section 2.3.1), QPE
(section 2.3.2), Grover’s search algorithm (section 2.3.4),
VQE (section 2.5.2), the Bernstein-Vazirani algorithm [46],
and the hidden shift algorithm [268]. In general, device per-
formance on simple problems or circuits may not scale [262].
It is also necessary to define suitable high-level success cri-
teria, e.g. for quality [256, 269].

It is instructive to test at both low and high levels because
extrapolating from low level performance to higher level
is unreliable. Cross-talk errors can dominate and these are
not captured by lower level tests using only one- or two-
qubit gates. Even at a higher level, there may be large

differences between performance on random and structured
circuits [255, 262].

Determining whether an actual computation has run cor-
rectly requires verification. Classical verification methods are
becoming increasingly sophisticated for larger, more com-
plex problems (see, for example, [270]). Verifying quantum
computations [51], especially for NISQ hardware, requires
some extra tools, such the accreditation scheme of Ferracin
et al [271] for gate-based computations, which has been exper-
imentally implemented [272]. Accreditationmakes use of sim-
ilar tools to low-level benchmarking, like mirror circuits, to
quantify the errors and hence assign a confidence level to the
correctness of the output of the computation, which has been
run alongside the test circuits. Accreditation has been extended
beyond the circuit model to certain types of quantum simula-
tion and quantum annealing [273].

2.7.2. Quantifying quantum device performance. Various
combinations of benchmarks have been proposed as metrics
to capture the performance of quantum computers in a single
number or a few parameters. Most of these use fairly low level
benchmarks. For example, quantum volume is a benchmark
developed by IBM [254] to test hardware performance for
gate sequences. Quantum volume is calculated by running ran-
domized square circuits with different numbers of qubits. The
quantum volume is given by the largest square circuit that can
be run on the device which passes an acceptance criterion that
quantifies the output quality. It has been generalized to more
realistic non-square circuits [269, 274].

Metrics such as circuit layer operations per second
(CLOPS) [275], layer fidelity [276], and qubit number have
been proposed to collectively quantify the quality, speed, and
scale of quantum computers. Single-number metrics are useful
to make cross-device comparisons straightforward, but sim-
ilar to classical metrics, they may not accurately describe
quantum computer performance for all kinds of algorithms.
In a non-gate model setting, McGeoch [277] has proposed
guidelines for reporting and analyzing quantum annealer
performance.

As well as accuracy, it is also important to measure how
quickly the quantum processor can execute layers of a para-
meterized model circuit similar to those used to measure
quantum volume. Increased quantum processor speed is crit-
ical to support near-term variational algorithms, which require
thousands of iterations. Some benchmarks evaluate speed as
a sub-score and combine it with other factors to determine
a final metric [263]. There also exist standalone metrics for
speed [275]. Lubinski et al [262] note that evaluating meas-
ures of speed for comparing different platforms is difficult.
Timing information (when available at all) is reported differ-
ently by different hardware vendors, and gate speeds natur-
ally vary by several orders of magnitude between hardware
types (see section 5). Another time-related factor is consist-
ency, or how the performance varies over time. This determ-
ines how often hardwaremust be recalibrated. Consistency can
be captured by repeating the same tests, and is an important
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consideration for current hardware which requires significant
downtime for regular recalibration.

The above methods (section 2.7.1) and metrics
(section 2.7.2) are useful for benchmarking hardware depend-
ent characteristics. On top of this, the compilers and software
stack efficiency can significantly affect performance, in much
the same way as classical HPC requires highly tuned software
to optimize performance. Quantum software benchmarking is
still at an early stage of development, but there are indications
it will be critical for making quantum hardware useful, see for
example, [228].

2.7.3. Quantum circuit simulation methods. In the current
NISQ era, simulating quantum circuits is important for mul-
tiple purposes. Simulations of ideal quantum circuits allow
quantum algorithm development and testing in a more reli-
able environment than quantum hardware currently provides,
albeit limited to about 45 qubits in full generality due to the
exponential size of Hilbert space in qubit number. Several
benchmarking tools (e.g. [251, 278]) require knowledge of
the ideal circuit outputs produced by such simulations, to
verify the outputs of the quantum hardware. Further examples
of tensor network-based benchmarking methods include the
holoQUADS algorithm [279, 280] and qFlex [281].

Classical simulation also establishes a classical compu-
tational bar that quantum computers must pass to demon-
strate a quantum advantage. It is important to carry out clas-
sical simulations as efficiently as possible, so that reports
of quantum advantage are not exaggerated. One of the main
tests used to claim a quantum advantage from a NISQ device
involves sampling the bit-strings from a random quantum
circuit (RQC) [282]. The result must be within some vari-
ational distance of the output distribution defined by the
circuit [281, 283] to pass the test. Challenges to Google’s
supremacy claims [1] used tensor network simulation methods
[284–286] to develop efficient classical simulations for imper-
fect hardware. Decoherence and other errors in the hardware
means it can only generate entanglement over a limited range
[287]. This allows sufficiently accurate classical simulations
of larger numbers of qubits to be performed. The tensor net-
work contraction method is one of the best classical methods
for simulating RQCs for sizes close to the quantum advant-
age regime [288, 289]; for recent reviews and tutorials, see,
e.g. [290–292].

2.7.4. Measuring quantum advantage. It is not straightfor-
ward to determine exactly when a quantum computer provides
a practical advantage over a classical computer. The latter
are benchmarked using FLOPS, which measure the num-
ber of floating-point operations per second. The equivalent
speed benchmark for quantum processors is CLOPS (see
section 2.7.2) which measures the number of CLOPS. It does
not make sense to convert between the two metrics, since they
do not correspond to the same unit of computation.

Demonstrating a quantum advantage at the level of whole
algorithms also highlights the difference between theoret-
ical computational complexity and practical implementation.

Many QML algorithms make different assumptions from the
classical algorithms they are compared with [58]. In some
cases, it is possible to find ‘dequantized’ versions of QML
algorithms [293]. These are fully classical algorithms that
process classical data and perform only polynomially slower
than their quantum counterparts. If a dequantized algorithm
exists, then its quantum counterpart cannot give an exponen-
tial speedup on classical data. Many QML algorithms rely on
pre-processed data via quantum encoding. Breakthroughs that
claim a quantum speed-up often neglect the quantum encod-
ing step in the algorithm runtime, while making comparis-
ons to classical algorithms that operate on raw, unprocessed
data. This means it is often possible to achieve equivalent
speed-ups using only classical resources, if we perform the
same pre-processing for classical algorithms. For example, the
pre-processing in [294] allows us to apply ‘dequantized’ clas-
sical sampling techniques to the data, and achieve a signific-
ant speedup over previous classical methods. We discuss the
issues around encoding classical data into quantum systems in
more depth in section 5.2. On the other hand, dequantization
shows how replacing quantum linear algebra algorithms with
classical sampling techniques can potentially create a clas-
sical algorithm that runs exponentially faster than any other
known classical algorithm [294]. Quantum-inspired classical
algorithms that provide a significant improvement on current
best methods are a useful benefit from quantum algorithm
research, if they turn out to be practical to implement on clas-
sical HPC.

Comparing state-of-the-art quantum computers with the
best classical algorithm for the same problem is not enough to
establish a quantum advantage. For the RQC used in Google’s
claim of quantum supremacy [1], classical algorithms had not
been optimized for the problem: it is not a useful problem
and there was little research on it. Subsequent work brought
down the classical runtime by some orders of magnitude
[284–286]. Similar advances have occurred with boson
sampling [295–297].

Current research predicts a narrow window in terms of the
number of qubits where circuit model NISQ hardware can
potentially outperform classical hardware for certain problems
[298]. Larger numbers of qubits need longer gate sequences
for the same algorithm. Errors inevitably build up and render
the computation unreliable without active error correction.
Recent proof-of-concept studies of QEC [299, 300] begin to
show errors suppressed for extended gate sequences, herald-
ing a new era of fault tolerant quantum computing.

3. Quantum simulation for quantum systems

Simulating quantum systems on classical computers has long
been known for the exponential explosion problem, where the
size of the quantum state space (Hilbert space) increases expo-
nentially with the number of qubits. This limits the size of full
classical simulations to a state space equivalent to around 45
qubits (245 complex numbers). For quantum systems with a
larger Hilbert space, this means the simulation is constrained
to a subspace that may not be large enough to reveal the full
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Table 3. Compare digital vs analogue quantum simulation.

Analogue Digital

Hamiltonian Directly implement system Hamiltonian by
experimentally building a controllable quantum system
(simulator).

Express Hamiltonian in second quantized form, then
construct Hamiltonian out of quantum logic gates.

System vs simulator System may be completely different from simulator,
e.g. using atoms in optical lattices to simulate electrons
in a crystal.

Implements circuits containing quantum gates,
therefore has same level of technical difficulty as
quantum computer.

Physical model Needs to match the simulator Hamiltonian within the
available experimental controls.

In principle, any quantum system can be simulated
using digital (universal) quantum simulation.

Hardware Easier to implement for certain problems well matched
to the simulator hardware. Likely to become
practicable before universal quantum computers
become available.

Requires high depth circuits (many quantum gates)
therefore unlikely to be practical before fully error
corrected quantum computers are available.

behavior. This can be overcome by using quantum simulation
[11]: we use some controllable quantum system to study the
model of another less controllable or accessible system. The
method is especially relevant for studying quantum many-
body problems [301] in condensed matter physics, atomic
physics, and quantum chemistry. For authoritative reviews,
see [16, 17, 302]. We first provide a brief overview of meth-
ods for quantum simulation, then, to provide a focus for a
more in depth assessment, we provide a more detailed account
of quantum computational chemistry and the prospects for
quantum computers to advance this and related fields.

3.1. Quantum simulation methods

Quantum simulation can be implemented using quantum com-
puters (digital quantum simulation), or with analogue devices
(analogue quantum simulation) that are not necessarily as
powerful as universal quantum computers and therefore are
easier to build. An example of an analogue quantum simu-
lator is the ultracold atomic systems often used to simulate
condensed matter physics [303, 304] and quantum chemistry
[305]. A comparison of the relative merits of the different
methods is summarized in table 3.

The basic task underlying most quantum simulations
involves time evolution under the system Hamiltonian. For
Hamiltonian Ĥ, the unitary operator Û(t) evolves the dynamics
for a time t,

Û(t) = exp

(
−i
ˆ t

0
Ĥ(t)dt

)
, (38)

using units where h̄= 1. For many physical systems, the sys-
tem Hamiltonian Ĥ can be written as a sum of terms that
describe local interactions,

Ĥ=
n∑

j=1

Ĥj. (39)

In analogue quantum simulation, the system Hamiltonian Ĥsys

is directly mapped [306] on to the simulator Hamiltonian
Ĥsys 7→ Ĥsim, and the time evolution proceeds under the nat-
ural Hamiltonian evolution of the simulator.

Figure 14. Conceptual diagram of universal simulator on digital
quantum computing device. [308] John Wiley & Sons. © 2019
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

In contrast, implementing Û(t) on a digital quantum com-
puter usually relies on numerical integration, i.e. breaking up
the evolution time into small steps of duration ∆t, taking care
to preserve the order of non-commuting operators. The first-
order Trotter–Suzuki formula gives

Û(∆t) = e−i
∑

j Ĥj∆t =
∏
j

e−iĤj∆t+O((∆t)2), (40)

and higher order approximations can also be used to improve
accuracy [307]. Digitizing Hamiltonian time evolution in this
way is often referred to as ‘Trotterization’. Acceptable preci-
sion comes at the expense of small ∆t, which requires many
quantum gates and hence extremely deep circuits, well beyond
NISQ capabilities for useful problem sizes.

