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Abstract: Artificial intelligence (AI) encompasses a broad spectrum of techniques that have been
utilized by pharmaceutical companies for decades, including machine learning, deep learning,
and other advanced computational methods. These innovations have unlocked unprecedented
opportunities for the acceleration of drug discovery and delivery, the optimization of treatment
regimens, and the improvement of patient outcomes. AI is swiftly transforming the pharmaceutical
industry, revolutionizing everything from drug development and discovery to personalized medicine,
including target identification and validation, selection of excipients, prediction of the synthetic route,
supply chain optimization, monitoring during continuous manufacturing processes, or predictive
maintenance, among others. While the integration of AI promises to enhance efficiency, reduce costs,
and improve both medicines and patient health, it also raises important questions from a regulatory
point of view. In this review article, we will present a comprehensive overview of AI’s applications in
the pharmaceutical industry, covering areas such as drug discovery, target optimization, personalized
medicine, drug safety, and more. By analyzing current research trends and case studies, we aim to
shed light on AI’s transformative impact on the pharmaceutical industry and its broader implications
for healthcare.

Keywords: artificial intelligence; AI; drug delivery; drug development; target identification; lead
optimization; personalized medicines

1. Introduction

The adoption of AI in the pharmaceutical industry has evolved significantly over
the past few decades. In the early stages, during the 1980s and 1990s, AI applications in
drug discovery were limited to basic computational models, primarily used for molecular
modeling and chemical structure prediction. These early efforts laid the groundwork for
more sophisticated approaches as computational power and algorithms improved. By the
early 2000s, AI began to gain traction with the introduction of machine learning algorithms
capable of analyzing complex datasets, which helped streamline the drug discovery pro-
cess by predicting molecular interactions and optimizing drug formulations. However,
widespread adoption of AI in pharmaceuticals took off in the 2010s, driven by advances in
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Big Data, deep learning, and access to large biological and chemical datasets, such as those
from genomics, proteomics, and high-throughput screening. Pharmaceutical companies
started integrating AI into various stages of drug development, from target identification
to clinical trial design. In recent years, AI has become an indispensable tool in accelerating
drug discovery, optimizing clinical trials, and personalizing treatments, marking a shift
toward more efficient, data-driven pharmaceutical research and development [1–3].

The convergence of artificial intelligence (AI) with the development of novel medicines
has ushered in a new era of innovation which has significantly transformed several facets
of drug discovery and drug delivery. AI has encompassed a wide range of techniques
that have been applied by pharmaceutical companies over the last few decades, including
machine learning, deep learning, and other advanced computational techniques. This
has resulted in unprecedented opportunities for the expedition of the drug discovery and
drug delivery processes, leading in turn to the optimization of treatment regimens and the
improvement of patient outcomes [4–12].

Traditionally, the drug discovery pipeline has been characterized by high costs at-
tributed to lengthy timelines and high failure rates. With the integration of AI-driven ap-
proaches, pharmaceutical companies can navigate this complex landscape more efficiently
and effectively. For example, machine learning algorithms can analyze vast databases to
identify intricate patterns. This allows for the discovery of novel therapeutic targets and for
the prediction of potential drug candidates with better accuracy and at a faster pace than
traditional trial and error approaches. This has sped up the drug development process for
a myriad of diseases [13–22].

Similarly, AI algorithms can analyze large-scale biomedical data uncovering hidden
relationships between drugs and diseases. This has allowed AI to fuel drug repurposing, fa-
cilitating the identification of new therapeutic uses for existing drugs and accelerating their
clinical translation from bench to bedside. This is especially important for certain diseases
such as parasitic diseases affecting developing countries as well as orphan diseases [23,24].

In the era of personalized medicines, AI algorithms can analyze diverse patient
datasets, such as genomics, proteomics, and clinical records, and provide tailored treat-
ments to individual patients based on their genetic makeup, lifestyle factors, and disease
characteristics. This can minimize adverse effects and improve patient outcomes [25–29].

Even though the remarkable progress achieved so far is evident, the integration of AI
into drug discovery and drug delivery is not without challenges. Ethical considerations,
regulatory hurdles, and data privacy concerns continue to pose significant barriers to
widespread adoption. A continued collaboration between researchers, clinicians, industry
stakeholders, and regulatory bodies is pivotal to the powering of AI innovation in the
pharmaceutical field [30].

An understanding of the basic steps involved in developing accurate and precise AI
machine learning workflows is key before implementing them in pharmaceutical industrial
processes (Figure 1). The first and most critical step is data collection and cleaning, as
the quality of a model directly depends on the quality of the data it is trained on. To
maintain data integrity, it is essential to inspect and correct any noise present, whether
in non-image data (e.g., inaccurate entries, missing values) or image data (e.g., artifacts,
uneven illumination). Additionally, the data should be reviewed for potential biases that
might lead to underfitting, or high variance, which can cause overfitting. Overfitting occurs
when the model learns patterns from noise or artifacts in the data rather than the true
signal, resulting in poor generalization to unseen datasets with different biases. Techniques
like cross-validation, expanding the training set, curating predictive features, and using
ensemble methods can help mitigate the risk of overfitting.

Another important step in machine learning workflows is selecting and fine-tuning
the optimal model based on its performance. Model performance is often evaluated using
the Area Under the Receiver Operator Curve (AUROC), which measures the balance
between sensitivity and specificity. Ideally, a good model should achieve high sensitivity
and specificity, though the emphasis on one over the other may vary depending on the
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application. Generally, an AUROC greater than 0.80 is considered good, though the clinical
acceptability of this threshold may differ based on specific use cases. However, there
are limitations to relying solely on AUC. For example, while AUC measures the overall
model performance in a population, it does not reflect confidence in individual predictions.
In cases of class imbalance, where the positive class of interest is much smaller than
the negative class, the Area Under the Precision-Recall Curve (AUPRC) may be a better
performance metric than AUC.
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Figure 1. Schematic representation of the basic steps in machine learning classifier workflows.

After training and testing the model on a dataset—which is typically split into training
and test sets—it is equally important to validate it on independent external datasets to
ensure its stability and generalizability. Model development in AI is not a one-time process;
the model needs to be periodically tested as new datasets become available. Regular main-
tenance is also required to ensure that performance remains robust, especially when faced
with concept drift, which is where the relationship between input and output variables
changes over time in unforeseen ways.

In this review article, we will provide a comprehensive overview of the applications
of AI in the pharmaceutical industry, spanning drug discovery, personalized medicines,
drug safety, and beyond. Through an analysis of current research trends and case studies,
we aim to elucidate the transformative impact of AI on the pharmaceutical industry and its
implications for healthcare delivery.

