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Within optical microresonators, the Kerr interaction of photons can lead to symmetry breaking of optical modes.
In a ring resonator, this leads to the interesting effect that light preferably circulates in one direction or in one
polarization state. Applications of this effect range from chip-integrated optical diodes to nonlinear polarization
controllers and optical gyroscopes. In this work, we study Kerr-nonlinearity-induced symmetry breaking of light
states in coupled resonator optical waveguides (CROWs). We discover, to our knowledge, a new type of con-
trollable symmetry breaking that leads to emerging patterns of dark and bright resonators within the chains.
Beyond stationary symmetry broken states, we observe Kerr-effect-induced homogeneous periodic oscillations,
switching, and chaotic fluctuations of circulating powers in the resonators. Our findings are of interest for con-
trolled multiplexing of light in photonic integrated circuits, neuromorphic computing, topological photonics, and
soliton frequency combs in coupled resonators. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.524823

1. INTRODUCTION

When a system’s physical or mathematical property remains un-
changed under a certain transformation, it is said to possess
symmetry. A sudden collapse of this symmetry is termed spon-
taneous symmetry breaking (SSB). SSB has answered pivotal
questions in physics, ranging from the spontaneous breaking
of gauge symmetry [1] to more contemporary models of con-
tinuous symmetry breaking in Rydberg arrays [2], the introduc-
tion of entanglement asymmetry [3], and SSB in quantum
phase transitions [4]. The applications of SSB span over a large
spectrum of physics [5–8].

Kerr ring resonators—Kerr here referring to cubic nonlin-
earity (χ�3�) in certain materials—have garnered interest for
their capability to amass high light intensities within minuscule
mode volumes, thereby enhancing the nonlinearity. These res-
onators have remarkable uses in optical frequency combs [9],
telecommunications [10], spectroscopy [11], optical clocks
[12], and sub-wavelength distance measurements [13].
Importantly, they also serve as experimental platforms for prob-
ing fundamental physical phenomena like SSB.

Within Kerr resonators, SSB has been studied extensively
between counter-propagating optical fields during bidirectional

pumping [14–21]. These systems have paved the way for de-
signing optical isolators [22], circulators [23], and logic gates
[24]. A second mechanism for realizing SSB originates from
two co-propagating light fields with mutually orthogonal polar-
izations [25–29], which has led to the creation of polarization
controllers [30], random number generators [31], and vectorial
frequency combs [32]. Recent studies have unveiled SSB of sol-
itons in Fabry–Perot resonators [33,34]. SSB via optomechan-
ical effects has also been observed [35]. Recent innovations
have expanded the two-field SSB phenomena to four-field
SSB [36,37].

A myriad of other interesting solutions have been revealed
by looking into slow-time responses, i.e., the evolutions of
fields over many resonator round trips (t r) in coupled cavities
[38] and photonic dimers [35,37]. Fast-time (time scale of a
single t r) responses of coupled resonator optical waveguide
(CROW) systems [39] and two-dimensional microresonator
arrays [40,41] have also demonstrated a rich profusion of sol-
iton dynamics. However, the slow-time response of CROW
systems, rich in potential nonlinear effects, remains largely
uncharted.

In this work, we conduct an in-depth study of two distinct
CROW systems, and discuss the occurrence of concurrent SSBs
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among different pairs of intra-resonator circulating intensities.
In available literature demonstrating SSB, the symmetries be-
tween two opposite directions of propagation (i.e., clockwise
and counter-clockwise) [14–18,42] or two mutually orthogo-
nal circular polarizations [25–29] have been broken. However,
in CROW systems, we report a different kind of SSB. In a lin-
ear CROW system without symmetry breaking, the circulating
power in the resonators is mirror symmetric, meaning that the
power in the first and last resonator is expected to be the same.
The same applies to the second resonator and the second to last
resonators as well as the other mirror symmetric resonator pairs
in the chain. These equalities of powers or symmetries are bro-
ken in nonlinear CROW systems. The interplay of linear cou-
pling and nonlinear interactions in our studied systems offers a
vast parameter space to influence homogeneous responses. We
demonstrate that varying input power levels leads the optical
powers in the resonators to shift among different levels, exhib-
iting switch-like behaviors. This is promising for controllable
distribution of light in photonic systems and realization of op-
tical digital memories and computation systems. We also detect
oscillations [20,43,44] that cause periodic interchanging of
dominant field roles between distinct resonators and N -level
chaotic oscillations in these systems. For silicon nitride resona-
tors with Q-factors of about 108, all the nonlinear phenomena
can be observed below input power of 150 mW. Precise on-
chip microresonator fabrication methods [45] will make the
proposed structures soon realizable on photonic chips, thus
highlighting the pertinence of the work for guiding experiments
in integrated photonics.

2. CROW SYSTEMS AND MODEL

In our study, we consider CROW systems, as illustrated in
Fig. 1. The systems consist of several identical Kerr ring reso-
nators are, forming a coupled resonator chain. Here, all the
light fields supplied via the input ports are assumed to be iden-
tical, i.e., they have equal intensities, frequencies, polarizations,

and phases. To begin with, we consider the situation when in-
puts are provided to only the first and last resonators in the
chain. This configuration is depicted in Fig. 1(a). Afterwards,
we also study the effects of facilitating inputs to all of the res-
onators [as shown in Fig. 1(b)]. Due to its more practical im-
plementability, we first study the system with inputs only to the
two resonators at the ends of the chain. The rich stationary state
solutions and other homogeneous solutions of the system with
more inputs are described later. Finally, in this study, we select
the directions of input light fields that result in a system with-
out counter-propagating fields.