Figure 14 gives a conceptual illustration of how to perform
quantum simulations on a digital quantum computer. A phys-
ical model describes the quantum state evolution of interest
Ψ(t); this evolution can be approximated to arbitrary precision
by mapping the given model to a spin-type Hamiltonian which
is easily encoded onto a qubit register. The sequence of unit-
ary operations to implement the time evolution using (40) or
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higher order variants can be programmed as a quantum circuit,
giving the approximated evolved state as output ψ(t) starting
from a given input state |ψ(0)〉. Themapping from the physical
system to qubits can then, in principle, be reversed to obtain
the desired physical output state. However, since the output is
a quantum state, not a classical description of it, in practice
various types of post-processing are usually required to com-
pute properties of interest (e.g. see section 2.3.2).

Although time evolution can be readily realized using
Trotter product formulas, accuracy requires many small time
steps, leading to very deep circuits. Recent work has demon-
strated that variational approaches can speed up the calculation
of Trotter terms [309]. Moreover, tensor network methods (see
section 2.7.2) can be used to generate quantum circuits that can
be more efficient than Trotterization [310].

One of the main classical methods for simulating quantum
systems beyond the constraints imposed by the exponential
size of Hilbert space is quantum Monte Carlo (QMC) [311–
313]. Instead of a full classical simulation, which would be
beyond the reach of HPC, individual quantum trajectories are
sampled to build up a statistical average of the properties of
interest.

The method requires large numbers of samples to achieve
reasonable accuracy, often on the order of millions of samples,
which can take hours or even days on current HPC. As well
as computational chemistry [313], QMC methods are widely
used in materials science [311], nuclear physics [314], and
condensed matter physics [315, 316].

In all fermionic quantum systems, QMC can suffer from
the ‘sign problem’ where enforcing fermion exchange statist-
ics leads to a lack of convergence in the QMC sampling [317].
This is where quantum simulators that can naturally repres-
ent fermionic properties are particularly promising [318, 319].
Quantum field theories are used to describe condensed mat-
ter many-body systems. Work on quantum simulation in this
setting, e.g. quantum algorithms [320], and analogue [321]
and digital simulators [322], has evolved into an experimental
field that has attracted the attention of particle and nuclear
physicists [323, 324]. In particular, after the first quantum
degenerate Bose and Fermi gases were experimentally created
[325, 326], these became a versatile analogue simulator to
study the behavior of condensed matter systems [327, 328].
The quantum gas microscope is another significant advance,
allowing research into quantum-degenerate gas phenomena
where particle indistinguishability plays a key role [318, 319].

Quantum field theory is also the main model used in HEP.
In 2016, the first full quantum simulation of a HEP experiment
demonstrated the creation of electron–positron pairs from
energy [329]. Gauge field theories are the underlying formal-
ism describing interactions among elementary particles in the
Standard Model, and can also be extended to physics beyond
the Standard Model. Quantum simulators can be used to study
gauge field theories and investigate non-perturbative dynamics
at strong coupling. Rapid advances in atomic, optical, molecu-
lar, and solid-state platforms [17] have given us analogue
quantum simulators to explore HEP models. Better HEP sim-
ulations may eventually help us understand difficult problems
like quark confinement and the properties of dense nuclear

matter, e.g. neutron stars. Bauer et al [324] provide a roadmap
of quantum simulations for HEP.

In the NISQ era, while we wait for digital quantum hard-
ware to develop, VQAs (section 2.5) have been shown to
produce meaningful results with shallow circuits and without
active error-correction procedures. There has been work on
simulating field theories, including finding the lowest lying
energy spectra of low-dimensional Abelian and non-Abelian
lattice gauge theories [146, 330, 331]. It is important to note
that many lattice gauge theory simulations on NISQ hardware
require fully or partially removing redundant degrees of free-
dom or imposing symmetries. Simplifications like these are
essential in the resource-limited NISQ era.

In the next sections, we provide a more detailed account
of the potential of quantum computers to advance quantum
simulation in quantum computational chemistry. Many of the
methods are more widely applicable, and can provide insight
for adjacent and related fields.

3.2. Quantum computational chemistry

One of the original motivations for the development of
quantum computers was to be able to accurately simu-
late and characterize systems of interacting fermions [332,
333]. Obtaining accurate solutions of the electronic struc-
ture of many-body systems is a major challenge in compu-
tational chemistry. Research has been carried out to develop
algorithms to solve the electronic structure problem using
quantum computers [334–336]. Fault-tolerant quantum com-
puters are predicted to solve the electronic structure problem
formany-body systems [337] in polynomial time, for example,
using the QPE algorithm [70, 73, 332] (section 2.3.2). It is pos-
sible that a quantum advantage exists even in the absence of a
clear polynomial scaling. A detailed overview of the state-of-
the-art methods developed in this field can be found in [337,
338]. In practice, the possibility of achieving an exponential
quantum advantage for quantum chemistry problems remains
controversial [339]. It is challenging for quantum simulations
to achieve quantum advantage over the best classical compu-
tations, given the decades of work already done on classical
methods for quantum systems. As classical algorithms con-
tinue to improve, quantum information processing has been
useful in developing advanced ‘quantum-inspired’ classical
techniques [340]. In this regard, we review new techniques
for classical and quantum hardware from different perspect-
ives. We cover a range of methods applicable to problems such
as ab initio simulations, Hubbard models, spin Hamiltonians,
interacting Fermi liquids, solid-state systems, and molecular
systems.

Modern computational chemistry aims to simulate
molecules and materials within 1 kcalmol−1 accuracy, which
is required to predict chemical phenomena at room temperat-
ure. Despite the tremendous progress in quantum chemistry
algorithms in the past century, such a level of precision can
only be achieved for small systems due to the polynomial scal-
ing (higher than O(x4) with system size x) of advanced compu-
tational chemistry methods [341]. Hence, current research has
a strong emphasis on developing hybrid quantum–classical
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and quantum algorithms; estimating quantum resources; and
designing quantum hardware architectures for simulations of
practical interest.

Another central quantity in statistical mechanics andmater-
ials science is the partition function. All thermodynamic
quantities of interest can be derived from the partition func-
tion, which then help us understand the behavior of many-
body systems. Calculating partition functions of physical sys-
tems is generally a #P-hard complexity class problem [342,
343]—both classical and quantum methods are unlikely to
provide exact solutions. Quantum algorithmic attempts to
estimate partition functions involve QPE [344] combined with
a quantum version of the Monte Carlo Metropolis algorithm,
and algorithms based on quantum walks (section 2.3.6)
[345, 346]. Hybrid quantum–classical algorithms [347] and
quantum-inspired algorithms [348] have also been proposed,
with quantum algorithms potentially capable of performing
better than classical ones.

Even with noisy hardware, the long-term impact of using
quantum simulation for quantum chemistry and materials is
promising. For example, Google’s Sycamore quantum pro-
cessor used a hybrid quantum–classical Monte Carlo method
[1] to calculate the atomization energy of the strongly cor-
related square H4 molecule. The results are competitive with
those of the state-of-the-art classical methods. The algorithm
relies on being able to efficiently prepare a good initial guess
of the ground state on the quantum hardware, which is a non-
trivial step.

Understanding the strengths and weaknesses of classical
algorithms can indicate where we may see a quantum advant-
age. It also indicates where issues may arise in quantum sim-
ulation approaches in the near and long term. For example,
Tubman et al [349] used classical simulations to provide
resource estimates for crucially important but often neglected
aspects of quantum chemistry simulations. These include effi-
cient state preparation for quantum methods such as phase
estimation. Sections 3.2.1–3.2.4 present an overview of tech-
niques in computational chemistry along with difficulties
encountered in modelling chemical systems. Sections 3.2.5
and 3.2.6 cover early applications of quantum computing
within computational chemistry. Section 3.3 discusses two
examples of chemical systems with industrial applications
that are beyond the capabilities of classical computational
chemistry methods.

3.2.1. Quantum chemistry’s many-electron problem. The
core objective of quantum chemistry is to solve the station-
ary Schrödinger equation for an interacting electronic system
in the static external field of the nuclei, which describes isol-
ated molecules in the Born–Oppenheimer approximation. The
problem can be defined as follows. There areN electrons in the
field of stationaryM point charges (nuclei). Electrons interact
only through electrostatic Coulomb terms and are collectively
described by a wave function with 4N coordinates x⃗j = (⃗rj, ω⃗j),
i.e. 3N spatial coordinates r⃗j and N spin coordinates ωj. The
antisymmetric electronic wave functions are solutions of the
time-independent Schrödinger equation

ĤΨ(⃗r) = EΨ(⃗r) (41)

where we describe the motion of the N electrons (j, k indices)
in the field of the M nuclei (A index) with Hamiltonian [338]

Ĥ=−
∑
j

∇2
j

2︸ ︷︷ ︸
=ĤK

−
∑
jA

zA
|⃗rj− r⃗A|︸ ︷︷ ︸

=Ĥe–n

+
1
2

∑
k̸=j

1
|⃗rj− r⃗k|︸ ︷︷ ︸

=Ĥe–e

(42)

in atomic units z. The Hamiltonian contains the kinetic term
ĤK, the electron–electron interaction Ĥe–e, and the electron–
nuclei interaction Ĥe–n. When there are two or more electrons,
we cannot solve the Schrödinger equation exactly. This is the
fundamental challenge of computational chemistry.

There are two main families of approximations to solve this
problem: Hartree–Fock (HF) [350] methods with refinements
and density functional theory (DFT) [351, 352]. Each has its
own opportunities for quantum enhancements. We summar-
ize the main methods and their limitations before discussing
potential quantum enhancements.

3.2.2. Hartree-Fock (HF) and the electron correlation prob-
lem. TheHF (mean-field) method [353] describes the poten-
tial experienced by each electron resulting from the average
field of all electrons. This means that the Ĥe–e term in (42)
is replaced by a mean-field potential to make the equation
solvable. However, this approximation does not accurately
describe the electron-electron correlation. Electron correlation
accounts for the fact that electrons do not move independently
in the average field of other electrons rather, their movement
is influenced by the instantaneous positions and motions of
other electrons. The particle exchange energy resulting from
the anti-symmetric wave function (i.e. Pauli principle)

Ψ(⃗x1, . . ., x⃗j, x⃗k, . . ., x⃗N) =−Ψ(⃗x1, . . ., x⃗k, x⃗j, . . ., x⃗N), (43)

means we cannot express the wave function as a separable
product of single-particle wave functions,

Ψ(⃗x1, x⃗2, . . ., x⃗N) 6= ψ1(⃗x1)ψ2(⃗x2). . .ψN(⃗xN) (44)

where the spatial and spin parts are defined as ψj(⃗xj) =
ϕj(⃗rj)χj(ω⃗j). Instead, the HF method approximates the many-
body wave function with a Slater determinant

Ψ(⃗x1, x⃗2, . . ., x⃗N)

=
1√
N!

∣∣∣∣∣∣∣∣∣
ψ1(⃗x1) ψ2(⃗x1) . . . ψN(⃗x1)
ψ1(⃗x2) ψ2(⃗x2) . . . ψN(⃗x2)

...
...