2. AI in Drug Discovery

Drug discovery is the process through which new pharmaceutical compounds are
identified and developed for market release. This multi-stage process typically takes around
15 years to complete. The first step in drug discovery involves selecting a disease to focus
on and identifying a target that may modify the disease. Next, exploratory research begins,
during which large-scale screening tests help identify HIT molecules—chemical entities
with promising affinity for the target. After further investigation, a molecule is chosen that
binds specifically and selectively to the target and that can modify its normal mechanism of
action. This molecule is called the LEAD compound. The lead compound is then optimized
to enhance its biological activity and improve its ADME properties (absorption, distribution,
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metabolism, and excretion). If a promising compound is identified during screening, the
drug moves into the preclinical (formulation studies and animal testing) and clinical phases.
After the completion of clinical trials, the drug must be approved by regulatory bodies,
such as the Food and Drug Administration (FDA) or the European Medicines Agency
(EMA), before it can be marketed. Once on the market, the drug’s safety will continue to be
monitored through pharmacovigilance throughout its distribution (Figure 2).
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One of the primary challenges in drug discovery is the vast chemical space that must
be explored to identify potential drug candidates. Traditional methods for screening large
compound libraries are labor-intensive, time-consuming, and often result in a limited
number of hits. Nevertheless, AI-driven virtual screening approaches leverage machine
learning algorithms that can rapidly sift through vast datasets of chemical compounds
as well as predict their biological activity against specific drug targets. These algorithms
can analyze structural features, physicochemical properties, and molecular interactions to
prioritize compounds with the highest likelihood of therapeutic efficacy. This can accelerate
the hit-to-lead process optimization significantly.

Additionally, AI algorithms have played a pivotal role in the novo design of drug
molecules with enhanced potency and selectivity. AI can generate optimized molecular
structures targeting a specific biological activity while matching specific pharmacological
and safety profiles by harnessing deep learning models and generative adversarial net-
works (GANs) [31]. GANs can be particularly useful for optimizing molecular structures,
as they can generate novel compounds that target specific biological activities while ad-
hering to pharmacological and safety profiles, thereby accelerating the drug discovery
process. GANs are a type of deep learning model designed to generate new data samples
that resemble a given dataset and consists of two neural networks: the generator and the
discriminator. The first network (the generator) creates new data samples by learning the
distribution of the training data with the aim of producing outputs that are indistinguish-
able from real data. In the context of drug discovery, the generator can create new molecular
structures that mimic existing compounds with desirable properties. The second network
(the discriminator) evaluates the samples generated by the generator and distinguishes
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between the real data from the training set and the fake data created by the generator.
During training, the generator continuously improves its ability to create realistic samples,
while the discriminator becomes more skilled at detecting fakes. This adversarial process
continues until the generator produces samples that the discriminator can no longer reliably
differentiate fake data from real data [32].

Apart from accelerating the identification of lead compounds, AI technologies are
transforming the current landscape on how to optimize new leads and rethink drug
design. In the past, the chemical synthesis of novel compounds has relied on trial-and-error
approaches to iteratively modify lead compounds enhancing their potency, selectivity,
pharmacokinetic, and toxicokinetic profiles. Nevertheless, AI-driven predictive techniques,
such as quantitative structure–activity relationship (QSAR) modeling as well as molecular
docking simulations, have provided new insights into how to predict the biological activity
of novel compounds with great accuracy. The main reason behind this fact is the vast
chemical and biological datasets utilized to generate AI algorithms focused on elucidating
structure–activity relationships, minimizing the cost and the time for lengthy experimental
validation [33]. QSAR models rely on the principle that similar chemical structures exhibit
similar biological activities. QSAR models utilize molecular descriptors, such as molecular
weight, electronegativity, or hydrophobicity, to capture the essential features of the chemical
structure that may influence its biological activity (e.g., binding affinity to a target receptor
or toxicity) [34].

As an example, several AI-powered platforms for drug discovery, such as Atom-
wise [35,36] and BenevolentAI [37], are revolutionizing the current way of finding new
leads by prioritizing specific drug targets with the highest likelihood of therapeutic success,
thereby accelerating the drug discovery process and reducing the risk of failure in clinical
trials. These platforms leverage machine learning algorithms to analyze diverse datasets,
including genomic, proteomic, and clinical data to identify novel therapeutic targets and
predict their druggability [38].

In the last decade, AI-driven drug discovery has yielded promising results across a
wide range of therapeutic fields, such as neuroscience, infectious diseases, oncology, and
rare disorders. For example, DeepMind’s AlphaFold algorithm uses deep learning princi-
ples to demonstrate remarkable accuracy in predicting protein structures, which brings valu-
able insights into protein–ligand interactions [39]. Currently, more than 200 million proteins
have been identified, with many new ones being discovered annually. Each protein pos-
sesses a unique three-dimensional structure that dictates its function and role. However,
determining the precise structure of a protein can be a time-consuming and costly process,
often requiring years of work and substantial financial investment. As a result, scientists
have only been able to study a small fraction of these proteins, significantly hindering
research efforts in disease treatment and drug discovery. Unraveling a protein structure
involves predicting the forces of attraction and repulsion that ultimately define a protein’s
three-dimensional structure. There are several experimental approaches to determine
protein structure, such as nuclear magnetic resonance or X-ray crystallography, but both
require extensive trial and error, years of meticulous work, and expensive specialized equip-
ment. The AlphaFold algorithm has untangled this challenge by predicting protein-folding
and accelerating protein discovery [40].

Another example is Recursion, which also utilizes machine learning algorithms to
screen thousands of compounds in parallel for the treatment of rare genetic diseases. In
doing so, its aim is to accelerate the identification of potential drug candidates and foster
their clinical translation [41]. Recursion is the proprietary of large biological, chemical,
and patient-centric datasets (>50 petabytes) with more than 6 trillion gene and compound
relationships profiled. Recursion’s central mission is based on the Recursion Operating Sys-
tem, a platform powered by one of the world’s largest proprietary biological and chemical
datasets. Instead of looking narrowly at a handful of diseases with existing therapeutic
hypotheses, the Recursion Operating System builds Maps of Biology and Chemistry that
broaden the search to explore unknown areas of disease biology, integrating genomics, pro-
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teomics, metabolomics, transcriptomics, ADME (absorption, distribution, metabolism, and
excretion) drug datasets, phenomics, invivomics, and real-world patient data (Figure 3).
Recursion has several molecules in its pipeline, including an orally bioavailable small
molecule superoxide scavenger developed for the treatment of central cavernous mal-
formation; a novel small molecule designed to selectively inhibit the toxin produced by
Clostridioides difficile in the gastrointestinal tract to prevent recurrent infections, which is
a leading cause of antibiotic-induced diarrhea; and a CNS-penetrant, orally bioavailable,
small molecule pan-Histone deacetylase inhibitor for the treatment of Neurofibromatosis-
type 2-mutated meningiomas [42].
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Despite the significant advances achieved in AI-driven drug discovery, several chal-
lenges remain unresolved. The interpretability of AI models, especially deep learning
models, makes them complex and difficult to understand. This makes extracting the under-
lying mechanisms driving their predictions difficult, limiting their usefulness in guiding
the rational selection of novel drugs. Moreover, a robust data infrastructure and specialized
expertise are crucial elements for the integration of AI technologies into the drug discovery
workflow. On top of this, ethical considerations, such as data privacy and algorithmic bias,
should be taken into consideration to ensure a responsible and equitable use of AI in drug
discovery [25].

3. Machine Learning in Drug Discovery

Machine learning algorithms have emerged as powerful tools in drug discovery, offer-
ing innovative solutions for virtual screening, target identification, and lead optimization.
By leveraging vast datasets of chemical compounds, biological targets, and molecular
interactions, machine learning algorithms can rapidly analyze complex relationships and
predict promising drug candidates with enhanced accuracy and efficiency [43].

