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ABSTRACT
Laser-plasma interactions have been demonstrated to produce bright sources of energetic radiation including ions, electrons, photons across
the electro-magnetic spectrum, and neutrons. Combinations of species can significantly increase information from non-destructive imaging.
Here we demonstrate single-shot co-axial radiography with both x-ray and fast-neutron radiation from a laser-driven source using a pair
of gated microchannel plate photomultiplier tube channels and a fast scintillator medium. The outlined system demonstrates recovery full-
width-half-maximum of (18 ± 3) ns, which is sufficient to isolate x-rays from neutrons up to (72 ± 20) MeV and could be isolated only a
short distance (2 m) from the target.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0199999

I. INTRODUCTION

High intensity laser plasma interactions can generate a wide
variety of radiation, in terms of both species and energy, by tun-
ing the plasma and laser conditions. The different radiation types
share a common set of characteristics; they are short pulse (< ps),1–3

emanate from a small source (100 nm–1 mm),4–8 and can be tuned
by subtle variations in the laser parameters or target.9–13 There has
been significant interest in developing these sources for radiography,
with multiple groups demonstrating radiography with x-rays,7,9,14,15

ions,16–18 and neutrons.19,20 Of note is recent work by Ostermayr
et al.,21 Gilbert et al.,22 Yu et al.,23 and Yogo et al.,24 demonstrating
the potential of multi-species radiographic inspection to determine
more information for a given sample.

Due to the significant differences in attenuation cross-sections
for x-rays and neutrons interacting with matter, there is interest in
developing so called complementary inspection techniques, where a
combination of radiation types is used to probe samples. To date,
these examples have been limited to either orthogonal projections21

or projections completed one after the other.22 Achieving simul-
taneous radiography from a single projection angle but different
radiation types would allow inspection of dynamic samples. Due to
the ultra-short emission time of laser-driven sources at some dis-
tance from the interaction, the radiation will temporally disperse
according to its velocity; photons therefore will reach detectors at
a time tγ = t0 + r/c, where r is the distance to the detector and t0
is the laser-interaction time, whereas massive particles will arrive at
time tn = t0 + r/βc, where β is the normalized velocity depending on
the particle’s energy. With a sufficiently fast imaging system, it is
therefore possible to separate the arrival of the photons and massive
radiation species such as neutrons.

Herein we demonstrate a proof-of-principle multimodal imag-
ing (MMI) detector scheme with initial experimental results to
achieve simultaneous co-axial inspection of a sample with both fast
neutrons and x-rays, driven from a single laser-plasma interaction.
The article is structured as follows: a description of the diagnostic
operating principle, experimental results from the Vulcan Laser at
the Central Laser Facility with simulations supporting the results,
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and a discussion on future applications for the scheme. The device
outlined is similar in concept to the Neutron Imaging System (NIS)
that is deployed on the National Ignition Facility25 to detect neutron
radiation from their interactions directly rather than as a means to
produce a radiograph. The MMI detector design presented in this
article has been developed to operate at distances significantly closer
to target than the NIS.

II. MULTI-CHANNEL GATED IMAGING
FOR RELATIVISTIC RADIATION DETECTION
A. Concept

Fast plastic scintillators, such as BC-422q or EJ-232q, report
decay times at sub-nanosecond levels,26,27 providing a method to
isolate the arrival of photons and neutrons (tγ and tn). The tem-
poral response of a scintillator-detector system is a convolution of
the radiation pulse and the scintillator recovery, integrated with
respect to the exposure length. Figure 1 shows how different cases
appear from the perspective of a detector system. If we consider
an ideal system where the scintillator recovery and the frame time
are a delta function, we would be able to resolve any arbitrary radi-
ation pulse—as shown in the bottom row of Fig. 1. However, if
the scintillator has a decay constant, τs, and the frame is active
for a finite time, τg, the resulting convolution can occlude features
in the initial pulse. Any light incident on the sensor during the

FIG. 1. A generalized view of the temporal response: (a) for any arbitrary radi-
ation pulse, (d) the measured signal is the convolution of (b) the scintillator
decay, and (c) the MCP response. When the separation between features in the
radiation is larger than the MCP response window, we expect to be able to dis-
tinguish the features in the measurement. The dashed trace in the final column
is the input radiation pulse to demonstrate the effect of the convolution. Through-
out, the radiation pulses are Gaussian distributions with σ = τ g/2, the scintillator
decay is a half-Gaussian with σ = τ g/2, and the MCP response is a Gaussian
with σ = τ g.