. . .
...

ψ1(⃗xN) ψ2(⃗xN) . . . ψN(⃗xN)

∣∣∣∣∣∣∣∣∣ , (45)

where the set of {ψj(⃗xk)} are chosen to minimize the ground
state HF energy

E0 = 〈Ψ0|Ĥ|Ψ0〉. (46)

The wave function depends on the Hamiltonian, and, in turn,
the mean-field part of the Hamiltonian depends on the wave
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function. This means that the HF method must be solved iter-
atively using the self-consistent field (SCF) method. We start
from an initial guess for the wave function, build an initial
Hamiltonian, and then calculate the initial energy. We change
the wave function, update the Hamiltonian, and calculate the
energy until the difference between cycles is lower than a
defined threshold. The SCF method relies on the variational
principle, which states that the energy of any approximate
wave function is higher than or equal to the exact energy.
The final energy is the exact HF energy E0. This value is
always higher than the true ground-state energy because the
formalism cannot fully account for electron correlation effects.
Recovering the correlation energy is the main goal of post-HF
methods.

For small systems, such as atoms, the unknown ψ functions
in (45) can be solved numerically on a three-dimensional grid
of points. Larger systems require grids that are too dense to
reach convergence. Hence we express the ψ functions as a lin-
ear combination of a set of known functions, the basis set:

f(x) =
∑
j

cjχj(x). (47)

In practice, the basis set could be built from any type of func-
tion χj following two criteria: they should reproduce the beha-
vior of the electron density (the highest density should be
located at the atom positions, and they should monotonically
decrease to zero at an infinite distance from the nuclei) and
they should be easy to integrate. Among the most widely used
basis sets, there are Gaussian and Slater-type basis sets for
molecules [354] and plane waves for periodic systems [355].

Selecting the appropriate basis set is a critical considera-
tion. It is a balance between achieving the desired accuracy and
managing computational resources. Classical computer simu-
lations often employ extensive basis sets, which can provide
high levels of accuracy, including up to 30 functions per atom
[356, 357]. The computational capacity of classical computers
typically means that the basis set size is not the primary limita-
tion on accuracy. In contrast, NISQ devices impose limitations
on the basis set size due to hardware constraints [358], making
the basis set size a more significant factor affecting accuracy
as McArdle et al discuss in their comprehensive review [338].

3.2.3. Density functional theory (DFT). DFT [359] focuses
on the electronic density

n(⃗r) = N
ˆ

d1r1

ˆ
d2r2. . .

ˆ
dNrN|Ψ(⃗r, r⃗2, . . ., r⃗N)|2 (48)

rather than electron coordinates. DFT systematically maps
the many-body problem to a single-body problem through
the particle density n(⃗r) from which we calculate all other
observables.

The Hohenberg–Kohn (HK) theorem is at the heart of DFT.
It states that the system’s ground-state energy is uniquely
determined by the ground-state density n0(⃗r). The ground-
state wave function Ψ0(⃗r1, r⃗2, . . ., r⃗N) must both reproduce the

ground-state density n0(⃗r) andminimize the energy. Hence the
aim is to minimize the sum of kinetic, interaction and potential
energies

E0 [n (⃗r)]

= min
Ψ→n

〈Ψ|ĤK+ Ĥe−e + Ĥe−n|Ψ〉 (49)

= min
Ψ→n

〈Ψ|ĤK+ Ĥe−e|Ψ〉︸ ︷︷ ︸
=:F[n]

+

ˆ
d3r n (⃗r)v (⃗r) (50)

with HK density functional F[n]. We then minimize E0 with
a variational method using Lagrange multipliers to obtain the
Kohn–Sham equations [360],

−∇2

2
ψj(⃗r)+ veff(⃗r)ψj(⃗r) = ϵjψj(⃗r). (51)

The effective potential veff(⃗r) is defined as the sum of the
external potential (the interaction with the nuclei) vext(⃗r),
the Coulomb interaction among the electrons vH(⃗r), and the
exchange-correlation potential vxc(⃗r):

veff(⃗r) = vext(⃗r)+ vH(⃗r)+ vxc(⃗r). (52)

The exchange-correlation potential takes into account non-
classical effects such as the Pauli principle and the electron
correlation. This functional, which must be parameterized,
determines the quality of the result. DFT is system-specific
and does not reach the desired chemical accuracy. Similarly
to the HF method, it does not take into account direct electron
correlation, although this can be compensated for by the func-
tional. Additionally, this method has the disadvantage of self-
interaction, which occurs when each electron interacts with the
electron density generated by all the electrons, including itself.

Because DFT is based on the three-dimensional distribu-
tion of the electron density, it is possible to directly cal-
culate it on a three-dimensional grid around the atoms and
bonds that represent the electron density at different points
in space. However, in practical implementations, DFT fre-
quently uses auxiliary functions to discretize the electron dens-
ity on the grid. This approach ensures precise numerical integ-
ration, computational efficiency, management of exchange-
correlation functionals, and allows us to apply linear scaling
methods for larger systems. Consequently, DFT uses basis set
functions similar to those in HF theory.

3.2.4. Post HF methods. Since neither HF nor DFT fully
take into account the electron-electron correlation, the repuls-
ive force between the electrons must be added a posteriori.
Post-HF methods are more accurate than HF, but at greater
computational cost. For example, the full configuration inter-
action (FCI) method considers all possible electron configur-
ations (excitations) within the chosen basis set and gives the
exact solution of the Schrödinger equation within a basis set
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expansion [361]. The number of all possible occupancy com-
binations scales as O(NM) with N electrons andM basis func-
tions. It can only be performed on classical computers for
small systems. Another example is the Møller–Plesset per-
turbation theory [362] which takes the core terms ĤK + Ĥe−n

as an unperturbed Hamiltonian and treats the electron repul-
sion terms Ĥe−e as a perturbation. Applying the Rayleigh–
Schrödinger perturbation theory gives an approximate correc-
tion of the correlation energy to the HF energy. In comparison,
coupled cluster techniques [363] apply an exponential cluster
operator T̂=

∑
k T̂k containing k-fold excitation operators T̂k

to the HF wave function |Ψ0〉. We obtain the exact solution
eT̂|Ψ0〉 through perturbation theory. These methods can be
used for larger systems in their truncated form. For example,
instead of the FCI approach, we could consider a single excit-
ation to reduce the computational cost. However, this will also
decrease the accuracy of the final energy. Another approach is
to reduce the number of electrons and orbitals considered in
the CI expansion by selecting a complete active space (CAS)
where all excitations are considered. This approach relies on
the premise that chemical reactions primarily involve higher-
energy electrons. Although we may not obtain the exact total
energy, energy differences (such as those between reactants
and products) should account for the electron correlation.

The discussion above focuses on the simulation of
molecules. The same concepts apply when simulating crystal-
line materials when the basis set consists of plane waves [355]
or Bloch functions built from local orbitals [364]. Crystalline
orbitals, which are the periodic equivalent of molecular orbit-
als, are delocalized over the cell and, therefore, are difficult to
use in a CAS approach. One method to solve this problem is to
use theWannier single-particle electron basis [365]. A detailed
analysis of how these functions can be used in the context of
quantum algorithms can be found in [366].

3.2.5. Quantum algorithms for computational chemistry.
Quantum computing holds significant promise for enhan-
cing two primary categories of chemistry challenges: post-HF
methods and optimization/global minimum search tasks. Both
categories deal with the challenges of combinatorial explo-
sion. The former arises when encompassing all possible excit-
ations, as seen in the FCI approach, while the latter emerges in
scenarios where a multitude of configurations need to be eval-
uated, such as in determining the thermodynamic properties of
complex materials or the optimum folded structure of particu-
lar proteins. Efforts have beenmade tomap chemical problems
to quantum computing-based simulations [337, 367]; under-
stand the possible benefits of using quantum hardware [368];
and explore the possibility of QML [369]. It is worth noting
that the FCI method, while being a significant improvement
over HF or DFT for a given basis set, is still constrained in its
accuracy by the choice of basis set.

An additional challenge when simulating electrons arises
from their fermionic nature (half-integer spin). The need
for their wavefunction to be antisymmetric introduces non-
locality, affecting the mapping to qubits. The mapping process
starts from the second quantized form of the wavefunction,

where the computational basis state is represented by a Slater
determinant in Fock space. The most widely used methods
to map it to a qubit system are the Jordan–Wigner [370] and
Bravyi–Kitaev [371] mappings [372]. Both methods ensure
a one-to-one correspondence between electrons and qubits.
Therefore, the non-locality of the wavefunction manifests
itself in the operators, resulting in long strings of spin operators
that increase gate depth and potentially degrade performance
on NISQ devices. Although the Bravyi–Kitaev method aims to
reduce the length of these operators, it is more challenging to
implement and yields more complex quantum circuits, which
may be harder to optimize. Recent and innovative mapping
techniques, as discussed in [373, 374], achieve circuit lengths
that scale logarithmically with the number of fermions in the
system.

One promising research direction is to improve existing
quantum methods for estimating electronic ground-state ener-
gies, such as the QPE [73] (section 2.3.2) and VQEs [147]
(section 2.5) methods. The key difference between VQE and
QPE-based approaches is that QPE requires encoding the full
Hamiltonian into the unitary gates for the energy read-out
method. Hence, QPE requires a large number of qubits and
quantum gates [375, 376]. This complicated procedure is not
needed in VQE. In addition, while QPE assumes the ansatz has
a reasonable overlap with the exact ground state, VQE aims to
approximate the ground state by variationally optimizing a set
of parameters.

Ansätze widely used in quantum chemistry problems
include the UCC ansatz [167, 377], for calculating the ground-
state energy of a fermionicmolecular Hamiltonian. In theUCC
method, we expand a reference wavefunction on the basis of
molecular orbitals mapped to the qubit basis in a quantum cir-
cuit. Then, we apply a parameterized unitary operator to the
circuit, which produces a trial wavefunction. This procedure
encodes complicated electronic states in a small number of
qubits.

Variants of the UCC ansatz can reduce the circuit depth by
compiling the fermionic operators more efficiently [378–380].
The variational Hamiltonian ansatz prepares a trial ground
state for a given Hamiltonian by Trotterizing an adiabatic state
preparation process [381, 382]. The variable structure ansatz
optimizes the circuit structure itself by adding or removing
unnecessary circuit elements [383–385]. Hybrid ansätze off-
load some of the complexity from the quantum ansatz to a clas-
sical device [386, 387]. They are especially useful for exploit-
ing the classical simulability of the free-fermion dynamics.

The adaptive derivative-assembled pseudo-Trotter VQE
(ADAPT-VQE) approach [383, 384, 388] is another prom-
ising way to construct accurate wavefunctions and accurately
predict the ground state properties of chemical systems [389,
390]. ADAPT-VQE follows a dynamic strategy for select-
ing and refining the ansatz. It systematically expands the
electronic wavefunction to include the operators that con-
tribute significantly to the energy. This makes it well suited
for strongly correlated electronic systems. ADAPT-VQE pro-
duces hardware-friendly circuits with few entangling gates,
but the present technological limitations make it necessary to
consider variants of ADAPT-VQE to enhance its performance.
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Since quantum circuits can be simulated by tensor networks
[391], it is also possible to combine tensor network techniques
with a quantum ansatz [392, 393]. Alternatively, the deep
VQE divides the system into smaller subsystems and sequen-
tially solves each subsystem and the interaction between
them [394].