3.1. Virtual Screening

Virtual screening is the process by which large compound libraries are computationally
screened for the identification of potential drug candidates. It is a critical step in the
early stages of drug discovery. Traditionally, virtual screening methods were focused
on molecular docking and pharmacophore modeling and were based mostly on rigid
structures and simplified representations of ligand-target interactions that exhibited limited
predictive accuracy. Nowadays, machine learning algorithms offer a more robust and
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flexible methodology for virtual screening, allowing for the analysis of a wide range of
chemical features and the prediction of ligand-target binding with greater precision [15].

The main advantage of machine learning-based virtual screening is its capacity to
learn complex patterns and relationships from large datasets of chemical compounds and
biological targets. The success of a machine learning model is based on the training of
its annotated datasets on known ligand-target interactions. Aiming a machine learning
algorithm at this can allow it to identify subtle structural motifs and physicochemical
properties associated with binding affinity, allowing for an accurate prediction of ligand-
target interactions from novel compounds. Also, machine learning algorithms can bring
together a wide range of information, such as protein structure data, gene expression
profiles, the physicochemical properties of drugs, and drug-induced phenotypic changes,
to improve the predictive performance of virtual screening models [44]. Among the most
commonly used machine-learning approaches successfully applied to virtual screening are
support vector machines (SVMs), random forests, and deep-learning models.

3.2. Target Identification

Identifying suitable drug targets is an important step during drug discovery as it
establishes the biological pathway and molecular mechanisms that can be modulated
to achieve therapeutic effects. Machine learning algorithms play a vital role in target
identification. By analyzing diverse datasets of genomic, proteomic, and clinical data, these
algorithms identify potential disease-associated targets and prioritize them for further
investigation [45].

One of the main challenges in target identification is the vast amount of biological data
available, including gene expression profiles, protein–protein interaction networks, and
disease phenotypes. Machine learning algorithms offer a scalable and efficient approach to
analyzing complex datasets and aim to identify patterns and associations that may not be
apparent through traditional statistical techniques. By applying dimensionality reduction
techniques, such as principal component analysis (PCA) and t-distributed stochastic neigh-
bor embedding (t-SNE), machine learning algorithms can uncover hidden relationships
between biological entities and identify potential drug targets based on their expression
patterns, functional annotations, and disease associations [13].

Moreover, machine learning algorithms can integrate several sources of data to prior-
itize candidate drug targets based on their druggability, safety profiles, and therapeutic
relevance. In this sense, the Drug Gene Interaction Database (DGIdb) uses machine learning
algorithms to curate and annotate known drug–gene interactions from diverse sources,
thereby allowing for the identification of drug targets from known interactions from ap-
proved drugs and experimental compounds [46]. The connectivity map (CMAp) also uses
machine learning algorithms to analyze gene expression profiles from drug-treated cells
and to identify potential targets based on their transcriptional signatures and functional
annotations [47]. The connectivity map was developed to fill a gap related to the lack of
methods available for systematically determining the cellular effects of a given compound
as well as the unexpected off-target activities which may only be discovered late in the drug
development process that could limit the compound’s clinical use. Based on this need, the
connectivity map developed a comprehensive catalog of cellular signatures representing
systematic perturbations with genetic and pharmacologic perturbagens. Signatures with
high similarity might represent useful and previously recognized connections between two
proteins operating in the same pathway, between a small molecule and its protein target, or
between two small molecules of similar function but structural dissimilarity. Such a catalog
of connections could serve as a functional look-up table for the genome [47].

3.3. Lead Optimization

Once potential drug candidates have been identified, lead optimization serves to
improve their potency, selectivity, and pharmacokinetic properties through iterative chem-
ical modifications. Traditionally, lead optimization relied on labor-intensive and time-
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consuming experimental approaches, such as high-throughput screening, which often
resulted in suboptimal compounds and costly failures. Machine learning algorithms offer a
more systematic and data-driven approach to lead optimization, allowing for the prediction
of the biological activity and drug-like properties of novel compound analogs with greater
precision and efficiency.

The application of machine learning-based lead optimization makes it possible to
learn from large databases of chemical structures and biological activities to predict the
structure–activity relationships (SARs) underlying drug-target interactions. By training
predictive models on annotated datasets of known compound activities, machine learning
algorithms can identify molecular features and substructures that contribute to the desired
biological effects, guiding rational design decisions and minimizing the need for costly and
time-consuming experimental validation. Among the machine learning approaches, QSAR
modeling and GANs have gained in popularity. In this sense, the DeepChem framework
uses deep learning algorithms to learn molecular representations directly from chemical
structures and to predict the biological activities of new compound analogs with high
accuracy [48]. Schrödinger’s Maestro platform performs molecular docking simulations
and predicts the binding affinities of new compounds to target proteins and to prioritize
lead candidates for further optimization [49].

By leveraging vast datasets of chemical compounds, biological targets, and molecular
interactions, machine learning algorithms have shown great potential in rapidly analyzing
complex relationships and predicting promising drug candidates with enhanced accuracy
and efficiency. In Table 1, a summary of software platforms is provided.

Table 1. Summary of software platforms that utilize AI techniques, such as deep learning, predic-
tive modeling, and virtual screening, to accelerate various stages of the drug discovery and drug
development process.

Software Platform Description Key Features Ref.

DeepMind AlphaFold
(Google, Mountain View, CA, USA)

https://deepmind.google/technologies/alphafold/, accessed on
10 October 2024

Deep learning model
for protein structure

prediction

Predicts protein
structures with high

accuracy
[39]

Atomwise
(Atomwise Inc., San Francisco, CA, USA)

https://www.atomwise.com/, accessed on 10 October 2024

AI-driven drug
discovery platform

Virtual screening,
lead optimization [36]

Recursion Pharmaceuticals
(Recursion, Salt Lake City, UT, USA)

https://www.recursion.com/, accessed on 10 October 2024

High-throughput
screening platform

Cellular phenotypic
analysis, rare

diseases
[41]

BenevolentAI
(Benevolent AI, London, UK)

https://www.benevolent.com/, accessed on 10 October 2024

Drug discovery and
development

platform

Predictive modeling,
target identification [37]

Schrödinger Maestro
(Schrödinger, New York, NY, USA)

https://www.schrodinger.com/, accessed on 10 October 2024

Molecular modeling
and simulations

Molecular docking,
QSAR modeling [49]

Insilico Medicine
(Insilico Medicine, Hong Kong)

https://insilico.com/, accessed on 10 October 2024

Drug discovery and
biomarker

development

Generative
modeling, drug

repurposing, and
aging research

[50]

XtalPi
(QuantumPharm Inc., Boston, MA, USA)

https://www.xtalpi.com, accessed on 10 October 2024

AI-driven drug
crystal prediction

Predicts drug crystal
forms, stability [51]

Cyclica
(Cyclica, Toronto, ON, Canada)

https://cyclicarx.com/science/, accessed on 10 October 2024

AI-driven drug
discovery platform

Polypharmacology
prediction, target

deconvolution
[52]

https://deepmind.google/technologies/alphafold/
https://www.atomwise.com/
https://www.recursion.com/
https://www.benevolent.com/
https://www.schrodinger.com/
https://insilico.com/
https://www.xtalpi.com
https://cyclicarx.com/science/
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4. AI in Predictive Modeling and Personalized Medicine and Formulation
4.1. AI and Personalized Medicines
4.1.1. Prediction of Drug Responses and Optimization of Treatment Regimens

Machine learning and deep learning, particularly support vector machines, random
forests, and neural networks, have become essential tools in predicting drug responses.
More specifically, they have become essential tools for predicting how different patients
will respond to specific drugs based on their unique biological characteristics . This can be
integrated due to the vast amounts of biomedical data, including genomics, proteomics, and
metabolomics, to identify potential biomarkers associated with drug efficacy and safety [53].
These models can guide clinical decisions on the most appropriate medications for patients,
reducing the risk of adverse effects and improving overall treatment outcomes [54].

