
RESEARCH ARTICLE

The amino acid composition of a protein

influences its expression

Reece Thompson, Benjamin Simon Pickard*

Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United

Kingdom

* benjamin.pickard@strath.ac.uk

Abstract

The quantity of each protein in a cell only is only partially correlated with its gene transcrip-

tion rate. Independent influences on protein synthesis levels include mRNA sequence

motifs, amino acyl-tRNA synthesis levels, elongation factor action, and protein susceptibility

to degradation. Here we report that the amino acid composition of a protein can also influ-

ence its expression level in two distinct ways. The nutritional classification of amino acids in

animals reflects their potential for scarcity–essential amino acids (EAA) are reliant on dietary

supply, non-essential amino acids (NEAA) from internal biosynthesis, and conditionally

essential amino acids (CEAA) from both. Accessing public proteomic datasets, we demon-

strate that a protein’s CEAA sequence composition is inversely correlated with expression–

a correlation enhanced during rapid cellular proliferation–suggesting CEAA availability can

limit translation. Similarly, proteins with the most extreme compositions of EAA are generally

reduced in abundance. These latter proteins participate in biological systems such as taste

and food-seeking behaviour, oxidative phosphorylation, and chemokine function, and so

linking their expression to EAA availability may act as a homeostatic response to malnutri-

tion. Protein composition can also influence general human phenotypes and disease sus-

ceptibility: stature proteins are enriched in CEAAs, and a curated dataset of over 700 cancer

proteins is significantly under-represented in EAAs. We also show that individual amino

acids can influence protein expression across all kingdoms of life and that this effect

appears to be rooted in the unchanging structural and mRNA encoding features of each

amino acid. Species-specific environmental survival pathways are shown to be enriched in

proteins with individual amino acid compositions favouring higher expression. These two

forms of amino acid-driven protein expression regulation promise new insights into systems

biology, evolutionary studies, experimental research design, and public health intervention.

Introduction

The regulated transcription of mRNA from DNA, and subsequent translation into effector

proteins, underlies all of life’s dynamic processes. However, a typical gene’s levels of mRNA

and protein only show a correlation of 0.6 [1–3], indicating the presence of DNA-independent
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regulatory influences on translation. Those influences are complex and incompletely under-

stood [4–6] but include mRNA sequence motifs, compatibility between mRNA codon choice

and corresponding tRNA-amino acid availability [7, 8] and the complex regulation of transla-

tion initiation, elongation, termination, and protein degradation.

Certain amino acid concentration changes are known to be detected by the mTORC1 sig-

nalling pathway which elicits molecular and cellular changes according to nutritional state [9].

However, the direct impact of global amino acid scarcity on protein translation is underex-

plored, despite supply characteristics defining an important amino acid classification system

in animals [10]. That classification comprises essential amino acids (EAA) required from diet,

non-essential amino acids (NEAA) obtained through biosynthesis, and an ill-defined interme-

diate class, conditionally essential amino acids (CEAA), requiring supplementation from diet

during development and periods of stress or illness [11, 12]. Over 500 million years ago the

new animal kingdom was, in part, distinguished by a coordinated inactivation of biosynthetic

pathways for the EAA class [13–15]. The resulting switch from an autotrophic (nutrient

synthesising) to auxotrophic (nutrient requiring) lifeway obliged animals to obtain EAAs from

a diet of plants, bacteria, or, indirectly from prey that fed on those sources. The opportunity

for increased biological size and complexity offered by the energetic efficiency of a higher tro-

phic level has been of demonstrable advantage to animals but it created vulnerability to situa-

tional deficits in dietary supply of EAA and possibly CEAA. Such deficits would likely limit

tRNA-amino acid synthesis and availability, slowing protein translation rate, and decreasing

expression–with inevitable phenotypic consequences.

Here we explore that possibility, and present supportive evidence obtained from quantita-

tive proteomics datasets that a protein’s amino acid composition correlates with its expression

in two distinct ways. Firstly, we show that extreme proportions of EAA and CEAA nutritional

class amino acids in an animal protein exert a negative influence on expression, suggesting

that amino acid demand can outstrip supply during translation. Secondly, we show that the

proportions of individual amino acids in a protein influence its expression and that this effect

is shared across all kingdoms of life - and derived from the unchanging structural and encod-

ing features of amino acids. We propose that evolution has harnessed amino acid effects on

expression to select protein compositions that confer advantageous responses during environ-

mental stress.

Results

Effects of nutritional amino acid classes on protein expression

We first examined how the amino acid nutritional class composition of every human protein

influences its expression. As a start, the mass spectrometry-derived expression levels of 9,399

liver proteins were accessed from the public proteomics repository, PaxDB [16] (Methods).