So far, gate-based quantum hardware has been the techno-
logy of choice for performing post-HF simulations. On NISQ
devices, FCI is suitable for small molecules such as H2 and
LiH [338], while, for larger chemical systems, an embed-
ding scheme is generally preferred. Embedding techniques are
well-established in classical computing for quantum chemical
systems, see for example [395] for an overview of common
approaches. The model system is typically divided into two
regions, an active region that is treated at a high level of the-
ory, using DFT or methods beyond DFT, embedded within
an environment or inactive (frozen) region. Different schemes
are available for embedding via systems of point charges,
molecular mechanical models [395], electronic density [396],
a density matrix [397] or Green’s function-based method
[398]. This approach has high potential to be used with
quantum computing systems, where quantum algorithms are
applied to the active region in the embedding model. For
example, Gao et al [399] selected an orbital active space
derived from an initial HF wavefunction to study the lith-
ium superoxide dimer rearrangement. The method incor-
porates relevant orbitals present in reactants, products, and
those involved in the transition state. In another instance,
Gujarati et al [400] chose active space orbitals from DFT
orbitals to study the water splitting reaction on magnesium
surfaces.

Performing calculations of the electronic excited-state
properties of molecules is another challenging area of research
[401]. This is relevant when wewant to simulate spectroscopic
experiments, non-equilibrium dynamics, light-matter interac-
tions and other excited-state based phenomena. Accurate sim-
ulations of these phenomena depend on precise calculations
of the ground and excited states for the system, specifically
the eigenvalues of the Hamiltonian operator. As discussed
above, the VQE can achieve this with high precision [402].
Furthermore, the quantum subspace expansion method [403],
which is an extension of the VQE, allows for the definition of
a subspace of low-energy excited states once the ground state
of the system is determined.

Quantum computers hold significant potential for the sim-
ulation of dynamic processes [404] such as chemical reac-
tions, the study of transition states, and molecular dynam-
ics. The most widely used approach relies on the Suzuki–
Trotter decomposition [307, 405] to break down the time evol-
ution into small steps that can be implemented on quantum
computers. This approach requires deep circuits and is there-
fore limited by the size of current NISQ devices. A dif-
ferent approach [406], based on the VQE, results in a sig-
nificant reduction in the gate count, but requires a large
number of measurements, which are only possible for small
systems.

3.2.6. Quantum optimization for chemical systems.
Quantum annealing (section 2.4) has been demonstrated to
be a valuable tool for solving optimization problems in chem-
istry, biochemistry [407] and materials science [225]. Given
a set of variables (for example, atom position in a solid solu-
tion lattice or bond angle in protein folding), the aim is to
find the configurations of those variables that correspond to
the lowest energy. The configuration space to explore is pro-
portional to

(n
k

)
with n variables and k possible values that

each variable can take. This configurational space rapidly
becomes impossible to sample using classical methods for
large values of n. Quantum annealing can offer an alternative
means of finding the lowest energy configurations by exploit-
ing quantum superposition and tunnelling (see Camino et al’s
[225] tutorial for more details).

Quantum annealers have also been used to solve the elec-
tronic Hamiltonian eigenvalue-eigenvector problem [408] and
to calculate excited electronic states [409] for biatomic and
triatomic molecules. In industry, researchers at Volkswagen
used D-Wave to calculate the ground state energies of H2 and
LiH as a proof-of-principle [410], where their mixed discrete-
continuous optimization algorithm found the lowest eigen-
state of the qubit coupled cluster method and used a quantum
annealer to solve the discrete part of the problem [411].
Menten AI used D-Wave to address the rotamer optimization
problem for protein design without major simplifications or
a decrease in accuracy [412]. GlaxoSmithKline studied the
mRNA codon optimization problem to help drug discovery
[413] using quantum annealers. Fujitsu developed a quantum-
inspired annealing machine to screen chemicals for materials
discovery [414].

Optimization can also be performed on gate-based hard-
ware when the problem is formulated as a QAOA prob-
lem (section 2.5.1). For example, the design of deuterated
molecules for OLED applications has been studied using an
approach that combines DFT-derived energies and VQE [415].

3.3. Important applications in industry

Quantum simulation will potentially solve many industrial
problems and bring about significant societal and envir-
onmental benefits. We give two examples in this section.
Researchers are using the Fermi–Hubbard model as an ana-
logue quantum simulator for high-temperature superconduct-
ors (HTS), specifically copper oxide compounds. On the other
hand, digital quantum simulation may help us understand how
to produce ammonia fertilizers using less energy intensive
processes.

3.3.1. High-temperature superconductivity. Theoretical
high-energy and condensed matter physics share common
fundamental concepts such as symmetry breaking, renormal-
ization group, and Feynman diagrams. Interesting phenomena
occur in strongly correlated electronic systems where several
physical interactions (spin, charge, lattice, and/or orbital) are
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Figure 15. Crystal structure of cuprate superconductor
YBa2Cu3O6+x. Reprinted (figure) with permission from [424],
Copyright (1994) by the American Physical Society.

simultaneously active. In particular, the discovery of HTS in
the 1980s [416, 417] launched decades of diligent efforts to
understand and use these compounds [418, 419].

The Bardeen–Cooper–Schrieffer (BCS) theory [420, 421]
introduced the idea of electron–hole Cooper pairs to explain
conventional low temperature superconductivity. However,
the pairing mechanism in unconventional (high temperat-
ure) superconductors is still unknown. These materials do
not conform to conventional BCS theory or its extensions.
Conventional superconductors are used in many application
areas such asMRImachines and high speed trains, but they can
only operate at relatively low temperatures. This severely lim-
its their wider use. One of the holy grails of materials science
is to develop superconducting materials that operate at room
temperature. This would revolutionize many technologies
[419]. In particular, room-temperature superconductors would
decrease the heat wasted from electronic devices and allow
them to run more efficiently. On a larger scale, HTS can
help achieve the International Energy Agency’s roadmap to
carbon-free economies [422] via nuclear fusion-generated
electricity [423].

Researchers have focused on the two-dimensional Hubbard
model as it is believed to capture the important behavior of
HTS [424, 425], specifically the cuprate superconductors (a
popular HTS) in the copper–oxygen planes (‘CuO2 planes’
in figure 15). Despite the Hubbard model’s apparent sim-
plicity, its theoretical properties are far from fully under-
stood. It is difficult to solve accurately as the model exhib-
its competing orders in its phase diagram where it is most

relevant to cuprates. The Hubbard model is also widely used to
benchmark numerical methods for strongly correlated systems
[426]. Quantum efforts include experimental work building
analogue quantum simulators of themodel using quantum dots
[427, 428] and ultracold atoms in optical lattices [429, 430].
Digital quantum approaches include VQE variants [217, 431,
432], while Google simulated the Fermi–Hubbardmodel using
digital superconducting quantum processors [433].

A state-of-the-art circuit-model algorithm for simulating
the two-dimensional Hubbard time dynamics on an 8× 8 lat-
tice requires roughly 107 Toffoli (CNOT) gates [434]. This
includes the overhead for fault tolerance, given the gate fidel-
ities of current and near-term hardware. A significant contri-
bution to the gate count comes from the phase estimation pro-
cedure. These large gate counts are corroborated by Clinton
et al [435], who estimate the resources to simulate the time
dynamics on a 5× 5 square lattice to ⩽10% accuracy require
50 qubits and 1243 586 standard two-qubit gates. This is an
optimistic estimate that assumes the effects of decoherence
and errors in the circuit can be neglected; the source of inac-
curacy is the approximations in the gate sequences.

There is much work to be done before we have a com-
plete microscopic theory of HTS [418, 419]. The combination
of theory, simulation, materials synthesis and experiment has
been crucial to progress in the last two decades. For example,
the breakthrough discovery of hydrogen-rich superconduct-
ors (super-hydrides) [436] may not have happened for another
century [437] had there not been significant advances in simu-
lation and algorithms for chemical structure prediction [438].
Similarly, numerical work to understand the two-dimensional
doped Hubbard model has relied on the lastest advances in
Monte Carlo methods [439, 440]. Experiments with ultracold
atoms in optical lattices have also proved promising [429, 441,
442] due to advances in quantum control with quantummicro-
scopes and other techniques [443]. Despite the lack of a clear
timeline onwhenwe can expect a fundamental theory for HTS,
researchers remain optimistic [437].

3.3.2. Fertilizers. Another strong motivation for quantum
simulation is to develop new materials and processes to
make significant environmental contributions. For example,
the Haber–Bosch process for producing ammonia (NH3) fer-
tilizers is one of the world’s most CO2-intensive chemical pro-
cesses, consuming up to 2% of global energy output [444] and
3%–5% of all natural gas generated globally [445].

The Haber–Bosch process turns nitrogen in the air into
ammonia-based fertilizer for crops, which in turn provide food
for about 40% of the world’s population. The natural bio-
logical process, nitrogen fixation, is a much more efficient
process: microorganisms that contain the biological enzyme
nitrogenase convert atmospheric dinitrogen (N2) to ammo-
nia under ambient conditions. Despite almost a century of
research, the reaction mechanism is still unexplained [446,
447]. Understanding how this enzyme works would be an
important step towards replacing the Haber–Bosch process
and creating less energy-intensive synthetic fertilizers,
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Figure 16. Nitrogenase enzymes convert atmospheric dinitrogen
into ammonia. The process involves transferring multiple electrons
and protons to dinitrogen and uses multiple metalloclusters found in
the nitrogenase enzyme, including the 4Fe–4S cluster (top left), P
cluster (top right) and Fe-Mo cofactor M cluster (bottom).

The transition metal compounds within the enzyme poten-
tially hold the answers. These are the ‘4Fe–4S’ cluster (con-
taining iron and sulfur), ‘P cluster’ and the iron molyb-
denum cofactor ‘M cluster’ (FeMoco, containing iron, molyb-
denum, carbon, hydrogen, and oxygen) [448] (figure 16). The
FeMoco active space contains 54 electrons in 108 spin orbit-
als. Proposed computationalmodels of FeMoco are beyond the
reach of current classical methods but are possible with small
error-corrected quantum computers.

As an initial study to develop simulation methods, Reiher
et al [64] used a Trotterization approach to simulate the active-
spacemodel of FeMoCo. Their algorithm had T-gate complex-
ity scaling as approximately O(N2S/ϵ3/2), with Hamiltonian
sparsity S and error rate ϵ, and required over 1014 T gates. This
corresponds to roughly 108 physical qubits if implemented in
the surface code [449] with gates at 10−3 error rate. Their work
focused on counting and reducing the required number of T
gates. In practical error-correcting codes such as the surface
code, these gates require significantly more time to implement
than any other gate and require a large number of physical
qubits for implementation. This work was followed by Low
and Chuang’s [168] qubitization approach. They reduced the
gate cost estimates by several orders of magnitude to roughly
four days on a fault-tolerant quantum computer equipped with
4× 106 physical qubits [450].