The optimization of treatment regimens can be also integrated within machine learning
tools. By continuously learning from patient responses, AI algorithms can adjust dosing
regimens in real-time, ensuring maximum efficacy while minimizing side effects. This
has been applied to optimize chemotherapy dosing schedules in cancer treatments. AI
can integrate data from multiple sources, such as electronic health records, clinical trials,
and real-world evidence, to develop personalized treatment regimens. These plans are
dynamic and are updated as new information becomes available, offering a more flexible
and responsive approach to patient care [55,56].

The ability to identify patients who are most likely to benefit from a specific therapy
can significantly reduce the risks of poor clinical outcomes and help lower treatment costs.
This is particularly relevant for checkpoint inhibitor immunotherapies, where the overall
response rates are relatively low (~20%), but certain patients experience exceptional, long-
term benefits. Although the use of AI in this area has been limited due to data scarcity,
it is gradually expanding [57]. Liu et al. developed a logistic regression-based classifier
trained on genomic, transcriptomic, and clinical data from treatment-naïve patients to
predict resistance to PD-1 inhibitors in advanced melanoma patients [58]. Johannet et al.
introduced a more advanced AI method, using convolutional neural networks trained
on histopathology slides along with patient clinical characteristics to predict checkpoint
immunotherapy responses in advanced melanoma patients [59].

It is also crucial to quickly determine if a current therapy is ineffective for a patient so
that clinicians can adjust or switch treatments in time. In clinical practice, cancer progression
and treatment response are typically monitored by manually reviewing pathology or
radiology images to assess tumor shrinkage and detect new lesions. However, this manual
evaluation can be particularly challenging with checkpoint inhibitor immunotherapies,
where disease progression patterns are often atypical [57]. To address this, Dercle et al.
demonstrated the potential for using machine learning to train models on treatment-
specific features to predict responses to different cancer therapies. They used an ensemble
of six machine learning algorithms to predict patient sensitivity (defined as progression-
free survival beyond the population median) to chemotherapy, targeted therapy, and
immunotherapy by analyzing quantitative features from longitudinal CT scans of non-
small cell lung cancer patients [60].

Beyond monitoring treatment responses, machine learning models like CURATE.AI
offer dynamic options to adjust drug dosages for single or combination therapies, allowing
for the tailoring of treatment to individual patients using time-specific data points [61].
Although cell lines can be imperfect models due to genetic drift or cross-contamination,
they provide AI models with extensive data for learning. Pre-processing, such as cell line
authentication or validation with in vivo data, is often necessary to minimize noise in
these datasets. In one study, Iorio et al. assessed the response of 1001 cancer cell lines to
265 anti-cancer compounds to build Elastic Net models that translated genomic features,
like mutations and gene expression, into drug efficacy predictions, thereby achieving
accurate results [62].
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A major limitation of AI learning models is their lack of interpretability regarding
the biological mechanisms driving predictions. To overcome this, Kuenzi et al. developed
DrugCell, an interpretable deep learning model that uses a visible neural network that
mirrors known biological processes. By combining this with an artificial neural network
designed to model a drug’s chemical structure, the model was able to accurately predict
drug responses while also providing insights into the mechanisms driving the responses.
Additionally, this approach was used to predict synergistic drug combinations and these
predictions were able to be validated through patient-derived xenograft models [63].

4.1.2. Tailoring Treatments to Individual Patients Based on Their Genetic Makeup,
Lifestyle, and Other Factors

Personalized medicine is an approach that tailors medical treatment to the individual
characteristics of each patient. One of the key applications of AI in personalized medicine
is pharmacogenomics, the science focused on investigating how genes affect a person’s
response to drugs. Making use of AI algorithms, a patient’s genetic makeup can be used to
predict their response to different medicines, and hence can guide the selection of the most
appropriate drug and dosage. For instance, AI models have been applied to predict patient
responses to antidepressants based on genetic variation, helping clinicians to prescribe
tailored psychiatric medications [64]. Identifying the most suitable antidepressant for a
patient with a major depressive disorder is often challenging and it typically involves a
trial-and-error approach. Machine learning offers a promising avenue for personalizing
antidepressant prescriptions. However, while this is promising, its clinical utility remains
limited and models need to be refined to consider other factors beyond effectiveness
alone [65,66].

Beyond genetic information, AI also takes into consideration lifestyle factors, patient
preferences, and environmental factors when tailoring treatments. Wearable devices and
mobile health apps can collect real-time data on a patient’s physical activity, diet, sleep
patterns, and other lifestyle factors. Analyzing all these data can provide insights into
how these factors influence drug efficacy and disease progression [67,68]. Similarly, AI
algorithms can incorporate social determinants of health, such as socioeconomic status,
education, and access to healthcare, to provide a more comprehensive view of patient
health. Bearing in mind all these factors, AI enables a holistic approach to personalized
medicines, targeting customized treatments not only based on genetic factors but also
taking into account the broader context of a patient’s life [69–71]. Machine learning models
allow us to identify patient’s preference patterns as well. For example, a multivariate
analysis detected a relationship between the pharmaceutical characteristics of ibuprofen
tablets and patient preferences for those with shorter disintegration times and hence a
faster onset of action [72].

4.2. AI in Formulation and Drug Delivery

The pharmaceutical industry has long grappled with the complexities of drug for-
mulation and delivery. Traditional methods often involve time-consuming and costly
trial-and-error processes to optimize formulations and delivery mechanisms [73–75]. Pre-
dictive models generated by AI are applied to optimize drug formulations, ensuring that
active ingredients are delivered to the target site in the body with maximum efficiency.
For instance, AI algorithms can predict the release profile of a drug from a particular
formulation, allowing for the design of controlled-release drug formulations that provide
a steady therapeutic effect over time (Figure 4). Similarly, AI can also be applied in the
design of drug delivery systems, including nanoparticles and liposomes, which can deliver
drugs directly to specific cells or tissues. By predicting how these systems will interact with
the body, the development of more effective and targeted drug-delivery technologies can
be implemented [76,77].
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4.2.1. Optimization of Excipients and Drug Combinations and Compatibility

Excipients play a crucial role in determining the stability, bioavailability, and overall
efficacy of pharmaceutical formulations. Traditionally, choosing the right combination of
excipients involves extensive experimentation. AI-driven models, particularly machine
learning algorithms, can analyze vast datasets to predict optimal excipient combinations
that enhance drug performance. By building the correct dataset, AI models can successfully
predict the optimal concentration of excipients required to achieve the desired disintegra-
tion and dissolution time [78,79].