Fig 1A shows proteins ranked from low-to-high frequency of each of the three nutritional clas-

ses plotted against a conservative moving median protein expression level. For most proteins,

a greater compositional frequency of CEAA (fCEAA) was generally associated with a modest

decrease in protein expression, whereas greater EAA (fEAA) was associated with a modest

increased expression. However, at the extremes of composition, the outcome was more strik-

ing with very high fEAA and fCEAA both repressing expression, and very low fEAA and

fCEAA permitting higher expression. At these extremes, we interpret the apparent fNEAA

influence on expression as just a passive numerical consequence of active fCEAA or fEAA

effects. These findings are striking in two regards: they are naïve of mRNA expression infor-

mation, and data are derived from human donors without known dietary amino acid defi-

ciency. We propose an explanation in which inadequate nutritional supply (EAA) or
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biosynthesis (CEAA) particularly constrains the expression of proteins with extreme EAA/

CEAA compositions.

An alternative approach to data visualisation, focusing on relative amino acid compositions

of each protein across the range of expression, was applied to data from eight human organs

and a lung alveolar basal epithelial adenocarcinoma cell line, A549. The accessed organ expres-

sion datasets (PaxDB) had already been integrated from several analyses and normalised at

Fig 1. The relative proportions of the three nutritional amino acid classes within a protein change with expression level - an effect enhanced by proliferation rate.

(a) Proteins were ranked by frequency of each of the three nutritional classes (fNEAA, blue; fCEAA, green; fEAA, red. Single-letter amino acid codes are shown) and

plotted against a moving median of liver expression levels (periodicity = 5% of total protein number) to determine composition influence on expression. (b-g) A

smoothing procedure (see Methods and S1 File) was applied to visualise trends in relative, ranked amino acid class proportion when plotted against increasing ranked

protein expression levels in human liver, brain, and kidney, and in A549 lung cancer cells lines with different proliferation rates (data from PaxDB). The full set of human

organ data is presented in S1 Fig. In (b), dashed lines have been added to highlight changes in proportions of the amino acid classes between low- and high-expression

proteins. A visual indication of increasing expression rank is shown. In (f), green (CEAA) and red (EAA) arrows have been added to indicate the changes in proportion

from (e). In (g), liver proteins have been randomised with respect to expression rank, removing trends in amino acid class representation and confirming the validity of

the smoothing approach. A colour legend has also been added. (h/i) The impact of cellular proliferation rate on protein expression was examined in PaxDB data from 26

cell lines from multiple laboratories stratified into three cohorts (low, medium, and high proliferation) according to rescaled/normalised expression level of the

proliferation marker MKI67 (Ki67) (see Methods). Proteins were additionally subdivided into 5 amino acid class frequency ranges (fEAA/fCEAA 1–5, with 5 having the

greatest representation of the amino acid class). Total protein expression levels were calculated within each of the 15 groups and plotted.

https://doi.org/10.1371/journal.pone.0284234.g001
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source. Ranked protein expression levels were plotted against smoothed relative EAA:CEAA:

NEAA proportions for each protein (Methods, Figs 1B–1G, and S1). The right side of every

component image is largely conserved in appearance: those proteins with the highest expres-

sion have amino acid compositions that avoid extremes, tending to the whole-proteome mean

frequencies (fEAA, 0.41; fCEAA, 0.28; fNEAA, 0.31). By contrast, the left side of each image

was observed to fall into one of three distinct profiles. In the first, Figs 1B and S1 liver, heart,

and male and female gonads show a marked increase in proteins with high CEAA proportion

at lower expression levels (green arrow). One interpretation of this profile is that a biosynthetic

shortfall of CEAAs in these tissues results in reduced expression of CEAA-rich proteins, clus-

tering them to the left of the diagram. In Figs 1C and S1 pancreas and brain tissues do not

show such trends suggesting these tissues may have different steady-state supplies or synthesis

of amino acids. In Figs 1D and S1 kidney and lung tissues show a greater proportion of EAA/

NEAA amino acids in proteins with low expression. These three profile types may reflect

inherent organ features and states such as non-proteogenic amino acid use (gluconeogenesis),

local proliferation rate, basal metabolic rate, or amino acid transport capacities. In this way,

organ-specific categories of ‘essential’ and ‘conditionally essential’ amino acids may practically

differ from the whole organism definition.

Of note, these observations suggest that most proteins have arrived at an evolutionary bal-

ance between the selection of appropriate amino acids (to meet requirements of structure/

functionality), and the selection of amino acid compositions that avoid supply constraints on

expression. Aside from hydrophobic amino acids typically being EAAs, there is relatively little

alignment between nutritional amino acid classes and the functional amino acid classifications

(polar/acidic/basic, etc.) suggesting a degree of flexibility in amino acid selection.