Qubitization is particularly promising for reducing the
computational costs of digital quantum simulation [376, 451],
which largely depends on how the input Hamiltonians are
accessed by quantum computers. While simulations typic-
ally use sparse matrices [452] or LCU [453, 454], Low
and Chuang’s standard-form encoding [168] is much more
general and includes sparse matrices and LCU as special
cases. Qubitization uses the fact that whenever the encoded

Hamiltonian Ĥ contains an eigenvalue λ, the standard-form
encoding operation contains a 2× 2 block

[
λ −

√
1−λ2

±
√
1−λ2 ±λ

]

on the diagonal, with respect to a basis determined jointly
by Ĥ eigenstates and the encoding [168]. Different λ val-
ues produce different 2× 2 blocks, which are analogous
to single-qubit rotations or reflections, hence the name
‘qubitization’. This spectral relation builds on earlier work
such as Szegedy’s quantum walk [455, 456] and quantum
Merlin–Arthur amplification [457], but the formulation by
Low and Chuang [168] is more suitable for quantum
simulation.

Google and collaborators [458] recently attempted to calcu-
late the energy states of the nitrogenase 4Fe–4S cluster on their
Sycamore quantum computer. However, simulations contain-
ing over 300 gates were overwhelmed by noise. The authors
concluded that quantum circuit based quantum computers may
not provide much advantage over classical computers until
they incorporate noise reduction and/or full QEC methods.
These results are both exciting and daunting: quantum compu-
tational chemistry and materials science has made great pro-
gress over the last decades, but [458] also shows how much
work is still ahead.

4. Quantum algorithms for classical simulation

High-performance computing is used for modelling large-
scale systems in many socially and economically import-
ant areas, including weather forecasting, cosmology, plas-
mas, coastal engineering, real time traffic management, and
many other applications. These models often have analytically
intractable non-linear partial differential equations (NLPDEs)
at their core, with a large number of variables in two or
more dimensions. Classical numerical solvers for NLPDEs
have been an active area of research for decades [459–
461]. Finite difference, volume, and element methods; spec-
tral Galerkin methods; and neural networks are commonly
used. The latter are particularly suitable for (approximately)
solving high-dimensional PDEs [462, 463]. Given the large
amounts of HPC resources used to solve NLPDEs, improved
algorithms are highly important and the subject of signi-
ficant research investment. For example, NASA’s Quantum
Artificial Intelligence Laboratory aims to show how quantum
algorithms may dramatically improve the agency’s computa-
tional problem-solving ability [464–466]. The HHL algorithm
[103] (section 2.3.7) can be used in regimes where it is suffi-
cient to take a linear approximation of the NLPDEs. For many
applications, it is crucial to model the nonlinear effects more
accurately. In this section, we focus on one of the most com-
mon NLPDEs, the Navier–Stokes (NS) equation for computa-
tional fluid dynamics (CFD), but the quantum algorithms can
be readily adapted to other NLPDEs.
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Figure 17. Examples of numerical methods for simulating CFD problems: finite volume method (FVM), element-based finite volume
method (E-FVM), finite element method (FEM), finite difference method (FDM), particle-in-cell (PIC), moving-particle semi-implicit
method (MPS), particle-based FEM (P-FEM), smooth particle hydrodynamics (SPH), and lattice Boltzmann (LBM).

4.1. Solving the Navier-Stokes (NS) equations

In CFD, the aim is to solve the NS equations which describe a
flow of pure gas or liquid (single- or multi-phase flows)

∂u⃗
∂t

=−u⃗ ·∇u⃗︸ ︷︷ ︸
advection

−∇p+ 1
R
∇2u⃗︸ ︷︷ ︸

viscous diffusion

(53)

with continuity equation

∇· u⃗

{
= 0, incompressible flow,

6= 0, compressible flow.
(54)

Velocity u⃗(⃗r, t) and pressure p(⃗r, t) fields are functions of time
t and spatial coordinates in continuous space r⃗. The Reynolds
numberR describes the ratio of inertial force to viscous force
(viscous diffusion).

The NS equations consider the contribution of all forces
acting on an infinitesimal element of volume and its surface.
Given a certain mass of fluid in a region of space, two types of
forces act on it: volume (forces outside the region) and surface
(internal forces arising from fluid interactions via the bound-
ary surfaces). The NS equations are a system of three balance
equations (PDEs) of continuum mechanics which describe a
linear viscous fluid. Under this umbrella, Stokes’ law (kin-
ematic balance) refers to the specific case of force on a moving
sphere in fluid, and Fourier’s law (energy balance) is a funda-
mental law of the material.

A straightforward approach to solving the NS equations is
direct numerical simulation (DNS) [467]. DNS directly dis-
cretizes the NS equations and relies on using a mesh size that
provides resolution at all scales of turbulent motion, includ-
ing Kolmogorov length scales. Thus, there is no need for any
subgrid modelling in order to capture turbulent flow dynamics,

and an exhaustive description of the fluid is available through-
out the domain. However, this understanding comes at high
computational cost due to the requirement of a sufficiently fine
mesh. DNS is too costly to use in most industrial problems and
instead is generally relegated to more fundamental research.
Hence, this fuels the need for alternatives, better suited to real
world applications.

Recent progress in machine learning techniques includes
methods to replace some of the expensive time evolution in
fluid simulation. Physics-informed neural networks (PINNs)
[468, 469] are trained to solve supervised learning tasks con-
strained by the PDEs’ physical laws, while respecting the con-
servation laws in fluid mechanics [470, 471]. This allows us to
develop a more general predictive model for different prob-
lems. See [472–474] for a pedagogical introduction.

Figure 17 summarizes some methods for solving the NS
equations which form the basis of many commercial software
packages [475]. These include mesh-based methods such as
the FDMs, FVMs and FEMs. Mesh-based models divide a
continuum domain into smaller subdomains where the subdo-
main size is varied depending on the level of detail required
around that region. Despite their success in science and engin-
eering problems, mesh-based methods encounter difficulties
at free surfaces, deformed boundaries, moving interfaces, and
extremely large deformation and crack propagation. It is time-
consuming and expensive to generate quality meshes for com-
plicated geometries. For example, in FDM, irregular or com-
plex geometries usually require additional transformations
(e.g. mesh-rezoning [476]) that are more expensive than dir-
ectly solving the problem itself, and may introduce numerical
inaccuracies.

In contrast to more established and mostly mesh-based
codes, the smoothed particle hydrodynamics (SPH) method
offers a viable alternative, especially for flows with a free
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Figure 18. Schematics of two-dimensional D2Q9 LB model showing nodes (grey), collision and streaming processes under temporal
evolution. Colors represent direction vectors e⃗k where k corresponds to different directions in D2Q9.

surface [477]. SPH is a purely Lagrangian approach that dis-
cretizes a continuum using a set of point particles. It has
become popular in the last few decades as a way to simu-
late a wide range of applications, e.g. in engineering [478]
and astrophysics [479, 480]. Another relatively new approach,
the lattice-Boltzmann (LB) method [481, 482], combines both
mesh- and particle-based methods. LB is an advance on lat-
tice gas automata that overcomes the convergence problems of
directly using particles on grids. Both SPH and LB have inter-
esting potential for quantum algorithms or quantum–classical
hybrid enhancements. We discuss both in turn, first sum-
marizing the classical method, then explaining the proposed
quantum algorithms.

4.2. Lattice Boltzmann (LB) method

LB is a mesoscale approach based on the Boltzmann equation.
It naturally bridges microscopic phenomena with the con-
tinuummacroscopic equations and accommodates a wide vari-
ety of boundary conditions [481, 482]. LB has good scalabil-
ity for solving PDEs due to its algorithmic locality, hence is
inherently suited for large-scale parallelization on HPC sys-
tems, including on GPUs [483–485].

The LBmethod considers a typical volume element of fluid
that contains a collection of particles [486]. These are char-
acterized by a particle velocity distribution function for each
fluid component at each grid point. At discrete time steps,
fluid particles can collide with each other as they move, pos-
sibly under applied forces. The particle collision behavior is
designed such that their time-averagemotion is consistent with
the NS equation. The fluid is treated as a group of particles
that have only mass and no volume. Particles flow in several
directions of the lattice and collide with the particles around
them. LB uses the collective motion of microscopic particles
to describe the macroscopic parameters such as velocity, pres-
sure, and temperature according to kinetic theory.

We use the Lattice Bhatnagar–Gross–Krook notation to
describe lattice structures: theDnQb classification indicates an
n-dimensional space where each particle collides with b sur-
rounding particles (including itself). For example, the D2Q9
lattice in two-dimensional space contains a particle labelled
c0 which collides with the surrounding particles in eight direc-
tions (figure 18). Particle movement is described in two steps:
collision and streaming. In the collision step, particles col-
lide with the opposite particles along each axis, changing the

velocity. In the streaming step, particles move in the velocity
direction to the neighboring lattice. The evolution equation is

fk(⃗x+ e⃗k, t+∆t)− fk(⃗x, t) = Ω( f eqk (⃗x, t)− fk(⃗x, t)) (55)

with collision term Ω, fluid distribution fk(⃗x, t) at point x⃗ at
time t, and equilibrium distribution f eqk . At the next timestep
t+∆t, the fluid would be at point x⃗+ e⃗k. The direction vector
is e⃗k where k represents the nine different directions in D2Q9.
Each node is connected to its nearest neighbors with differ-
ent colored vectors, denoted as e⃗k. (Not shown in the figure is
one e⃗k pointing to the node itself.) Every fk moves along its e⃗k
vector to its neighbor and replaces the neighbor’s distribution
fk′ , except the one pointing to the node itself. In practice, the
D2Q9 lattice requires up to several million nodes to generate
an accurate flow field.

A common theme in LB applications is their suitability for
parallel computing [487, 488]. This is primarily due to the
intrinsic locality of the method. For each time step, both the
collision and streaming operators only require communica-
tion between neighboring cells at most. Recent research has
focused on parallelizing and optimizing the computation using
heterogeneous acceleration devices such as GPUs. The idea
is to divide the LB lattice and group the distributions fk into
arrays according to their velocity vectors ek (figure 19(a)). The
first iteration starts with the distributions as inputs to calculate
the density and velocity outputs. These quantities allow us to
find the equilibrium distributions. New distributions are then
computed from the input distributions and the equilibrium dis-
tributions according to the collision and the streaming opera-
tions. Finally, the boundary and outflow conditions are used
to update the distributions. The updated distributions are then
used as inputs for the next simulation step. For further details,
see [489]. Example open-source software platforms include
OpenLB [490] and Palabos [491].

4.3. Quantum lattice Boltzmann (QLB)

Early exploration of quantum methods for CFD used quantum
lattice gas models [492] and ‘type II quantum computers’
[493]. Both contain several quantum nodes connected by clas-
sical channels that carry bits instead of qubits [494], while
the latter are mathematically equivalent to a classical LB
formulation [495]. These lattice models are susceptible to
noise, non-isotropic advection and violation of Galilean invari-
ance. Recently, a revised quantum algorithm for lattice gas
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Figure 19. Sketch of parallelized LB and SPH numerical processes with CPU and GPU.

automata [496] managed to eliminate the need for repeated
measurements at each time step. However, the size of the
required quantum register scales linearly with the number of
lattice sites. This makes it difficult to scale to realistic use
cases.