exposure is integrated into a single measurement. Therefore, for
conventional cameras, the limit on temporal resolution is on the
order of μs.28–31 Gated MCPs, however, provide a way to narrow
this window.25,32 The temporal response for a gated MCP is as short
as a few ns.32,33

The smallest resolvable temporal feature of a MCP-Scintillator
system is limited to the combination of these features and can be
expressed as τt ≈

√

τ2
s + τ2

MCP. For the design presented herein, we
used a single 30 mm thick 300 × 300 mm2 area BC-422q scin-
tillator with a fast principle decay of τs ≈ 1 ns, imaged by two
independently gated microchannel-plate (MCP) image intensifiers
to provide the necessary isolation. The image intensifiers are Hama-
matsu C9546-0332 with a two stage MCP and a minimum gate
time of tMCP ≈ 3 ns. Combined, this system has a fundamental
limit, therefore, of τ ≈ 3.1 ns, and since we have independent con-
trol of the two MCP channels, we can equate this to an effective
frame rate by

ν′ ≈ 1/
√

τ2
s + τ2

MCP ≈ 300 MHz. (1)

Far exceeding current limits on existing single systems,34 albeit
only for two frames. To calculate what energies this minimum-
time/frame-rate corresponds to, we need to evaluate tγ − tn consid-
ering relativistic effects for energetic particles of some rest mass-
energy E0. We can express the separation in time at a position r from
the source as a function of kinetic energy, Ek by

dt = tγ − tn(E) =
r
c

⎛

⎜

⎝

1 −

¿

Á
ÁÀ (Ek + E0)

2

Ek(2E0 + Ek)

⎞

⎟

⎠

. (2)

This is evaluated in Fig. 2 for distances up to 100 m and neu-
tron energies up to 100 MeV, demonstrating the requirement for

FIG. 2. Arrival time difference between energetic neutrons and the prompt x-ray
flash emitted from a laser-plasma interaction as a function of distance and neutron
energy. The solid lines indicate the limits on detection for 1, 10, and 100 MHz
systems; the dashed line is the limit for the detector scheme espoused here with
an effective frame rate of 56 MHz or an equivalent frame interval time of (18± 3)
ns.
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ultra-fast detector responses if we wish to isolate neutrons within a
reasonable flight path. Regions above each solid line indicate which
neutron energies and distances are resolvable for different effective
temporal resolutions. The dashed line in Fig. 2 is the result of the
system outlined in this article. We measured an effective gate-time
(see Fig. 4 and surrounding discussion) of (18 ± 3) ns, which was
sufficient to isolate the signals but larger than the fundamental limit
in Eq. (1).

B. Implementation
We fielded this diagnostic on an experiment at the Vulcan

Laser Facility. The experimental geometry is shown in Fig. 3. We
used two separate picosecond lasers focused onto a (25 ± 5) μm
deuterated-plastic (CD) target with a controlled delay between their
arrival. A “pre-conditioning” pulse of (50 ± 2.8) J in (1 ± 0.3) ps
was focused to a 30 μm diameter spot to pre-expand the CD tar-
get.35 The main driving laser arrived up to 150 ps later and delivered
(180 ± 25) J in (29 ± 2) ps to a focal spot of (5.4 ± 1.2) μm. In
doing so, we accelerate a high population of relativistic electrons
into the target. These in turn generate bremsstrahlung radiation
and, as they escape the target, establish a TV/m electrostatic sheath
field that ionizes and accelerates ions, known as Target Normal
Sheath Acceleration.36 This ion emission (deuterons and protons)
from the CD target was directed onto a 2 mm lithium slab 75 mm
from the interaction in a pitcher-catcher style geometry.37 We used
a half-height slab of lithium [indicated in Fig. 3(a)] to permit on-
shot characterization of the ion emission from the target via a

FIG. 3. Schematics of the (a) experimental geometry, (b) multi-modal imager
geometry, and (c) target setup. In the figure, nTOF refers to neutron time-of-flight;
MMI is the multi-modal-imager diagnostic discussed in this paper.

Thomson parabola positioned normal to the rear of the target 1 m
from the interaction. The neutron spectrum was characterized at
0○, 10○, and 45○ relative to target normal using neutron time-of-
flight (nTOF) scintillators and photo-multiplier tubes (PMTs) at
distances >3 m.