In Fig 1E and 1F, two markedly different profiles are shown for the same lung cancer cell

line, A549. We hypothesised that differing tissue culture protocols in the source laboratories

affected amino acid availability. In Fig 1E (A549 a, data from [17], #id: 3312331274) there is lit-

tle evidence for constrained protein expression. However, in Fig 1F (A549 b, data from [18],

#id: 878737823) - with cells described as actively proliferating - a substantial increase in CEAA

and EAA proportions (green and red arrows) was observed at lower expression levels, perhaps

indicating that proteins with greater proportions of those two amino acid classes were ineffi-

ciently translated. A suspected interaction between proliferation rate, amino acid nutritional

class and expression was therefore examined in PaxDB expression data from 26 cell lines

(listed in Methods). Wide provenance, intrinsic cell line expression differences, and uncertain

culture conditions at the time of protein isolation required an objective means to stratify cell

line data by proliferation rate. A normalised protein expression level was derived for estab-

lished proliferation marker Ki67 (MKI67) within each cell line (Methods). Cell lines were

stratified into 3 groups by this proliferation rate proxy, as well as into 5 fEAA or fCEAA com-

position classes. When total protein expression levels within each of the resulting fifteen subdi-

visions were summed and plotted (Fig 1H and 1I), we saw evidence for expression influenced

in two ways that are consistent with the organ analyses. Firstly, a proportionately negative

influence on expression exists across the full range of fCEAA, which is further intensified

(green arrow) during rapid proliferation (Fig 1H). We speculate that proliferation is accompa-

nied by a substantial demand for new protein synthesis in daughter cells and that conditionally

essential amino acid biosynthetic pathways are, by definition, unable to meet this situational

demand, leading to a shortfall of these amino acids and a consequent impact on protein syn-

thesis of CEAA-rich proteins. Secondly, a modest negative effect of on expression was

observed only for those proteins with the very highest fEAA (perhaps determined by the limits

of EAA availability in media and their cellular uptake) (Fig 1I).
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Individual amino acid effects on protein expression

We looked beyond nutritional supply constraint effects on amino acid groupings to determine

if fundamental effects on protein expression existed at the individual amino acid level. Multi-

ple Linear Regression (MLR) was used to determine individual amino acid frequency effects

on expression within the same eight human organs and, in parallel, the root of plant Arabidop-
sis thaliana, the fungus Saccharomyces cerevisiae, and bacterium Escherichia coli (Fig 2 and S1

File). The individual amino acid effects on expression were substantially conserved in scale

and direction between human organs and across species. Increased representation of amino

acids lysine (K), glycine (G), alanine (A), and valine (V) largely correlated with increased

expression of a protein, whereas tryptophan (W), arginine (R), cysteine (C), and serine (S),

largely correlated with reduced expression. Human-specific inhibitory effects were seen for

isoleucine (I) and proline (P), and methionine (M) was consistently inhibitory in non-animal

species. Aspartate (D) only showed a positive influence in humans. These MLR models are sta-

tistically highly significant, but only generate modest r2 values within a range of 0.02 to 0.13

for global prediction of protein expression in the absence of mRNA expression data or nutri-

tional deficiency. We noted that the largest r2 values were observed for human ovary, heart,

and testis, all represented within the subgroup represented in Figs 1B and S1A, and for the

two microorganisms cultured in proliferation-driving conditions. This suggested that there

may be overlapping effects between the two models of amino acid effect on expression

described here. This finds further support in the over-representation of CEAAs within the

group of amino acids showing MLR negative effects. Surprisingly, serine (a NEAA not

expected to be limiting) was also negatively associated with expression level. Serine’s vital role

as a carbon source for the synthesis of other amino acids, and the pathological consequences

of its deficiency in humans has prompted a recent call for its reclassification as a CEAA [19].

The pan-species nature of these amino acid effects was effectively demonstrated by testing

the ability of the E. coli MLR model from Fig 2 and S1 File to predict trends in actual global

human protein expression (Fig 3). Firstly, the original human liver MLR model prediction for

each protein’s expression level was plotted against that protein’s true expression and a moving

average trendline fitted (Fig 3A). From lowest to highest ‘window’ of prediction, the trendline

described three orders of expression magnitude, as might be expected given this was the source

data for the MLR model. However, applying the bacterial MLR model to human liver

Fig 2. Pan-species conservation of individual amino acid influences on protein expression levels. Human organ data are shown in the lower section and species data in

the upper section. Numbers in cells represent the normalised magnitudes for statistically significant multiple linear regression (MLR) coefficients for each amino acid in

each species or organ. Amino acids have been ordered left-to-right from greatest average negative effect (shades of red) to greatest average positive effect (shades of green)

on protein expression. Human amino acid nutritional class assignments are shown at the top. Adjusted correlation values and statistical significance are shown on the

extreme right for each of the 11 MLRs. See S1 File for full MLR data.

https://doi.org/10.1371/journal.pone.0284234.g002
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expression still successfully predicted a range of moving average liver expression spanning two

orders of magnitude (Fig 3B).