The integration of AI into 3D-printed dosage forms has transformed pharmaceuti-
cal manufacturing, enabling personalized medicine and improving drug delivery sys-
tems [80,81]. The 3D printing of medicines allows a high versatility that cannot be achieved
with conventional techniques, but its implementation in clinical practice is very challenging
due to the complexity of fabrication and ensuring fine dose control without drug degra-
dation [82–86]. AI algorithms can tailor the design and formulation of 3D-printed dosage
forms to individual patient factors, such as age, weight, and medical history, resulting in
customized drug therapies. AI can analyze extensive datasets and simulate the behavior
of these dosage forms, facilitating rapid prototyping and the optimization of drug release
profiles, dosage strengths, and geometries. Additionally, AI helps predict and address po-
tential manufacturing challenges by optimizing printing parameters and ensuring quality
control. AI-driven feedback systems further enhance the 3D-printing process by learning
from real-time data, which improves accuracy, reproducibility, and scalability [87–90].

AI models can be also applied to understand and predict interactions between drugs
and excipients which are key to ensuring stability and efficacy as well as preventing po-
tential incompatibilities. Beyond real-time stability studies, conventional analytical tools,
such as DSC, FTIR, NMR, and chromatography, are commonly used to detect potential
drug–excipient interactions [91]. PubChem Fingerprint can be utilized as a dataset to
represent the chemistry of both drugs and excipients comprehensively. DE-INTERACT
is a machine-learning-based predictive tool for the study of drug–excipient interactions
during product development [92]. Validation of the tool has been demonstrated through
paracetamol and vanillin as a case study. The trained DE-Interact model achieved training
and validation accuracies of 0.9930 and 0.9161, respectively. The model’s performance was
validated by confirming three predicted incompatibilities using conventional analytical
tools: paracetamol with vanillin, paracetamol with methylparaben, and brinzolamide
with polyethyleneglycol. DSC, FTIR, HPTLC, and HPLC analyses confirmed these predic-
tions [92]. Machine learning models can also be applied to the prediction of the critical



Pharmaceutics 2024, 16, 1328 12 of 27

quality attributes of solid dosage forms and their impact on the physicochemical perfor-
mance of the formulation, depending on the manufacturing technique used [93].

4.2.2. Enhancing Solubility and Bioavailability

The solubility and bioavailability of drugs are critical factors that determine their
therapeutic effects. Drugs with poor water-solubility often face challenges in achieving
sufficient bioavailability, as they may not dissolve adequately in the gastrointestinal tract,
leading to reduced oral absorption and, consequently, lower therapeutic effectiveness.
This issue is prevalent in nearly 40% of newly developed chemical entities, making it a
significant hurdle in drug development

The prediction of drug solubility in aqueous media is a keystone during the earlier
steps in the development process and can serve to guide the right solubilization strategy.
In this case, machine learning models are trained on a large dataset of molecular properties
and solubility data with the aim of identifying patterns that may not be apparent through
conventional approaches [94–96]. Once a drug candidate is identified with a poor solubility
profile, AI models are utilized to assist in the design of formulation strategies to enhance
its solubility, such as solid dispersions, complexation, nanonization, and use of surfactants
or co-solvents. Ultimately, bioavailability is the critical parameter influenced by several
factors—not only aqueous solubility, but also, dissolution rate, permeability, and first-pass
metabolism. Machine learning models can integrate data from in vitro, in vivo, and in silico
studies to predict how a drug may behave in the human body, predicting its absorption
rate and pharmacokinetic and bioavailability profile [97,98].

4.2.3. AI in Designing Nanocarriers and Targeted Delivery Systems

Nanomedicines require the use of nanocarriers including liposomes, nanoparticles,
dendrimers, polyplexes, transferosomes, and nano self-emulsifying systems, among others.
Nanocarriers are used with the aim of targeting drugs to a specific region of the body at
higher concentrations, thereby maximizing the drug’s efficacy and lowering its adverse
effects on other areas [99–104]. This is of particular importance for targeting drugs towards
cancer cells or infectious diseases, and also when triggering drugs with a poorly physico-
chemical profile through different physiological barriers such as the blood–brain barrier,
stratum corneum, or intestinal epithelium [105–108].

The development of effective nanomedicine-based drug delivery systems is complex
and requires the careful consideration of numerous factors, such as nanoparticle size, shape,
surface change, and material composition, as these play a key role in the circulation time,
cellular uptake, and biodistribution. For example, the smaller the size, the longer the circu-
lation time with higher penetration in the deeper tissues, while rod-shaped or elongated
particles might exhibit enhanced cellular uptake compared to spherical ones [108–110].
Conventional approaches to designing and optimizing nanomedicines are often labor-
intensive and involve extensive experimentation. AI models come in as a transformative
tool, streamlining the design, optimization, and delivery of nanomedicines. By training the
model on experimental data, AI algorithms can identify nanoparticle designs that maxi-
mize tumor targeting and minimize off-target effects [111]. Also, AI models can predict the
most effective ligand combinations by analyzing data on receptor expression patterns and
focusing on those ligands with the greatest binding affinity, thereby improving precision
and effectiveness [112].

4.2.4. AI in Microfluidic Chip Design for Advanced Nanomedicine Fabrication

Microfluidic devices are miniature fluidic circuits designed to manipulate liquids at the
nanoliter scale. The precise control of process parameters provided by microfluidics enables
exceptional optimization of nanomedicine quality and encapsulation efficiency [80,113,114].
The integration of AI into the design and optimization of microfluidic chips has further
accelerated advancements, allowing for enhanced performance, reduced development
time, and cost-effective production. Machine learning models can predict the outcomes
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of microfluidic processes based on input parameters like flow rates, channel dimensions,
and reagent concentrations. AI can accelerate Computational Fluid Dynamics simulations
by predicting flow patterns and mixing efficiencies within microfluidic channels. Sur-
rogate models can approximate complex simulations, drastically reducing computation
time. Using experimental data, AI models can learn the underlying physics of microfluidic
processes, enabling accurate predictions without explicit physical modeling. AI can gener-
ate innovative microfluidic architectures optimized for specific nanomedicine fabrication
processes [115]. Ultimately, integrating AI with sensors on microfluidic chips allows for the
real-time monitoring of nanomedicine fabrication, detecting anomalies, predicting failures,
and adjusting parameters on the fly to ensure consistent product quality [116,117].

4.2.5. Challenges and Future Directions

While AI offers promising avenues in drug formulation and drug delivery, several
challenges have been encountered, including: (i) data quality and availability, considering
that high-quality data and comprehensive datasets are essential for training effective
AI models; (ii) model interpretability as AI models are complex and often function as
“black boxes”, making it a challenge to interpret their decision-making process, this being
essential for enhancing model transparency for regulatory acceptance and clinical trust; and
(iii) regulatory considerations as the integration of AI into pharmaceutical development has
already raised questions about the establishment of guidelines and standards for AI-driven
methodologies to ensure safety and efficacy.

5. Examples of AI Applications in the Pharmaceutical Industry

AI is profoundly transforming the pharmaceutical manufacturing process, from the
selection of excipients and synthesis route prediction to process optimization, drug design,
supply chain, and preventive maintenance, amongst others. The use of AI in pharmaceutical
companies has the potential to save significant amounts of both money and time across
various stages of drug discovery and development.