There is a direct correspondence between the LB streaming
step and quantumwalks [497]. Todorova and Steijl [498] build
on the latter and present the first fully quantum (as opposed to
hybrid classical-quantum) LB method. The authors consider
the simplified case of a collisionless Boltzmann system which
reduces to

∂F(⃗x, c⃗; t)
∂t

+ c⃗
∂F(⃗x, c⃗; t)

∂x⃗
= 0 (56)

with single-particle distribution function F(⃗x, c⃗; t) defined in
physical x⃗ and velocity c⃗ spaces. Classically, the discrete velo-
city method discretizes the solution state space into poten-
tially three spatial and flow dimensions in (56), leading to
a six dimensional solution space which can be computation-
ally expensive. Therefore, a key stepping stone for any appre-
ciable quantum advantage is to represent this higher dimension
space as a quantum state using a limited number of qubits.
As shown by Todorova and Steijl [498], this can provide an
exponential reduction in memory, particularly for the exten-
sion to fluid mixtures. Classically, where doubling the num-
ber of fluid components would require doubling the memory,
this was shown to be achievable with one extra qubit. Note
also that the assumption of a collisionless system essentially
decouples (56) for each fluid, a condition which is not true for
real fluids.

A primary obstacle to quantum LB algorithms is the need
to take measurements during the simulation. This results in
costly initialization routines when re-preparing the quantum

state. Todorova and Steijl [498] address this issue by propos-
ing that the purpose of their QLB is different to conventional
CFD. The idea is to forego acquiring the complete flow field,
i.e. the algorithm does not obtain a complete picture of the
classical state. Instead, it efficiently obtains specific informa-
tion such as particle number densities and concentrations for
multi-fluid configurations. Thus, the algorithm allows an unin-
terrupted temporal iterationwithmeasurement postponed until
the end, at the cost of reducing the obtainable information.
Similar approaches from quantum simulation and quantum
chemistry are discussed in [333, 499] or techniques to obtain
a single amplitude in [81].

Including the collision operator in LB adds a nonlinear
complexity, but is essential for using the method as a gen-
eral PDE solver. Being able to choose a particular collision
operator provides flexibility in which equation is actually
being solved at the continuum level. One approach relies on
Carleman linearization where an equivalent linear system in
a higher dimensional space essentially replaces the nonlin-
ear system. Recent work [500] explored this in the context
of nearly incompressible LB to find a quantum formulation
for the collision term. Building on their findings, the authors
propose a fully unitary streaming and collision operator [501].
However, their collision step has a sub-optimal dependence on
the number of time steps. This makes it unclear whether it is
possible to achieve a practical quantum advantage, particularly
at large Reynolds numbers.

Alternatively, Budinski [502] formulates a fully quantum
algorithm for the complete LB, i.e. including non-unitary col-
lision operators using the standard form encoding approach
[168] and a quantum walk for the propagation step. Having
initially applied this to an advection-diffusion equation, it
was later extended to the streamfunction-vorticity formulation
of the NS [503]. However, because the collision operator is
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retained in the equilibrium distribution function, the resulting
nonlinearity restricts the algorithm to a single time-step before
the state must be reinitialized. It has been shown [504] that
the conventional amplitude and basis encodings do not allow
unitary operators for both streaming and collision. This means
future work needs to focus on alternative encodings, or, on
ways to implement nonunitary operations as part of a quantum
algorithm.

4.4. Smoothed particle hydrodynamics (SPH)

SPH is a particle-based method with no mesh or grid. The
particles move according to classical mechanics, and the fluid
velocity is obtained as an average over the particle distribu-
tions. Like LB, it is a more general method than just for solv-
ing Navier Stokes equations. Mathematically, the SPHmethod
expresses a function in terms of its values at locations of the
virtual SPH particles. The integral interpolant of any func-
tion A(r) is an integral A(r) =

´
Γ
A(r ′)W(r− r ′,h)dr ′ over

the entire space Γ for any point r in space and smoothing ker-
nelW with width h. This can be approximated by a summation
interpolant,

AS (⃗r) =
∑
i

mi
A (⃗ri)
ρi

W (⃗r− r⃗i,h) (57)

that sums over the set of all SPH particles {i}. Each particle
i has mass mi, position r⃗i, density ρi, and velocity v⃗i. Hence,
we can construct a differentiable interpolant of a function from
its values at the particle level (interpolation points) by using a
differentiable kernel [477].

The general SPH workflow contains three main stages that
are repeated at each time step. First, the algorithm creates
a neighbor list. Then it calculates the particle interactions
for momentum and continuity conservation equations. This
involves calculating the smoothing length and SPH kernels.
The final step is time integration (or system update). The SPH
particle distribution follows the mass density of the fluid while
their evolution relies on a weighted interpolation over nearest
neighboring particles. This has several implications. The SPH
kernel smoothes the physical properties within the range of
interpolation (figure 20). This is characterized by the smooth-
ing length hwhich also determines the local spatial resolution.
The identity of the neighboring particles change as the sim-
ulated system evolves. There is no computationally efficient
method to predict which particles will be neighbors over time,
hence we must identify the neighbors at each timestep.

Parallelization strategies for SPH are strikingly differ-
ent from those of mesh-based methods. The computational
domain is divided into a grid of cells where each SPH particle
is assigned a cell. We build a list of its neighbors by search-
ing for particles only in nearby cells. Dynamical neighbor lists
require specialized methods for data packing and communic-
ating. Particles migrating between adjacent domains can cause
difficulties on memory management especially in distributed-
memory architectures, as can large variations in particle dens-
ity and domain size. The total number of particles can narrow
the choice of hardware, as memory space is one of the main

Figure 20. Schematics of two-dimensional SPH model with SPH
particle i, its neighbor j, kernelW, smoothing length h and compact
support domain Γ. Here, h is equal to radius of support domain
(support length). Full support length can typically be between 2h
and 4h.

limitations of shared memory architectures. Using both shared
and distributed memories, most SPH parallelization schemes
are scalable [505, 506]. However, if communication latencies
increase, scalability decreases rapidly [507].

Diverse SPH applications demonstrate the versatility of
SPH methods in multiple fields. SPHysics is an SPH code
tailored for simulating free surface flows, which are chal-
lenging for other methods but effectively handled by SPH.
DualSPHysics [508] runs on a hybrid architecture of CPUs
and GPU accelerators for enhanced performance. The astro-
physics community also extensively uses SPH codes, as evid-
enced by the popularity of SWIFT [509] and GADGET [510].
These tools have significantly contributed to advancements in
cosmological and astrophysical research.

Figures 19(a) and (b) compare the typical workflow for
combined CPU-GPU implementation of LB and SPH, illus-
trating the commonalities in the processes. We break down
the algorithm into parts that are suitable for different types of
classical hardware. This illustrates how to incorporate accel-
erators into large scale simulations. Extending this to incor-
porate quantum computers used as accelerators can hopefully
provide further efficiencies.

4.5. Quantum SPH algorithm

Recent reviews [511, 512] discuss the computational bottle-
necks and grand challenges we face before SPH becomesmore
widely used for practical problems (e.g. in engineering). The
SPH method has traditionally been considered computation-
ally expensive [511] due to two major factors: a large number
of SPH particles are needed for good solution accuracy and
time stepsmust be small enough to obey empirical stability cri-
teria. One strategy to address these bottlenecks involves using
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quantum subroutines [513]. Below we list examples of how to
substitute classical SPH procedures with quantum algorithms.

Rewriting the SPH interpolant (57) as an inner product of
the form∑

i

mi
A(⃗ri)
ρi

W(⃗r− r⃗i,h)→ 〈mA(⃗r)/ρ|W(⃗r,h)〉 (58)

requires efficiently loading the classical data (floating point
numbers) into quantum processors using quantum encoding
techniques. There are several possible methods to calculate
the inner product: the swap test [514] or one of its variations
[515]; the Bell-basis algorithm [516] which is efficient on
NISQ devices; quantum mean estimation and support vector
machines [278]; or quantum counting algorithm [87, 517].

The summation in (57) means that the algorithm requires a
search algorithm to find all the neighboring particles inside
the compact support domain Γ (figure 20). This is another
major bottleneck that we can, in principle, address using
Grover’s search algorithm [14] implemented with a quantum
walk (sections 2.3.4 and 2.3.6). This can be an effective
search method when combined with existing SPH neighbor-
list approaches, e.g. cell-linked or Verlet lists [518].

The timestepping procedure is subject to empirical sta-
bility criteria like the Courant–Friedrichs–Lewy convergence
condition [519]. Physically, in the widely-used weakly-
compressible [520] and incompressible [521] forms of SPH,
the timestep is also limited by the speed of sound and max-
imum velocity respectively. This leads to timesteps of the
order of ⩽10−5 s [511], or typically one million time steps to
simulate one second of physical time. Most three-dimensional
applications require 10–100 million SPH particles. High
computational costs have motivated research into timestep-
ping procedures such as the Runge–Kutta–Chebyshev scheme
[522]. This is where quantum algorithms may potentially
provide an even greater speed up, since we do not need to read
out the data every time step. A quantum algorithm that can
evolve for many time steps betweenmeasurements has the best
chance of providing real advantages.

4.6. Other quantum algorithms for fluids simulations

There are quantum algorithms that directly perform numer-
ical integration for linear differential equations and provide
some quantum advantages [523, 524]. Efforts to develop a
quantum solver for the Poisson equation have applied VQAs
(section 2.5) [525, 526] and HHL framework (section 2.3.7)
[527, 528]. However, specialized quantum algorithms are
less well developed, and methods for NLPDEs remain open
[529]. NLPDE problems are some of the most computation-
ally demanding calculations in CFD. The nonlinearities may
be due to the physics (one or more of the following: con-
vection, diffusion, forcing, turbulence source terms, reacting
flows) or the numerics. Compared to linear problems, there
have been few advances in developing quantum algorithms for
NLPDEs due to difficulties in expressing nonlinearities with
unitary gates. Up until recently, the only notable work was
an HHL-based method that uses post-selection to implement

the nonlinearity [530]. Unfortunately, it is an exponential-time
algorithm that also needs an exponential number of copies of
the initial state.

This calls for another way to linearize the nonlinear
equations (e.g. with Carleman linearization [500, 531]). One
approach is to discretize the NLPDEs then directly apply a
quantum solver to the resulting nonlinear ordinary differen-
tial equation (ODE). This approach was adopted in [532, 533]
using an ODE solver that had gone largely unnoticed until
recently [534]. The method comes with stringent requirements
on the underlying flow field and its rate of change. Despite
this, a regime exists where there may be a quadratic spee-
dup over classical random methods, and an exponential spee-
dup over classical deterministic methods. Replacing the ODE
solver with alternative formulations may also provide some
benefits within the overall method.

While most discussions of quantum computing focus on
when quantum computers will be able to consistently beat
their classical counterparts, the reality is more likely to involve
hybrid quantum–classical devices. For example, where pos-
sible, solve the non-linear parts of the calculation on conven-
tional HPC, then send the linear part to a quantum processing
unit which uses the HHL algorithm. However, if the classical
part then requires consistent feedback from the quantum part,
the cost of measurement and reloading input states may sig-
nificantly reduce any quantum advantage. Some recent works
include using a quantum algorithm as a predictor-corrector to
accelerate the classical components of the algorithm without
necessitating a complete solution readout [125]. Alternatively,
the authors in [126, 535] discuss a framework for simulating
simplified fluid dynamic configurations described by linear
PDEs, using quantum linear equation solvers in conjunction
with classical protocols. Instead of simply measuring out the
complete velocity field, the authors propose a novel quantum
postprocessing protocol for efficiently computing in situ non-
linear functions of the resulting flow field, namely the average
viscous dissipation rate.