To explain these universal effects of amino acids on protein expression we considered three

fundamental amino acid properties as potential influences. The first property examined - the

number of synonymous codons assigned to each amino acid - stemmed from knowledge of

the importance of both aminoacyl-tRNA availability and codon preference for efficient trans-

lation. Secondly, three related models of amino acid biosynthetic cost were applied to deter-

mine if metabolic economisation pressures (‘thriftiness’) over the course of animal evolution

had selected for protein compositions biased towards the ‘cheapest to make’ amino acids. In

the Akashi [20] and Wagner models [21], the cost of synthesis for each amino acid is measured

as high-energy phosphate bond equivalents and, in the Zhang model [22], this is further

refined by including amino acid degradation constants. The third assessed property was the

composite ‘Dufton score’ [23], assigned to amino acids based on their spatial volume and

chemical complexity - encapsulating the biosynthetic, structural, and functional parameters of

each amino acid. Fig 3C illustrates the relative magnitudes of these properties for each amino

acid (tabulated in full in S1 File). A MLR analysis of all properties applied to the human liver

expression data indicated significant contributions from the number of codons allocated

(p = 5.2 x 10−14) and the Dufton score (p = 5.2 x 10−13), but no significant influence of ener-

getic cost. Combined in a single model, these two simple and immutable amino acid properties

were sufficient to generate a moving average trendline describing almost three orders of mag-

nitude of average liver expression (Fig 3D).

Protective biological systems at extremes of amino acid composition

A prediction from our findings is that animal proteins with extreme EAA or CEAA amino

acid compositions would be the most sensitive to states of amino acid deficiency or physiologi-

cal stress–with this sensitivity manifest as reduced expression. We theorised that these proteins

might have evolved these counterintuitively extreme compositions and expression properties

as part of beneficial homeostatic responses to nutritional and physiological adversity. The

fEAA and fCEAA composition of all 20,397 human proteins was visualised (Fig 4A). We

Fig 3. Pan-species effects of amino acids on protein expression can be largely explained by two fundamental parameters. The two expression prediction models

generated by MLR analysis of individual amino acid effects on human liver and E. coli protein expression levels (detailed in Fig 2 and S1 File) were tested for their ability

to predict global liver protein expression. Each individual protein is shown as a green dot representing model predicted expression and actual human liver expression (log

scale). Model ability is visualised by plots of moving averages (green, red, blue: periodicity of 100 proteins). (a) Liver model on liver expression analysis. (b) E. coli model

on liver expression analysis. (c) Individual properties of amino acids (identified by their the one- and three-letter designations at the bottom) are visualised along with their

amino acid frequency in the unit human proteome, and their nutritional class (red = EAA, green = CEAA, blue = NEAA). (d) A model combining Dufton score and

number of codons allocated to each amino acid was tested for its ability to predict liver protein expression levels.

https://doi.org/10.1371/journal.pone.0284234.g003
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examined extreme outlier proteins for any insights into the biology and pathology of animal

survival during malnourishment.

The extreme fCEAA outlier group primarily consisted of proteins with roles in the forma-

tion of connective tissue, skin, hair, and their maturation enzymes: collagens, elastin, keratin-

associated proteins, late cornified envelope proteins, small cysteine, glycine and proline

repeat-containing proteins, fibrillins, fibulins, lysyl oxidase, and latent-transforming growth

factor beta-binding proteins (Fig 4B and 4C) [24, 25]. Gastrointestinal excretion and the pro-

duction of skin and hair are the three principal routes of irretrievable amino acid loss from the

body [26], so the relative paucity of EAAs in these proteins may be a resource conservation

strategy. Furthermore, their extreme CEAA composition may act as a translational regulator

for life processes that can be temporarily sacrificed or permanently downscaled to conserve

energy and amino acid reserves. Anorexia nervosa can be accompanied by thinning hair, brit-

tle nails, and deterioration in skin health [27] and, separately, periods of bodily stress or illness

are frequently recorded as discontinuous nail growth in the form of Beau’s lines or ‘pitting’.