AI accelerates hit identification, lead optimization, and preclinical testing by identi-
fying compounds more quickly and accurately predicting their effects. AI-driven tools
can streamline the drug discovery phase, which traditionally takes around 3–6 years. By
predicting drug efficacy, toxicity, and optimal molecular structures more efficiently, AI can
reduce this timeframe by 1–2 years. The cost of drug discovery can account for 35% of the
total cost of developing a new drug, which averages around $2.8 billion [118]. AI can help
cut drug discovery costs by reducing the number of compounds tested and improving the
success rates of early-phase trials.

AI can also assist with the optimization of clinical trial designs, including patient
recruitment, patient monitoring and reducing the length and expense of clinical trials. AI
can also reduce the time needed to conduct clinical trials by automating data collection and
analysis, allowing for a more efficient monitoring of patient outcomes. This has cut the
length of trials by 15 to 30 percent [119]. By predicting adverse effects earlier and optimizing
dosing strategies, AI can also cut down the time it takes for drugs to move from Phase I to
Phase III. Molecules identified through AI have demonstrated higher success rates in early-
stage clinical trials compared to those discovered via traditional methods. Phase 1 trials for
AI-discovered drugs have achieved success rates between 80–90%, which is significantly
higher than the historical industry averages of 40–65%. For Phase 2 trials, the success rate
for AI-discovered molecules is around 40%, which is comparable to historical averages.
It is expected that if these trends continue into phase 3 and beyond, the pharmaceutical
industry could see an increase in the probability of a molecule successfully navigating all
clinical phases from 5–10% to 9–18% [120].

Estimates show that the integration of AI can reduce costs and speed up processes in
several ways, highlighting its potential to improve efficiency, reduce costs, and accelerate
drug development (Table 2 & Figure 5). As AI technologies continue to advance, their
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integration into pharmaceutical manufacturing will likely become even more ubiquitous,
driving innovation and improving patient outcomes.
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5.1. Target Identification

The first step in the pharmaceutical company’s pipeline is to identify an accurate
target. This process can be speed up with the use of AI tools. The Centre for Genomics
Research at AstraZeneca will have analyzed up to two million genome sequences by 2026.
With this vast dataset, AstraZeneca hopes to identify variants, genes, pathways, or other
parts of the genome that are likely to cause disease and predict its progression and response
to treatment. Using AI algorithms, new drug targets can be identified to design better
medicines. This plays a key role in CRISPR gene-editing technology. Knowing what
roles genes play in biology, CRSIP technology can be used to identify which genes when
deleted lead to resistance or sensitization to cancer medicines. To get the most from every
experiment, machine learning and deep learning models have been used to analyze the
image-based outputs of CRISPR screens [121].

5.2. Drug Design

After the identification of a suitable target, AI algorithms can be applied in drug
design by predicting the molecular structures and properties of potential drug candidates.
By analyzing a vast biological dataset, machine learning models can identify druggable
targets and design molecules with the ability to interact with the targets possessing the
desired pharmacological properties. In silico Medicine is a biotechnological company that
has developed a novel drug candidate for idiopathic pulmonary fibrosis in just 18 months
using an in-house AI algorithm after screening billions of molecules and identifying a
promising candidate that moved on into preclinical trials [50,122].

5.3. Compound Selection

Afterwards, AI algorithms can be applied to analyze large libraries of chemical com-
pounds to identify those with the highest potential as drug candidates, including properties
such as solubility, permeability, and toxicity. After predicting the drug structure, the can-
didate that would be the best can be determined, considering also its physicochemical
properties for administration in the body. Exscientia is specialized in AI-driven drug dis-
covery. They have designed EXS4318, a protein Kinase C-theta inhibitor that was licensed
by Bristo Myers Squibb in 2023. PKC-theta plays a crucial role in controlling T-cell function,
which is a major driver of autoimmune diseases. It is well known that PKC-theta inhibitors
have potential in inflammatory and immunologic diseases. However, several large pharma
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companies have failed to design a small molecule with enough potency and selectivity
against other closely related kinases. Exscientia’s AI algorithms have allowed them to
design a highly potent and highly selective next-generation immunomodulatory drug
candidate within just 11 months (150th molecule synthesized) [123].

5.4. Synthesis Route Prediction

Prediction of the synthetical route in pharma companies can be a tedious and long
process before optimization. IBM has developed an AI-based retrosynthesis tool called
“RXN for Chemistry”, which uses deep learning to predict chemical reaction pathways.
This tool has been used by pharmaceutical companies to streamline the synthesis of com-
plex molecules, reducing the time required to develop them. RXN for Chemistry uses AI
to predict the outcomes of chemical reactions, retrosynthesis pathways, and experimental
procedures based on molecular transformer models trained on 2.5 million chemical reac-
tions. Molecular Transformer makes predictions by inferring the correlations between the
presence and absence of chemical motifs in the reactant, reagent, and product present in
the dataset. This class of models is flexible, non-rule-based, and scalable [124,125].

Two key issues arise in single-step retrosynthesis: (i) identifying the reaction center of
the product, and (ii) generating the appropriate reactants and reagents once the reaction
center is determined [126]. The first issue relates to replicating the decision-making process
of a chemist when determining the disconnections in a target molecule. This task is
difficult, as multiple decomposition pathways are often possible, and the best synthetic
route depends on the overall structure of the route. Chemists rely on basic principles to
intuitively prioritize bond breaking, but these rules are complex and poorly generalized
across different products. For machines, a target molecule can have multiple reaction
centers, allowing for various potential reactions, which leads to significant challenges for
both model fitting and evaluation. The second issue involves identifying the necessary
components for the reaction. Once the reaction center is defined, the target molecule can
be broken down into synthons. Transforming these synthons into valid reactants and
reagents is a complex task that must meet three levels of validity: (i) the generated reactants
must adhere to correct chemical rules, so they must form valid molecules; (ii) the reaction
from reactants to the product must be chemically feasible, considering factors such as the
reaction center’s selectivity, the reagents used, reaction conditions, electronic effects, steric
hindrance, and molecular orbital theory; and (iii) all atoms in the target product must map
to those in the reactants, following the law of the conservation of atoms [127,128].

Additionally, the approach for generating reactants varies based on molecular repre-
sentations; graph-based methods are prioritized for graph representations, while sequence-
based methods align well with SMILES representations.

However, the ultimate goal of retrosynthesis planning is to generate a complete
multi-step route. Fewer novel algorithmic efforts have been made to tackle the highly
challenging task of multi-step retrosynthesis prediction that leads to commercially available
building-block materials. Several key challenges arise in designing and evaluating effective
retrosynthesis planning models. First, the search space for possible retrosynthesis plans
is exponentially large, as each step toward the target molecule can be synthesized from
hundreds of potential reactants. Second, the criteria for what constitutes a good synthetic
route are often ambiguous and can vary depending on the context. For instance, in
industrial settings, factors like stability and cost are prioritized, while in academia, the
novelty and ability to tackle complex molecular structures are more important. Moreover,
there are few publicly available datasets for retrosynthesis routes, and researchers often
rely on hand-crafted routes to evaluate retrosynthesis algorithms. Therefore, AI-driven
retrosynthesis planning is essential for accelerating route discovery in different contexts
and automating the evaluation process [127,129].
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5.5. Robotic Synthesis

Once, the synthetic route has been predicted and optimized, AI-driven robotics in
pharmaceutical synthesis can automate the synthesis of chemical compounds, enabling
high-throughput experimentation and faster drug discovery. Robotic systems when inte-
grated with AI can carry out complex chemical reactions, monitor processes in real-time,
and adjust parameters for optimal results. The University of Glasgow has developed
Chemputer, a robot scientist guided by AI algorithms to automate the synthesis of drug
molecules, which allows for a speeding up of the drug development process, making it
useful tool in the synthesizing of small molecules [130,131].