The MMI was positioned 2 m from the target at 12○–20○ rel-
ative to target normal such that we can infer the incident neutron
spectra on the detector with the signal from the nTOF detectors.
The MMI scintillator emission is collected by a lens and relayed
to the image intensifiers and camera system at a working distance
of 840 mm. Two cameras are offset from the central axis by 4○

in opposite directions. Without reflective cavities, the variation in
emission profile over a small angle has been demonstrated to be
quasi-isotropic.38 Therefore, the angular offset between each camera
causes a negligible difference in the sensitivity of the system.

III. EXPERIMENTAL DEMONSTRATION
The trigger timing for both the x-ray (CX) and neutron (CN)

channels on the MMI diagnostic is crucial to operation. For the
initial calibration/characterization shots of the experiment, we posi-
tioned a photo-diode at the scintillator plane and recorded the
relative time of arrival of the optical laser flash to estimate the trigger
delay required for the MMI. A minimum gate window of τMCP = 7
ns was used during the experiment to minimize the effect of jitter
in our timing system. On subsequent shots, we were able to time
CX and CN on the MMI to the peak of the x-ray emission, at which
point we fixed the timing of CX and continued to vary CN. In Fig. 4,
we show the effect of varying the CN central gate time relative to
the CX. The signal on each camera has been integrated over all pix-
els to avoid the effects of hot-spots and is shown relative to each
other to mitigate the varying flux levels we experienced on the exper-
iment. Interestingly, this resultant x-ray peak width is longer than
expected. The x-ray source from a laser-driven pulse is expected to
be on the order of the driving laser pulse ∼ pico-seconds, which is

FIG. 4. Ratio of the integrated signal on each channel, where the gate-center for
CN was varied with respect to the driving laser pulse and CX was fixed. The red
dashed line is a Gaussian fit to the effective x-ray response of the two channel
system, indicating a FWHM = (18 ± 3) ns, and the blue dashed line indicates a
Gaussian fit to the neutron signal.
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effectively a delta function in comparison to τMCP. Instead, a fitted
Gaussian to the measured data demonstrates a FWHM of the x-ray
component is equal to τMMI =(18 ± 3) ns, ∼2.3 × τMCP, suggesting
that either the minimum gate-time is indicative of the rising-/falling-
edge of the MCP response rather than the full width (and is therefore
effectively double) or the jitter of the timing system is higher than
expected. Regardless of the exact reason for the extended dura-
tion, this τMMI is sufficient to isolate the neutron and x-ray signal,
as demonstrated by subsequent data points in Fig. 5. The camera
signal begins to rise again as the neutrons are arriving at the detec-
tor. The onset of the second signal is related to the peak energy
and distribution of the neutrons from the same shot—hence the
increased scatter—and suggest a peak neutron energy of ∼40 MeV.
While we did not extend the delay scan out further, we would
expect the signal to decay as the lower energy (and slower) neutron
distribution passes.

To demonstrate the imaging capability of the MMI, we posi-
tioned a 5 mm sheet of Pb in contact with the scintillator. This
material and thickness were chosen to maximize the attenuation in
the x-ray emission while transmitting the neutron spectrum. We see
exactly the result in Fig. 5, where we can clearly see a shadow from
the Pb sheet on the x-ray image, but 50 ns later on the neutron chan-
nel, we see an almost uniform profile. This is shown alongside an
earlier shot when the neutron channel was set to 20 ns before the
shot to demonstrate that the signal in both channels is significantly
above background. The plots below the images show nTOF traces
from the same shots, with the shaded regions indicating the MMI
gate-window used to capture the respective images. Each image has
been binned to 8 × 8 to reduce the effective noise. Of note here is

that the x-ray signal is sufficient for the radiograph despite using a
low-z target.

IV. DISCUSSION
We verified the signal recorded on the MMI diagnostic by

simulating the results in Geant4.40 The incident neutron energies
were taken from the nTOF measurement closest to the MMI axis,
with the measured light yield converted back to the relative neu-
tron population via the method outlined in Ref. 39. The expected
x-ray distribution, as measured on prior experiments using the Vul-
can laser,4 and the measured neutron distribution are shown in
Fig. 6(a). Each radiation type was injected into the simulation over
a 100 × 100 mm2 area incident onto a 20 × 50× 5 mm Pb sheet in
front of a 100 × 100 × 30 mm3 scintillator slab. The detector vol-
ume was split into 1 × 1 × 30 mm3 voxels, and the energy deposited
in each volume was recorded and shown as an image in Figs. 6(b)
and 6(c). We used an exponential energy distribution for each radi-
ation type with an effective temperature as shown in Fig. 6(a). We
see immediate similarity to the experimental results where only the
x-ray channel records the shadow of the Pb sheet, confirming the
idea that we are able to independently resolve x-ray and neutron
radiographs.