Other proteins with high fCEAA that might be susceptible to the effects of dietary deficiency

include all 14 metallothioneins involved in heavy metal-binding and oxidative stress responses,

several members of the serine-/arginine-rich splicing factor family, oxytocin (a hormone

involved in all aspects of reproduction and maternal resource investment from sexual arousal,

to uterine contraction in labour, mother-offspring bonding, and milk production) and

Fig 4. EAA and CEAA over-representation in specific proteins and pathways reveals the consequences of, and response to, amino acid

deprivation. The composition of 20,397 human proteins was plotted, fEEA against fCEAA. (a) Tight distribution within a dense central cluster

was clarified by the associated frequency histograms. Magnified outlier sectors of (a) contained protein families or functionalities with

extremely high fCEAA (b/c) and fEAA (d/e) likely susceptible to reduced expression during nutritional insufficiency.

https://doi.org/10.1371/journal.pone.0284234.g004
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multiple components of the Notch cell fate, differentiation, and injury repair signalling path-

way (including DLL3, NOTCH4, and JAG2).

Extreme fEAA was observed in both leptin (LEP) and the melanocortin receptor proteins

(MC1R-MC5R) (Fig 4D)–components of an established hypothalamic signalling pathway that

responds to increased levels of adiposity/obesity by promoting satiety. This pathway is also

linked to onset of puberty and stature [28]. GRPR (gastrin-releasing peptide receptor) also pos-

sesses high fEAA and similar appetite-suppressing role. We speculate that their conventional

modes of signalling are augmented by ‘hard-wired’ protein synthesis inhibition during EAA

deprivation–expression restriction of any of these proteins would act to increase appetite

drive, potentially leading to recuperative ingestion of amino acids. Bitter taste receptors of the

TAS2R subfamily have an extremely high EAA composition (Fig 4E) - with member TAS2R20

ranked 9th in the entire proteome. This contrasts with the proteome-average EAA composition

of the umami and sweet taste receptors of the TAS1R subfamily. The TAS2R family fulfilled an

important survival function in human prehistory by allowing detection and rejection of poten-

tially toxic substances in foraged food. We make a speculative suggestion that bitter taste

receptors have evolved a fragility of expression during dietary EAA deficiency. The resulting

reduction in bitter taste may lower food discrimination or aversion, offering access to a greater

range of foodstuffs potentially containing EAAs (histidine, tryptophan and valine salts are all

bitter-tasting [29]). There is tentative evidence that prolonged anorexia nervosa blunts taste

sensitivity [30]. Four other protein families have significant representation at the extremes of

fEAA, including a group of fatty acid metabolism proteins (Fig 4D), 14 protein components of

the mitochondrial electron transport chain complexes (Fig 4D), the large family of olfactory

receptors (Fig 4E), and all 26 protein members of the CC-/CX- chemokine and chemokine

receptor families that control chemotaxis and other immune cell functions (Fig 4E). Examina-

tion of the cell line data described earlier revealed globally reduced expression in the high

fCEAA/high proliferation groups including the majority of the individual fCEAA outlier pro-

teins discussed here. Highly proliferating lines showed specific reductions in expression of sev-

eral fEAA outlier proteins, including most taste and olfactory receptors, some of the

chemokines and their receptors, and slight decreases in expression for mitochondrial proteins

such as MT-ND4, MT-ND5, and MT-ATP8.

E. coli, S. cerevisiae, and A. thaliana do not have compromised amino acid biosynthesis

pathways requiring external EAA provision. However, they do possess the intrinsic ‘con-

straints’ defined in our earlier MLR findings as negative coefficient amino acids. We hypothe-

sised that proteins at MLR-defined compositional extremes might also have been subject to

evolutionary selection. A score was calculated for each protein based on combined negative

coefficients (MLR-) and combined positive coefficients (MLR+) according to amino acid com-

position. Proteins with low MLR- values and high MLR+ values (expected to be highly

expressed) were analysed via The Gene Ontology Resource [31] using Panther [32] to identify

significant enrichment for specific biological processes (gene ontologies: GO). Next, for each

significant GO term, MLR- and MLR+ scores were collated from the full set of proteins cata-

logued with those terms, and compared to the whole proteome using a two-tailed z-test to

determine if these groupings had significantly different mean amino acid compositions (Meth-

ods). For E. coli, we observed significant enrichment within the less negative MLR-, more posi-

tive MLR+ protein sector for 251 proteins designated under the ‘response to abiotic stimulus’
GO term (MLR- p = 2.6 x 10−5, MLR+ p = 1.1 x 10−6). The two least negative MLR- proteins in

the entire E. coli proteome fall within this environment-detection category: acid shock protein

(asr) and cold shock-like protein (cspC). Also significant were 116 proteins under the ‘transla-
tion’ GO term (MLR- p = 1.1 x 10−18, MLR+ p = 9.8 x 10−61). This form of assessment is indi-

rectly related to protein sequence and thus subject to bias from the presence of multiple
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paralogs. Reanalysis of the paralog-rich translation term, collapsing multiple paralogs (e.g.,

ribosomal proteins, elongation factors) to a single averaged archetype, still yielded significance

(MLR- p = 0.002, MLR+ p = 5.5 x 10−8). Translation-related GO terms also presented statisti-

cally significant MLR score biases in S. cerevisiae, A. thaliana (root), and H. sapiens (liver).