5.6. Process Optimization

Once, the drug is formulated, the manufacturing process can be optimized to reduced
cost and time using AI tools. AI algorithms can be used to optimize manufacturing
processes by gathering data from production lines to identify inefficiencies and recommend
improvements such as optimal reaction conditions, mixing processes, and the scaling up
from lab to industrial processing. Pfizer implemented AI-driven process optimization in the
production of its COVID-19 vaccine. By using AI to analyze data from the manufacturing
process, Pfizer was able to improve yield and reduce production time, ensuring a steady
supply of vaccines during the pandemic [132].

Pfizer also used machine learning algorithms to predict product temperatures and
enable preventative maintenance for the over 3000 freezers that store the vaccine doses
using sensors to track and monitor vaccine deliveries and temperatures with near-perfect
precision. Additionally, supercomputing was used to run molecular dynamics simulations
to identify the best mix of lipid nanoparticle features for decreasing allergic responses,
resulting in a vaccination that was both safe and effective [133].

5.7. Continuous Manufacturing and PAT Technology

In contrast to batch manufacturing, continuous processes involve a constant flow of
raw materials into the equipment, with the product being continuously discharged. The
materials move through the system without interruption, eliminating any idle time between
the various technological steps [134]. AI algorithms can be used to enhance several facets of
pharmaceutical production from raw material sourcing to final product packing. This can
ensure efficiency, cost-effectiveness, and high-quality output. Pharmaceutical companies
have applied AI in continuous manufacturing processes for small molecules. AI systems
can gather in situ information from probes connected in line, such as Raman or NIR, which
monitor production parameters in real-time and make adjustments to maintain optimal
conditions, resulting in a significant increase in manufacturing efficiency [135].

5.8. Digital Twin Technology

The manufacturing process can be easily replicated at different manufacturing sites
using AI tools. Digital Twin technology, powered by AI, involves creating a virtual replica
of the manufacturing process. This digital model mirrors the physical process in real-time,
allowing manufacturers to simulate, monitor, and optimize without disrupting actual
operations. Johnson & Johnson is leveraging digital twins to increase its speed to market.
By testing products in one factory and utilizing a digital twin in another, the company can
compare how the two manufacturing processes integrate [136].

5.9. Predictive Maintenance

AI-driven predictive maintenance involves analyzing data from equipment sensors
to forecast when maintenance is required [137]. This approach helps prevent unexpected
breakdowns by scheduling maintenance activities proactively. This application has reduced
downtime and maintenance costs by accurately predicting equipment issues before they
occurred. This approach is already implemented by many Pharma companies such as
Pfizer [138].
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5.10. Supply Chain Optimization

AI optimizes the pharmaceutical supply chain by predicting demand, managing inven-
tory levels, and streamlining logistics. Machine learning models analyze market trends and
performance data to ensure efficient supply chain operations. Novartis used AI to improve
its supply chain logistics. By employing AI, Novartis enhanced inventory management
and reduced operational costs, ensuring a more reliable supply of materials and products.
The Buying Engine was designed to streamline and centralize purchasing decisions across
Novartis, enhancing procurement efficiency. This algorithm-based platform serves as a
“one-stop-shop”, initially focusing on lab supplies, PPE, and spare parts (indirect material).
The system aims to provide transparency and recommend optimal purchasing options
in near real-time by leveraging advanced techniques, such as knowledge representation,
recommender systems, optimization, and machine learning algorithms [139].

5.11. Medical Imaging

For several years, Bayer has been using natural language processing, the technology
behind large language models like GPT. This language plays a key role in medical coding,
where the information collected by physicians in case reports must be translated into
standardized terms and categories that can be analyzed and reviewed. To do this manually
is a very time-consuming process. Bayer is the proprietor of a large language model that
can process vast amounts of medical information with 96% accuracy and has currently
processed millions of terms since 2017 [140]. Bayer is applying AI-driven technology in
the field of radiology. Working with Blackford Analysis, a recently acquired imaging
AI platform, Bayer has launched Calantic Digital Solutions which has been designed to
support radiologists by automating time-consuming tasks, accelerating workflows, and
enabling improved detection. The use of AI algorithms allows for a reduced workload and
the delivery of faster decisions to patients [140].

Table 2. Examples that highlight the diverse applications of AI in the industrial manufacturing
process of medicines and excipient selection, include synthesis route prediction, robotic synthesis,
drug design, formulation optimization, compound selection, process optimization, data analysis,
manufacturing optimization, process development, and excipient screening.

AI Application Overview Case Example Reference

Synthesis Route
Prediction

AI predicts optimal synthetic routes for APIs,
analyzing chemical databases and literature to

propose efficient pathways

IBM’s “Rxn for Chemistry” tool
predicts chemical reaction pathways,

used to streamline synthesis.
[124,125]

Robotic Synthesis
AI-driven robotics automate chemical synthesis,
enabling high-throughput experimentation and

faster drug discovery.

The “Chemputer” from the University
of Glasgow automates drug

molecule synthesis.
[130,131]

Drug Design
AI predicts molecular structures and properties

of potential drug candidates, identifying
druggable targets.

Insilico Medicine designed a novel
drug for idiopathic pulmonary fibrosis

using AI in just 18 months.
[50,122]

Drug Discovery

AI algorithms along with CRSIP technology
enable the identification of which genes when

deleted lead to resistance or sensitization to
cancer medicines

AstraZeneca used AI to CRISPR
gene-editing technology to identify

new targets and make better medicines.
[121]

Compound Selection
AI analyzes chemical libraries to identify

promising drug candidates based on properties
like solubility, permeability, and toxicity.

Exscientia used AI to identify a novel
compound for treating inflammatory

and immunomodulatory diseases.
[123]

Process
Optimization

AI optimizes manufacturing processes by
analyzing data from production lines to identify

inefficiencies and recommend improvements.

Pfizer used AI to improve yield and
reduce production time for its

COVID-19 vaccine manufacturing.
[132,133]
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Table 2. Cont.

AI Application Overview Case Example Reference

Continuous
Manufacturing and

PAT Technology

AI-driven optimization enhances various facets
of pharmaceutical production, from raw material

sourcing to final product packaging.

Pharmaceutical companies applied AI
in continuous manufacturing,

increasing efficiency.
[135]

Medical imaging

AI algorithms have been designed to support
radiologists by automating time-consuming
tasks, accelerating workflows, and enabling

improved detection.

Bayer is using AI algorithms for
reduced workload and delivering faster

decisions to patients.
[140]

Digital Twin
Technology

AI creates a virtual replica of the manufacturing
process (digital twin) to simulate, monitor, and

optimize processes in real-time without
disrupting actual production.