The results expressed here, while successful, demonstrate that
single shot inspection with laser-driven neutrons is still a challenge.
To achieve higher signal-to-noise images, we have a few options to
improve this concept. First, the BC-422q scintillator used in this
work uses quenching effects to reduce the decay time from 1.4 to

FIG. 5. Signal on the MMI device from three distinct time steps with the neutron time-of-flight (nTOF) trace from the same shot. Panels (a) and (d) are from a prior shot where
the MMI channel was set to trigger before the interaction to demonstrate the background level on the MMI system. (b) and (c) and (e) and (f) are images from the same shot
with the MMI set to receive the x-ray flash and the delayed neutron signal. Shaded regions on the nTOF trace indicate the temporal windows the MMI channels are set to
receive. While the neutron window appears to be clipping the decay of the x-ray, it should be noted that the nTOF response is longer39 than the MMI. Panels (a) and (d) were
recorded on a separate shot to (b) and (c) and (e) and (f), hence the distinct nTOF traces.
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FIG. 6. (a) Measured neutron spectra from the same shot as Fig. 5, with expected x-ray spectra from laser intensity parameters.4 Simulated radiograph for (b) x-rays and (c)
neutrons matching the spectral conditions in panel (a), 2.8 MeV exponential distribution for neutrons, and a 200 keV exponential distribution for x-rays.

0.7 ns.27 However, this also reduces the light yield by (3–4)×. Given
the effective gate time measured in Sec. III is significantly greater
than this, we can increase the detected optical signal on both cam-
eras by using the un-quenched BC-422 scintillator. Second, we can
improve the lens system by increasing the numerical aperture to
capture more emission from the scintillator.41 When altering the
lens system, it would also be beneficial to introduce a mirror and
shield the MCP and camera to minimize direct hits. These improve-
ments to the efficiency of the system can only work to a point; the
best method would be to increase the yield from the source itself.
Neutron emission from laser-driven sources continues to increase
in maximum yield, with recent work by Ren et al.42 demonstrating
a significant increase in neutron emission using a curved CD cap-
sule and driving a fusion-like reaction. Deuteron-induced neutron
generation has been demonstrated to produce a beam-like source
of neutrons.43 While this mechanism currently yields a lower total
number of neutrons, the intensity of a beam-like emission could
result in a significant increase in imaging quality. As demonstrated
by Figs. 4 and 5, there is sufficient light in the neutron line to make
multiple measurements at distinct times. By changing the gate time
for the neutron camera, we are also changing the neutron energy
and, more crucially, the arrival time of said neutrons at the sample.
With increased signal, either from improvements to the diagnostic,
source yield, or both, we can envision truly dynamic inspection of
samples.

V. CONCLUSION
Herein we outline and demonstrate a concept for simulta-

neous co-axial multi-modal imaging with x-rays and neutrons
driven by a high power laser interaction. The results show clear
temporal separation between the radiation species and agree well
with Monte-Carlo simulations of the resultant radiograph. While
the signal-to-noise was low in this proof-of-principle demon-
stration, we outline methods to improve the detector system
and, with further increases in neutron yield from laser-driven
sources, we expect this to be a key application of future facil-
ities. We also discuss how the technique can be expanded to

multi-color neutron inspection of materials or ultra-fast dynamic
inspection using the separation time of neutron energies at the
sample plane.
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APPENDIX: ON USE IN HIGH BACKGROUND
ENVIRONMENTS

Continuous sources, such as AmBe sealed sources or DD/DT
generators, typically utilize on pulse-shape discrimination (PSD),
pulse height discrimination, or rely on low sensitivity to X-rays to
isolate neutron/gamma information. They require measurement of
individual interactions, which necessitate long duration measure-
ment for sufficient statistics. In high background or highly scattering
environments, it can be difficult to use PSD or absorption discrimi-
nation to differentiate between background sources and the imaging
source.44 The short pulse duration of a laser-driven source and the
narrow gate-time of the MCP provide a unique distinction between
the different species that is otherwise not possible to achieve. Since
the respective sensitivity windows are only active for a short time in
the MMI diagnostic presented here, there is a minimal impact from
the background source.
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