Likewise, environmental detection-related GO terms response to high light intensity, water dep-
rivation, and cold acclimation (A. thaliana); detoxification, and response to stress (H. sapiens),
all showed significant MLR score biases (S2 File).

Amino acid composition and disease

In humans, gene-environment (GxE) interactions modifying disease risk and phenotypic

expressivity may be encountered by proteins with extreme fEAA/fCEAA composition. Mal-

nourishment in early life is currently experienced by 1 in 5 of the world’s population, affecting

stature, intellectual ability, future fertility, and risk of chronic illnesses–with the WHO report-

ing 145 million children with stunted height in 2020 [33, 34]. In the first approach to examine

potential EAA/CEAA deficiency influences on disease risk, the online DisGeNET catalogue of

genes associated with 8,383 diseases [35] was queried to identify extreme fEAA/fCEAA com-

position proteins which also had robust aetiopathological roles supported by at least 10 distinct

disease annotations (S2 File). Proteins linked to cancers (e.g., the tumour suppressor,

CDKN2A), CNS disorders (e.g., the myelin constituent, PMP22), and developmental disorders

(e.g., skeleton and tooth development protein, SLC10A7) were represented at fCEAA and

fEAA extremes. For fCEAA, there were many connective tissue disorders (due to the collagen

protein family), as well as several proteins linked to miscarriage (COL5A1, IGFBP6, LGALS3);

for fEAA, proteins were linked to immunological disorders, primarily due to the chemokine

family and their receptors. These findings highlight potential dietary components to patholo-

gies or treatments.

In a second, multigenic approach, five conditions (cancer, male infertility, female infertility,

tooth abnormality, obesity) and one phenotype (stature/height) were chosen as established

phenotypic indicators of malnourishment or, in the case of cancer, selected because of a

pathology defined by aberrant proliferation. Risk proteins for each disorder were compiled

from the literature or public databases and two-tailed Z-tests performed to determine if risk

protein lists showed mean fCEAA or fEAA values significantly deviating from the entire prote-

ome (S1 File). Significant findings were observed for cancer and stature. Established cancer

proteins (n = 723, from the COSMIC Cancer Gene Census [36]) showed a highly significant

under-representation of EAA (p = 0.00 x 100) and compensatory increase in fNEAA (p = 2.23

x 10−31). Stature genes (n = 116, manually curated from literature) showed an increase in

fCEAA (p = 1.02 x 10−6) and a decrease in fEAA (p = 1.02 x 10−05) although significance was

largely driven by 8 members of the collagen family.

Discussion

We have established both nutritionally governed and inherent mechanisms by which a pro-

tein’s amino acid composition can influence its expression.

The profile of CEAA inhibitory effects on expression during baseline and proliferative cel-

lular conditions offers the first rigorous molecular definition of this historically underexplored

nutritional class. One consequence of our findings is that the proliferative state of laboratory

cell lines (largely unreported in publication methods) may be a confounding factor for experi-

mental replication of functional or expression studies - for half of all proteins. Expression of

proliferation biomarker MKI67 may be a useful benchmark for such studies. By contrast, only

modest consequences were observed for EAA-enriched proteins. Determining the true scale of
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dietary EAA influences on protein expression in vitro and in vivo will require experimentation

with amino acid-deficient culture media/feeds.

The remarkable second finding that individual amino acids affect protein expression in a

largely conserved manner across species appears to be a consequence of the intrinsic amino

acid properties of size, structural complexity, and codon allocation. It is presumed that these

effects exert their influence at the ribosome during translation. We observed that proteins par-

ticipating in translation and in species-specific environmental stress responses were signifi-

cantly under-represented in amino acids with negative influence on expression and,

conversely, over-represented in those with positive influence. We suggest this selective drive

has ensured that survival-enhancing proteins can be rapidly, robustly, and highly expressed,

even in challenging cellular and environmental conditions. Human and animal proteins at the

extremes of EAA/CEAA composition may also have evolved as an advantageous strategy to

survive nutritional scarcity. As well as the described effects on hair/nail/skin production and

food-seeking behaviours, the modulation of collagen protein expression may be a key ‘epige-

netic’ response to nutritional status in development: determining the limits of body size and

appropriate maternal resource allocation - and aligning future metabolic demand (propor-

tional to body scale) with anticipated environmental resource availability.