An advantage of PINNs for complex flow simulations
is their robustness to parameter changes. For instance, in
classical CFD altering the geometrical boundaries typically
requires restarting the simulation in order to determine the new
flow profile. However, by applying transfer learning methods
[536], a PINN model trained on a slightly different geometry
can be adapted for the new configuration without a complete
restart. For PINNs to provide reliable outputs, it is imperative
to have high expressibility and this is already known to be a
key strength of quantum computers [180, 537]. Recent work
[538] in the field includes a hybrid quantum PINN based on a
quantum depth infused layer implemented using a VQA and
coupled with transfer learning. The authors reported a 21%
reduction in loss compared with its purely classical counter-
part. Quantum PINNS have also shown promise in solving the
PDEs of atmospheric simulation for weather and climate mod-
elling [539].

More general VQA methods (see section 2.5) can
solve NLPDEs on NISQ devices [540]. Lubasch et al
[144] applied their method to the one-dimensional heat
equation and Burger’s equation. It is possible to solve the
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Schrödinger–Poisson equation by combining this method
with a subroutine to train a state to represent a nonlinear
potential [541]. The reaction-diffusion equations can be solved
similarly [542]. Further work presented a general version of
this quantummethod to treat a large class of nonlinearities and
inhomogeneous terms [543], making the method applicable
to most NLPDEs and multidimensional PDEs which are first-
order in time, such as the NS equations. It can also be used
to adapt many explicit and semi-implicit numerical schemes,
such as the fourth-order Runge–Kutta algorithm.

The vortex-in-cell method is an example of how the QFT
can be used to build a Poisson solver [544]. However, the
main drawback is the assumption that multiplication with the
wavenumbers can be done efficiently on classical hardware.
There is also the added complexity of accommodating non-
periodic boundary conditions with any Fourier-based CFD
method, meaning its translation into a quantum setting may
not be straightforward.

While there is an encouraging diversity of different
quantum approaches, many existing demonstrations of
quantum algorithms for CFD are limited to relatively simple
flow cases. The effectiveness of these algorithms at scaling
with the Reynolds number is either yet to be established or
appears limited. While configurations involving low Reynolds
numbers are valuable in areas like geophysics and biophysics,
the study of turbulence at high Reynolds numbers is cru-
cial for many disciplines. In this regime, a quantum-inspired
algorithm using Schmidt decomposition combined with tensor
network methods can successfully account for the interscale
correlations in turbulence [545]. Even if useful quantum sim-
ulations of turbulence at scale are some way in the future,
quantum-inspired algorithms like this can provide benefits to
current classical simulations.

5. Interfacing with HPC

Compared to classical computers, quantum hardware operates
on different intrinsic timescales (clock speeds), and uses dif-
ferent methods for data encoding—some of which are neces-
sary to achieve a quantum advantage. This makes interfacing
between classical and quantum hardware highly nontrivial.
Despite the significant practical hurdles, using quantum com-
puters as accelerators for HPC is the logical way to maximize
overall computing power, and test beds offering coupled QPU
and CPU configurations are being set up [546, 547]. In this
section, we briefly review these interface issues, and the pro-
gress required to overcome them.

5.1. Clock speed mismatch

Every computation on a classical computer processor corres-
ponds to a sequence of layers of logic gates. The time taken
to execute one layer is the clock cycle. Modern CPUs con-
tain several billion transistors operating at around 3–4GHz
or 1/3 nanosecond per cycle. When quantifying the speed of
quantum computers, we can break down quantum algorithms
into a sequence of quantum gate layers. However we cannot

Table 4. Quantum hardware platforms ordered by decreasing gate
speed (conservative estimates).

Platform
Two-qubit
gate speed

Measurement
time

Superconducting qubits [548] 10MHz 660 ns
Photons (boson sampling) [549] 6MHz 36µs
Silicon spin qubits [550] 750 kHz 1.3µs
Trapped ions [551, 552] 6 kHz 100µs
Rydberg arrays [553] 170Hz 6ms
Photons (fusion-based) [554] 10Hz 100ms

define the quantum clock speed as an inverse of the quantum
gate layer time because of two major variables:

(i) Gate choice. Quantum algorithms can be decomposed into
elemental gates, but the choice of gates is flexible. Hence,
the quantum gate duration can vary, even for different gate
layers in the same hardware.

(ii) Quantum error correction. Quantum computers make
many more errors than classical CPUs. Large-scale
quantum computers will likely have a runtime dominated
by QEC overheads. Each QEC method consists of differ-
ent routines with different runtimes, that can be dominated
by mid-circuit measurements, rather than gate times.

Table 4 shows typical gate operation speeds and meas-
urement times for different hardware platforms. Note that
these are physical gate speeds that error correction overheads
will significantly modify. Slower, but higher quality, trapped
ions or Rydberg atoms will need less error correction than
more noisy, but faster, superconducting qubits. Fusion-based
photonic platforms are slow because they have high overheads
to generate the heralded resource states required for fully uni-
versal quantum computing [239, 555]. In general, state pre-
paration can be done ‘offline’ in parallel with other opera-
tions, to avoid this step slowing down the overall compute
time. This works well for trapped ions or atoms [556], but for
photonic fusion gates the overheads are extreme and dominate
the scaling. Photons can also be used for boson sampling [295,
557], which does not require post-selection and can there-
fore operate much faster. Madsen et al [549] performed boson
sampling in just 36µs via a 216-mode squeezed photon state.
Raw photon generation and detection runs at 6MHz, putting
this platform up near the top of the table for processor speed,
although it cannot perform universal quantum computing.

Classical CPU clock speeds have remained around 3GHz
over the last decade, which is significantly faster than any
current quantum hardware. The steady increase in processor
speeds that occurred during several decades of Moore’s law
scaling [5] (figure 1) is not possible for quantum hardware
platforms. Individual atoms, ions or electrons have their own
intrinsic physical frequencies which cannot be made smal-
ler. We therefore need to develop programming models that
can leverage processors with vastly different effective clock
speeds. A hybrid algorithm may need to queue 100 or 104

operations on the classical processor for every operation on
the quantum processor. This should be viable for some of the
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large, multi-scale simulations that dominate today’s HPC use,
where many parts of the computation can be done classically
while the quantum processor solves key components that are
expensive for classical computation.

5.2. Quantum data encoding

Theoretical frameworks that address the interface between
classical memory and quantum devices are critical for imple-
menting quantum algorithms. In classical computing, float-
ing point numbers are ubiquitous for numerical data in sci-
entific applications. However, they are not the natural way to
encode data into qubits, and the choice of data encoding can
have a big impact on quantum algorithm efficiency. In this
section, we summarise the available data encoding approaches
for quantum computing, and the challenges they present for
interfacing with classical HPC.

Basis (digital) encoding.Basis encoding is the simplest encod-
ing. It corresponds to binary encoding in classical bits. Multi-
qubit basis states are often written in a single ‘ket’ as
{|0. . .00〉, |0. . .01〉, . . .|1. . .11〉} or | j〉 where it is understood
that the integer j corresponds in binary to the qubit values. The
bitstring bn−1. . .b0 is thus encoded by the |bn−1. . .b0〉 state.
Single computational basis states are easy to prepare from the
all zero state, by applying bit flips to the appropriate qubits.

Angle encoding. Angle encoding extends basis state encoding
to use the ability of qubits to be in any superposition of zero
and one. A convenient parameterization of this using angles
ϑ is

cosϑ|0〉+ sinϑ|1〉.

An n-qubit register can thus encode n angle variables {ϑk}.
This is efficient to prepare if arbitrary single qubit rotation
gates are available. We can extend this by encoding a second
angle φ in the phase,

cosϑ|0〉+ eiφ sinϑ|1〉,

and noting that qubits correspond to unit vectors on a Bloch
sphere (figure 3). However, it is not possible to read out the
value of the angles using a single measurement on a single
copy of the qubit. While the state preparation is easy, readout
is only straightforward for results encoded as basis states.

Amplitude (analogue) encoding. Amplitude encoding loads a
vector of real numbers X⃗= (x0,x1 . . . ,xN−1), with xk ∈ [0,1],
into the amplitudes of the quantum state, so they are stored in
superposition

X⃗→
N−1∑
k=0

xk|k〉.

The overall normalization factor is stored separately if it is not
equal to one. An n-qubit register stores up to N= 2n real val-
ues, so this is an efficient encoding. However, to manipulate

individual amplitudes, the number of gates grows exponen-
tially with qubit number. Preparing an arbitrary state is thus an
expensive operation [558–560]. Refinements include ‘approx-
imate amplitude encoding’ [561, 562] which reduces the pre-
paration cost to O(poly(n)) gates for n qubits at a cost of
reduced accuracy. It is also possible to encode data more
efficiently for wavepacket dynamical simulations in quantum
chemistry [563, 564].

QRAM encoding. Quantum random access memory (QRAM)
is a general-purpose architecture for quantum oracles (see
[565, 566] for excellent introduction). It is a generalization
of classical RAM [567, 568]: given an address k as input, the
RAM returns memory contents jk. Analogously, QRAM takes
a superposition of addresses |ψin〉 and returns an entangled
state |ψout〉 where each address is correlated with the corres-
ponding memory element:

|ψin〉=
N−1∑
k=0

|k〉A|0〉B

QRAM−−−−→
N−1∑
k=0

|k〉A| jk〉B = |ψout〉 (59)

for memory size N. Input and output registers are denoted
by A and B respectively. Note we may alternatively denote
the memory size by 2n, where register A contains n≡ logN
qubits. The principle behind QRAM is that, if a query state
is a quantum superposition over all addresses, then the cir-
cuit responds by performing a memory access operation over
all addresses simultaneously. If we imagine the memory laid
out in space, a QRAM access must transfer some informa-
tion to each location in memory for it to correctly perform a
superposition of memory accesses. QRAM performs the oper-
ation in (59) in O(logN) time at the cost of O(N) ancillary
qubits. This makes QRAM especially appealing for quantum
algorithms that require O(logN) query times to claim expo-
nential speedup. However, it is still uncertain whether QRAM
can be used to achieve quantum speedups, in principle or in
practice [58, 569]. QRAM is sensitive to decoherence [570]
and is subject to an overhead associated with error correction
of ancillary qubits [571]. Recent efforts have led to develop-
ments in highly noise-resilient QRAM using bucket-brigade
QRAM architecture [566], and this continues to be an active
open area of research.

Floating point encodings. Classical digital computers encode
floating-point numbers using the IEEE 754 international
standard, established in 1985 by the Institute of Electrical
and Electronics Engineers (IEEE) [572]. Work is currently
underway to develop the IEEE P7130 Standard for Quantum
Computing Definitions [573]. Basis state encoding is one
option for floating point numbers. It uses a mantissa and an
exponent in direct analogy to the binary representation of
classical floating point numbers. This is not the only (or the
best) method, depending on the application. For example,
quantum algorithms that rely on amplitude encoding for their
efficiency gains cannot use basis state encoding. Seidel et al
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[574] explore an alternative way to design and handle vari-
ous types of arithmetic operations. They formulate arithmetic
ring operations as semiboolean polynomials, and extend their
encoding from intergers to floating point numbers, with signi-
ficant efficiency gains over basis state encodings.