Johnson & Johnson used digital twins
to simulate and optimize their

production processes,
improving efficiency.

[136]

Predictive
Maintenance

AI models analyze equipment sensor data to
predict when maintenance is needed, helping to

avoid unexpected breakdowns and schedule
maintenance activities effectively.

Pfizer used AI for predictive
maintenance in its manufacturing
facilities, reducing downtime and

maintenance costs.

[138]

Supply Chain
Optimization

AI optimizes the pharmaceutical supply chain by
predicting demand, managing inventory, and

optimizing logistics based on market trends and
performance data.

Novartis employed AI to manage
supply chain logistics, leading to better

inventory management and
reduced costs.

[139]

5.12. Future Perspectives and Conclusions

AI is rapidly transforming the pharmaceutical industry, revolutionizing various facets
from drug discovery, drug development, personalized medicines and many others. The
integration of AI technologies promises to enhance efficiency, reduce cost and overall
improve medicines and the health of patients, but at what cost?

The future of drug discovery is expected to be increasingly dominated by AI-driven
approaches and will continue to advance, enabling more accurate predictions of drug-target
interactions and a better understanding of disease physiopathology. AI models will be
trained with larger biomedical datasets, including genomics, proteomics, metabolomics,
and clinical trial information from patients to identify novel drug candidates as well as
to optimize drug design reducing the risk of failure during clinical trials [4,13,141–148].
Additionally, AI has the potential to revolutionize clinical trials per se by improving pa-
tient recruitment, monitoring, and enhanced data analysis considering that advanced
algorithms will enable the identification of suitable candidates based on genetic and phe-
notypic profiles ensuring that trials are conducted with the most appropriate cohort of
participants [149–159].

AI will continue to drive the growth of personalized medicines by leveraging Big Data
to tailor treatments to individual patients. Due to the ability to analyze genetic, environ-
mental, and lifestyle data, the development of highly personalized treatment plans will
continue to be widely implemented, addressing the specific needs of each patient [90,160].

AI-driven technologies will impact the pharmaceutical manufacturing processes
which will benefit significantly from enhanced process optimization, quality control,
and predictive maintenance, among others [161–170]. This implementation will allow
for more efficient and scalable manufacturing processes, reducing costs and improving
product consistency. AI-driven digital twins will simulate and optimize manufacturing
processes in real-time, while predictive maintenance algorithms will prevent equipment
failures and minimize downtime, facilitating more agile and responsive manufacturing
operations [171–173].

Regarding AI-driven pharmacovigilance [174,175], AI will play a crucial role in im-
proving drug safety by analyzing post-market surveillance data and identifying adverse
drug reactions more efficiently, enabling faster responses to safety concerns and more in-
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formed decision-making regarding drug withdrawals or label changes [176,177]. Advanced
natural language processing and machine learning models will extract valuable insights
from electronic health records and social media, allowing for the detection and prediction
of safety issues.

Finally, regulatory and ethical considerations will become by far more important
as AI technologies become more integrated into pharmaceutical practices to ensure the
transparency, fairness, and accountability of AI systems as well as maintain trust and
compliance within the industry [178–186]. This makes necessary the implementation of
regulatory frameworks that address the challenges associated with AI, including data
privacy, algorithm bias, and the validation of AI-generated results.

For example, the HIPAA Privacy Rule in the U.S. sets forth national standards designed
to safeguard the medical records of individuals and other identifiable health information,
collectively referred to as “protected health information”. This regulation is applicable
to health plans, health care clearinghouses, and healthcare providers who engage in spe-
cific electronic health care transactions [187]. This is aligned with initiatives such as the
FDA’s Digital Health Innovation Action Plan that will continue to shape the regulatory
landscape for AI-driven technologies in the pharmaceutical field in U.S., making sure that
AI technologies are validated and used responsibly [188].

In Europe, the Commission published a draft regulation in April 2021 aimed at
harmonizing standards concerning AI (AI Regulation) along with a coordinated plan that
outlined a series of joint actions for the Commission and member states. This regulatory
package aimed to enhance trust in AI and promote the development and advancement of AI
technologies, emphasizing both the numerous social and economic benefits across various
sectors and the necessity of safeguarding privacy while ensuring security and protection.
The European Council adopted its position on the new AI regulations, advocating for
a secure, lawful, and reliable AI that respects fundamental rights. The AI regulation in
Europe was formally adopted by the Council on 21 May 2024, and came into effect on
1 August 2024 [189].

In conclusion, the incorporation of AI into the pharmaceutical industry is not just a
technological advancement; it signifies a paradigm shift that could redefine global health-
care. The ongoing evolution of AI-driven drug discovery, clinical trials, and personalized
medicine is expected to yield profound implications for patient outcomes, healthcare ac-
cessibility, and cost-efficiency. AI will continue accelerating drug discovery by enabling
the rapid identification of viable drug candidates, which traditionally requires extensive
resources and time. The ability of AI to analyze vast datasets quickly allows for the explo-
ration of previously uncharted biochemical pathways and the design of novel compounds
with targeted therapeutic effects. Moreover, AI’s capacity for real-time data analysis in
clinical trials promises to improve patient recruitment and retention by predicting patient
responses and lowering dropout rates. Such efficiencies not only boost the financial viability
of drug development, but also pave the way for a more responsive healthcare system that
can adapt to the needs of patients more swiftly.

Looking ahead, several trends are anticipated to shape the landscape of AI in phar-
maceuticals: (i) the integration of AI with genomics, considering that genomic data will
become increasingly more available and AI will play a pivotal role in tailoring treatments to
individual genetic profiles, enhancing the efficacy of personalized medicine; (ii) AI-driven
predictive analytics are expected to utilize AI for predictive analytics to forecast market
trends, patient behaviors, and potential adverse effects, thus improving drug safety and
efficacy; and (iii) regulatory adoption to accommodate AI technologies, ensuring safety
and effectiveness without stifling innovation.

The long-term implications of AI in pharmaceuticals could be transformative for global
healthcare. Enhanced drug development processes will likely lead to a faster introduction
of novel therapies, addressing unmet medical needs more effectively. As AI optimizes
resource allocation and improves operational efficiencies, it may also contribute to lowering
drug prices, thereby enhancing accessibility for patients worldwide. Furthermore, as
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personalized medicine becomes more prevalent, treatment efficacy is expected to improve
significantly, resulting in better health outcomes and a potential reduction in healthcare
costs overall. This could alleviate some of the financial burdens on healthcare systems,
particularly in developing countries where resources are limited.

In conclusion, the trajectory of AI in the pharmaceutical industry is poised to create
a ripple effect across global healthcare, offering innovative solutions that enhance drug
discovery, optimize clinical trials, and improve patient care. The collaborative efforts
of stakeholders in this evolving landscape will be crucial for harnessing AI’s potential
responsibly and effectively.

5.13. Use of AI Tools

Chat GPT (OpenAI, San Francisco, CA, USA) was used to compile information and
to improve language readability. The full manuscript was carefully revised by the au-
thors. Image F5 was created with the aid of OpenArt (Open AI, San Francisco, CA, USA).
Figures 1–4 were created with the aid of SlideModel (Montevideo, Uruguay).
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