The findings presented here offer public health programs the prospect of quantitative pro-

tein biomarkers of clinical and sub-clinical amino acid dietary insufficiency. Additionally, they

inform current clinical interventions based on amino acid supplementation and restriction.

There are established benefits to amino acid supplementation (primarily the CEAAs glutamine

or arginine) for patients undergoing ulcer treatment or post-surgery wound healing [37–40],

potentially promoting connective tissue proliferation/regeneration. Supplementation with

other CEAAs such as cysteine, or negative MLR coefficient amino acids such as serine, isoleu-

cine, and tryptophan are now also worthy of investigation. By contrast, restricting amino acids

in diet is an emerging concept in cancer treatment, capitalising on the specific demands of

tumour cells. Our earlier findings on proliferation demands suggested that this ‘hallmark’ [41]

would manifest as reduced fCEAA in cancer risk proteins. In fact, cancer proteins exhibited an

extraordinary under-representation of EAA, suggesting that restricted essential amino acid

supply to the tumour microenvironment may be a major determinant of protein expression,

genotype-phenotype correlation, and clonal selection in cancer [42]. In tumours, expression of

high fEAA proteins involved in mitochondrial oxidative respiration and chemokine function

may also be compromised. This would be consistent with the Warburg effect [41] which

describes the metabolic shift within tumours from oxidative respiration to glycolysis, and it

may also contribute to the extensive chemokine/receptor-mediated interactions between

tumour cells, stromal cells and macrophages [43]. Multiple amino acids have been trialled in

restriction studies [44], mostly on the basis of gross abundance, so the detailed findings

reported here may guide future dietary protocols in cancer treatment.

Methods

Data import and basic amino acid frequency analysis

From Uniprot.org, one representative human protein sequence per gene (totalling 20,397) was

downloaded from the Reference Human proteome (ID: UP000005640) in FASTA format.

Microsoft Excel text analysis formulas were applied to calculate the total amino residues, the

frequency of each individual amino acid, and the relative proportions of the EAA/CEAA/

NEAA nutritional classes present within each protein (S1 File). For example, a total of 34 EAA

amino acids within a protein of 299 residues generates a fEAA of 0.11. Frequencies of amino

acids or amino acid classes were used to remove the confounder of protein length differences.
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Similar processes were carried out for the Escherichia coli (UP000635675), Saccharomyces cere-
visiae (UP000002311), and Arabidopsis thaliana (UP000006548) proteomes.

Protein expression correlation with amino acid classification

Protein expression data were imported as simple .txt files into Excel from publicly available

datasets hosted in PaxDB. The human organ dataset IDs listed below represent freezes of mul-

tiple ‘integrated’ studies and so may change over time as more studies are incorporated.

(Human tissues: Liver, #id: 11; Brain, #id: 180; Testis, #id: 1368841919; Heart, #id: 920111065;

Pancreas, #id: 123; Ovary, #id: 249943175; Kidney, #id: 336; Lung, #id: 1177848913. Human

cell lines: H441, #id: 2978442565; H1792, #id: 2702723926; H358, #id: 4263836592; H23, #id:

3320206519; A549b, #id: 878737823; A549a, #id: 3312331274; Cd9, #id: 2072474002; Hek293,

#id: 1717546768; HepG2, #id: 4012390276; RKO, #id: 3395876293; Mcf7, #id: 4257247611;

Hela, #id: 1648883758 & #id: 1603518140; Jurkat, #id: 1349617245; U2os, #id: 183123173 &

#id: 931479677; K562, #id: 3816746548; Lncap, #id: 2209482342; Gamg, #id: 4023575820;

A460, #id: 1189814538; B cell, #id: 2030745893; Nk, #id: 1493102864; Cd4, #id: 2689127103;

H2122, #id: 1856553797; H727, #id: 928179904; Sklu1, #id: 1450716477. Yeast (S. cerevisiae),
#id: 1329501331; Thale cress (A. thaliana), #id: 3612633737; Bacteria (E. coli), #id:

3836200197.). Species-specific protein identifiers in the expression data were converted into

universal UniProt or UniPARC identifiers using the VLOOKUP command accessing

imported conversion tables, allowing correlation with the amino acid/amino acid class fre-

quencies of each protein.