Block encodings. Block encodings of matrices play an import-
ant role in quantum algorithms derived from the quantum sin-
gular value transformation [575–577], such as Hamiltonian
simulation (section 3) and QML [578]. Block encoding
involves embedding a (scaled) non-unitary operator Â=∑

jαj|wk〉〈vk| as the leading principal block in a larger unit-
ary matrix,

Û=

[
Â/α ∗
∗ ∗

]
⇔ Â= Π̂ ′ÛΠ̂, (60)

with arbitrary matrix elements ∗. The projectors Π̂ ′ =∑
j|wk〉〈wk| and Π̂ =

∑
j|vk〉〈vk| locate Â within Û: respect-

ively, Π̂ and Π̂ ′ selects the columns and rows in which Â is
encoded. See [577, 579] for a pedagogical introduction.

Hamiltonian encoding. Hamiltonian encoding is suitable for
quantum optimization. The problem constraints are encoded
in a QUBO or the fields and couplings of an Ising Hamiltonian
(section 2.4). Loading the classical data on to a quantum
device involves setting the values of the couplers and fields
through classical control lines. Although straightforward to
implement, the required precision increases with the problem
size. Additionally, not every problem can be easily mapped on
to the Ising Hamiltonian parameters.

One-hot and domain-wall encoding.One-hot and domain-wall
encodings are unary encodings originally designed for higher
dimensional variables in quantum optimization [580, 581].
One-hot encoding sets a single bit in a position that determ-
ines the value of the variable. Domain-wall encoding is based
on a topological defect in an Ising spin chain. One side of the
chain is in a spin-down state, whereas the other is spin-up. The
domain-wall (topological defect) is where the system jumps
from spin-up to -down. The location of the domain wall rep-
resents the value of the variable. The number of qubits in the
spin chain determines the number of available values. Domain
wall encoding is efficient in NISQ devices for variables with a
small fixed range of values [582].

5.3. Data interconnections

As HPC users know well, exchanging data between differ-
ent processing units is where many bottlenecks occur in large
scale computations. The physical interconnections between
quantum and classical hardware are already the focus of sig-
nificant engineering development, since they are necessary to
control the quantum hardware. A significant issue is trans-
ferring data and instructions from room temperature to the
cryogenic conditions required for operating many types of
quantum hardware. Electronic and electromagnetic signals
carry unwanted heat into the cryogenic environment that must

be minimized and removed to maintain ideal operating condi-
tions. This introduces another constraint for optimizing code
across both platforms: minimizing data exchange to reduce
cooling costs. It takes time to run the procedures to re-cool
cryogenic systems, and like calibration, this is time when the
quantum processors are not available for computation.

Slower quantum ‘clock speeds’ (section 5.1) are accom-
panied by even slower timescales for measurements to read
out the qubit state and convert into classical data signals.
Table 4 lists typical measurement times for different hard-
ware. These factors all need to be taken into account when
designing algorithms, and significantly affect the wall-clock
time required [583].

The most important next step for integrating quantum com-
puters with HPC is making test bed hardware widely available
[546, 547]. Exploring their combined capabilities can guide
the engineering required to integrate them more efficiently at
both the hardware and software levels.

6. Outlook

Looking back over the past two decades, it is already pos-
sible to identify a quantum equivalent ofMoore’s Law through
the steady improvements in the qubit number and quality
(figure 21). This is most evident in platforms that have been
under development for the longest, such as superconduct-
ing qubits and ion traps. Early quantum computers are avail-
able now through cloud computing services, such as Amazon
Braket, enabling researchers to develop and test of proof-of-
concept algorithms. Cloud accessible quantum computing was
pioneered by IBM, who released their first cloud accessible
five-qubit superconducting quantum computer in 2016 [585].
IBM recently announced their newest quantum chip, which
provides over a thousand physical qubits [586], an impress-
ive development trajectory. However, further progress requires
error correction [48, 49] to reduce the accumulated errors that
occur during computation, and hence enable long enough com-
putations for useful applications. This will produce high qual-
ity qubits, but each of IBM’s thousand-qubit chips will contain
only a few of these logical qubits, which will then need to be
connected through sophisticated quantum network interfaces
[556].

Ion trap based systems have made similar progress, prior-
itizing qubit quality to achieve the highest fidelity quantum
gates of any current platform [587], in an academic research
lab setting. IonQ’s latest systems have up to 32 qubits, with
64 qubit systems due in 2025. This is enough qubits for sim-
ulating quantum systems beyond the reach of classical HPC.
Again, significantly larger systems will require error correc-
tion. Newer entrants, such as Rydberg [588, 589] (neutral
atoms), are catching up fast in performance and flexibility.
Despite the current leading position of superconducting qubits
and ion traps, it is by no means clear they will turn out to
be the main type of quantum hardware in the longer term.
Also firmly in the running are photonic and silicon or other
semiconductor-based systems. An ecosystem that supports
several types of hardware for different applications is both

35



Rep. Prog. Phys. 87 (2024) 116001 Review

Figure 21. Growth in number of qubits per device from 1998 to 2024. Showing SC circuits (red ×), trapped ions (green +), cold atoms
(blue stars), NMR (orange squares) and silicon/spin (pink diamonds) platforms. Results from selected teams annotated with team name and
circled in grey. Compiled by R Au-Yeung from Statista [584] and press releases.

plausible and promising. Despite the significant engineering
challenges, there is growing confidence that the hardware will
deliver on the anticipated timescales. Companies are forecast-
ing fully error corrected quantum processors on the scale of
hundreds or thousands of qubits by 2030, and are investing
the resources necessary to achieve this.

However, standalone quantum hardware will support only
niche applications. Some of these are significant: simulating
many-body quantum systems (see section 3) is a natural prob-
lem for quantum hardware that can potentially deliver many
new scientific results with valuable impact in a wide range of
commercial sectors. Nonetheless, to leverage the full poten-
tial of quantum computing, interfacing with classical HPC is
essential, and already underway [546, 547]. As discussed in
section 5, there are major challenges here that require new
science and engineering to be developed. The most import-
ant are related to the different data encodings that are nat-
ural for quantum computers, making it highly non-trivial to
transfer data between quantum and classical processors. This
is compounded by clock speed mismatches that, depending
on the type of quantum hardware, can be up to six orders of
magnitude. While data conversion and transfer are largely an
engineering challenge, we do not yet have good programming
models for how to handle asynchronous computing on these
timescales. Commercial promises of seamless software integ-
ration are plausible for test bed applications, but do not yet
have an assured path for scaling up.

In addition, quantum computing is being developed in a
context of significant changes in classical computing. Physical
limits have been reached for scaling up conventional CMOS
CPUs: the energy used by a typical large data centre or HPC
facility is equivalent to a small town. More compute power
requires new hardware that is less power-hungry for the same
amount of computation. GPUs have provided this for the
past decade, but they have also shown us that redesigning
codes and algorithms to use different types of hardware is
extremely challenging and time-consuming for large scale
applications [4]. Quantum processors will be significantly

more challenging still to deploy alongside classical HPC at
scale. The investment of time and resources necessary to
leverage quantum computing is a significant barrier to wide-
spread adoption as quantum computers become more avail-
able. Applications developed and tested in an academic setting
are important for opening up areas with commercial potential.

AI is also accelerating the pace of change in classical com-
puting. In recent years, AI has come under scrutiny over its
high energy consumption [590, 591] and carbon emissions.
For example, the carbon footprint of training a large natural
language processing (NLP) model equals roughly 300 tons
of carbon dioxide emissions [592], or 125 round-trip flights
between New York City and Beijing [590]. This increases the
pressure to develop energy-efficient hardware optimized for
the massive data processing required for AI applications. This
will significantly reshape the application areas where quantum
computing can deliver real benefits. While AI may overtake
quantum in predicting solutions to scientific computing applic-
ations, quantum may in turn provide advantages [39, 187] for
other types of AI applications, as quantum hardware becomes
more capable.

Despite the remaining hurdles on the path to useful
quantum computing, this is an exciting time to be doing com-
putational science and engineering. There are multiple poten-
tial routes to significantly larger simulations and the scientific
and technical breakthroughs they will produce. Achieving
these goals requires interdisciplinary collaborations to identify
where and how quantum computing can provide the most
benefits. There are multiple projects aiming to accelerate this
process. Using the UK for examples, we have the

• National Quantum Computing Centre’s SPARQ program
and hackathons https://www.nqcc.ac.uk/engage/sparq-
programme/,

• Quantum Software Lab in Edinburgh https://www.
quantumsoftwarelab.com/,

• Collaborative Computational Project on Quantum
Computing https://ccp-qc.ac.uk/,
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• ExCALIBUR cross-cutting project QEVEC https://
excalibur.ac.uk/projects/qevec/,

• multiple projects funded by the Software for
Quantum Computing call https://gow.jpgrc.ukri.org/
NGBOViewPanel.aspx?PanelId = 1-FIN46S,

• and the Quantum Technology Hub for Quantum Computing
and Simulation https://www.qcshub.org/, and its recently
announced successor, the Quantum Technology Hub for
Quantum Computing via Integrated and Interconnected
Implementations, due to start in December 2024.

The Royal Academy of Engineering 2024 Quantum
Infrastructure Review outlines a range of recommendations
for developing the UK’s quantum tech sector over the next
decade [593]. This is motivated by the need to transition from
a successful program of fundamental research to commercial-
ization and deployment in real-world applications. As a result,
industry will require a workforce that is knowledgeable about
quantummechanics [594]. However, there are fears that unless
we enhance accessibility to quantum education [595, 596] and
persuade students that it is a realistic career path [597, 598],
current inequities will persist into the future quantum work-
force. Initiatives such as QWorld https://qworld.net/ allows
researchers from any country with internet access to particip-
ate in quantum application development. Sincemany countries
do not have their own quantum computing hardware devel-
opment programs, this enlarges the overall effort and ensures
that a wide range of relevant problems are tackled.

In the global race to develop quantum computers, there has
been growing debate on its ethical use [599, 600], especially
given the discussion on potential military applications [601].
Even as governments move to restrict technology access for
national security reasons, it is essential for researchers to have
cloud access to compute resources, to ensure the benefits are
available to all.
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[363] Čížek J 1966 On the correlation problem in atomic and
molecular systems. Calculation of wavefunction
components in Ursell-type expansions using quantum-field
theoretical methods J. Chem. Phys. 45 4256–66

[364] Hoffmann R 1987 How chemistry and physics meet in the
solid state Angew. Chem., Int. Ed. Engl. 26 846–78

[365] Wannier G H 1937 The structure of electronic excitation
levels in insulating crystals Phys. Rev. 52 191–7

[366] Clinton L, Cubitt T, Flynn B, Gambetta F M, Klassen J,
Montanaro A, Piddock S, Santos R A and Sheridan E
2024 Towards near-term quantum simulation of materials
Nat. Commun. 15 211

[367] Kassal I, Whitfield J D, Perdomo-Ortiz A, Yung M-H and
Aspuru-Guzik A 2011 Simulating chemistry using
quantum computers Annu. Rev. Phys. Chem. 62 185–207

[368] Bauer B, Bravyi S, Motta M and Chan G K-L 2020 Quantum
algorithms for quantum chemistry and quantum materials
science Chem. Rev. 120 12685–717

[369] Bernal D E, Ajagekar A, Harwood S M, Stober S T, Trenev D
and You F 2022 Perspectives of quantum computing for
chemical engineering AIChE J. 68 e17651

[370] Jordan P and Wigner E 1928 Über das Paulische
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