Moving median/average expression analysis

Nutritional amino acid class frequency was ranked and plotted against the moving median liver

protein expression level (Fig 1A, periodicity of 469 = 5% of total). Multiple linear regression

(see below) model score for each protein was plotted against liver expression value (log scale)

and an Excel moving average trendline applied (periodicity of 100 proteins) (Fig 3A and 3B

and 3D).

Tissue and cell line plots of changing EAA/CEAA/NEAA proportions

across expression levels

For a tissue or cell line, both the numerical expression level and the fEAA, fCEAA, and fNEAA

for each protein were separately converted into ranks as a form of normalisation. For a protein

ranked nth in expression, two figures were calculated for each nutritional amino acid class: the

average proportion of that class from the lowest- to the nth-ranked protein, and the average

proportion of that class from the nth- to the highest-ranked expression. The average of these

two numbers was plotted for the nth protein (Figs 1B–1G and S1 and S1 File). This method

produces smoothed plots of trends in relative amino acid class representation as a function of

ranked protein expression level.

For Fig 1H–1I, protein expression values for each of 26 cell lines (see above) were rescaled to

a value between 0–1 across 11,214 proteins for which expression was detectable in at least one

cell line (proteins with no expression were excluded). Cell lines were stratified into three groups

based on inferred proliferation rate (low proliferation rate, 11 lines; medium, 8 lines; high, 7

lines) as determined by the rescaled expression level of the proliferation marker MKI67 (Ki67).

Proteins were additionally subdivided into 5 equal nutritional amino acid class frequency ranges

(fEAA/fCEAA 1–5, with 5 having the greatest representation of that amino acid class). Total

protein expression levels were calculated for each of the resulting 15 groups and plotted.
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Multiple linear regression and models

Multiple linear regression (MLR) in the Excel ‘Data Analysis’ ToolPak add-in was used to

identify intrinsic parameters or individual amino acids with significant correlation to protein

expression level, and their respective coefficients (S1 File). Statistically significant (p<0.05)

MLR coefficients were normalised across organs and species in Fig 2. MLR findings allowed

the construction of models which generated relative numerical expression predictions for each

protein based on coefficients and amino acid frequencies.

Statistical tests of gene ontology and disease candidate lists

fEAA and fCEAA figures for all proteins categorised within disease or phenotype subgroups

were collated and means and variances calculated. These means were compared to the mean of

the entire proteome. Analysis of the entire proteome showed statistically significant deviations

in kurtosis and skewness for fEAA and fCEAA. However, the very large population size and

small Lilliefors D effect size values of 0.043 (fEAA) and 0.078 (fCEAA) justified treating the

distributions as effectively normal for the purpose of z-tests (S1 File).

Proteins located at the extremes of amino acid composition, as determined by the MLR

+/- approach, were assessed for enrichment of specific gene ontology (GO) terms (Panther,

The Gene Ontology Resource, https://geneontology.org/). For significantly enriched terms,

all proteins categorised within that term were collated and assessed for amino acid composi-

tion. Two-tailed z-tests were applied to compare the MLR means in the entire proteome

with proteins in gene ontology term groups.

Full monogenic and multigenic disease lists and statistical analyses relating to nutritional

class composition are found in S1 File. Statistical analysis of enriched GO terms in MLR- and

MLR+ data are found in S2 File.

Supporting information

S1 Fig. The relative proportions of the three nutritional amino acid classes change with

protein expression level and proliferation rate (extended data from Fig 1B–1G). A smooth-

ing procedure (see Methods and S1 File) was applied to visualise trends in relative, ranked

amino acid class proportion when plotted against ranked protein expression level for 8 human

tissues and two samples of a lung cancer cell line, A549 (data from PaxDB). As described in

the main text, tissues can be placed in three groups (a, b, and c) based on the profile of EAA/

CEAA/NEAA composition across the range of expression levels. A549 differences (d) most

likely represent amino acid constraint effects brought about by different proliferation rates.

Graph e shows the same liver data as in a but with randomised expression level as a control.

(TIF)

S1 File. Multiple datasets and analyses comprising; amino acid composition calculator,

human proteome AA composition, 25 selenocysteine-containing proteins, testing popula-

tions for normal distribution, calculating and smoothing relative proportions of EAA,

CEAA, and NEAA in proteins as a function of expression level, multiple linear regression

(MLR) analyses across organs, species, and amino acid parameters, extreme fEAA- &

fCEAA-associated diseases, and multigenic disease statistics. DOI: 10.15129/220e3e34-

588b-4a94-93eb-8bd73cd2bf3e.

(XLSX)

S2 File. Statistics of the over-represented gene ontologies (GOs) in proteins with extremes

of MLR coefficients. DOI: 10.15129/220e3e34-588b-4a94-93eb-8bd73cd2bf3e.

(XLSX)
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