Our modelling begins with normalized coupled Lugiato-
Lefever equations (LLEs) [39,46]. For a system encompassing
N coupled resonators (indexed as n � 1,…,N forN ≥ 2), the
equations manifest as

∂ψn

∂τ
� −�1� iζ�ψn � i��1 − δn;1�jψn−1

� �1 − δn,N �jψn�1� � ijψnj2ψn � αnf , (1)

where ψn �
ffiffiffiffiffiffiffiffiffiffiffiffi
2g0∕κ

p
An is the normalized optical field

envelope in the nth resonator, within which An is the unnor-
malized field envelope, g0 is the Kerr gain, and κ � κl � κe is
the total cavity losses, with internal losses κl and external losses
κe . The normalized cavity detuning is given as ζ � 2Δ∕κ,
where the unnormalized cavity detuning is given as
Δ � ω0 − ωres [the difference between the input laser fre-
quency (ω0) and the closest cavity resonance frequency
(ωres)]. The terms within the brackets account for the inter-
resonator couplings, where δp,q is the Kronecker delta func-
tion and j � 2J∕κ is the normalized inter-resonator coupling
rate, with J being the unnormalized coupling rate. The nor-
malized slow-time τ is defined as τ � 2t∕κ, where t is the
unnormalized slow-time. Input to the resonators is given as
f �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8κeg0∕κ3

p
sineiϕin , where sin and ϕin are respectively

the input pump amplitude and the corresponding phase. In
our simulations we assume ϕin to be constant and set it to
ϕin � 0 for convenience. The term αn � 1 when input is pro-
vided to the nth resonator and αn � 0 otherwise. The normal-
ized intracavity intensity in the nth resonator is given by
Ψn � jψnj2 and the input power by F � jf j2. We have ne-
glected dispersion in the systems. The second term (the term
within the brackets) on the RHS of Eq. (1) describes the fact
that all the resonators in the chain are coupled to the previous
and the next resonator in the line except for the two end res-
onators, each of which is just connected to one adjacent reso-
nator. The third term of Eq. (1) is the self-phase modulation
term, which accounts for the nonlinear effect of a field on itself.
The last term on the RHS of Eq. (1) represents input from
outside the system. Since all the ring resonators in both cases
are identical, parameters, such as the cavity detunings and the
Kerr nonlinear gains, g0, are the same for all resonators.

3. N� 3 CROW SYSTEMS

Our present analysis addresses CROWs with three or more res-
onators, i.e., N ≥ 3. The homogeneous states of the systems
are obtained by numerically evaluating Eq. (1) for a variety
of initial conditions and over sufficient evolution times. The
stationary states of the systems, which form a subset of the

1 2 3

1 2 3

System “input to end ” CROW

System “input to all ” CROW

(a)

(b)

Fig. 1. CROW configurations. N identical Kerr ring resonators are
linked in sequence. Input field directions ensure that each resonator’s
circulating field travels only in a singular direction. Note that systems
with odd and even numbers of resonators require differing input di-
rections for the end resonators; see faded resonators of the figure.
(a) “Input to end” CROW: inputs are provided only to the end res-
onators. (b) “Input to all” CROW: inputs are connected to all reso-
nators. Input (output) directions are shown by red (purple) arrows.
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homogeneous states, where the circulating fields remain un-
changed over time, can be obtained by setting ∂ψn∕∂τ � 0.
For an N � 3 system, analytical solutions for the stationary
states can be derived (see Appendix A for more details), but
for N > 3 systems, obtaining analytical solutions is difficult.
Since for N ≥ 3, the two end resonators are connected to only
one resonator while all other resonators in the CROW system
are connected to two neighboring resonators, there is an inher-
ent asymmetry in the system. The circulating field intensity in
each resonator n is asymmetric to that of resonator m for
m ≠ N − n� 1. This asymmetry comes from the linear cou-
pling terms of Eq. (1). Consequently, resonator n is symmet-
rical to only resonator N − n� 1 in terms of coupling
arrangements. In other words, the field intensities are symmet-
ric around the center of the chain.

Figure 2 shows different kinds of optical intensity distribu-
tions that can be observed in N � 3 CROW systems. In
Fig. 2(a), it can be observed that for lower input powers, intra-
cavity field intensities in the end resonators behave symmetri-
cally, but the field intensity in the middle resonator is more
than that of the individual end resonators. However, for a cer-
tain value of input power, the field intensities in the end res-
onators cross the field intensity in the middle resonator, and
grow steadily after that, with the middle resonator’s light inten-
sity remaining almost constant. At the crossing point, there is a
momentary occurrence of complete symmetry, where all three
resonators have the same field intensities. Around the crossing
point, the relative distribution of optical intensities between the
middle resonator and the two end resonators can be tuned in a
very controlled manner by changing the input power (discussed

in Appendix B). Figure 2(b) reveals a spontaneous symmetry
breaking of the circulating optical intensities in the end reso-
nators. This adds to the various optical field distribution mech-
anisms that can be achieved in the CROW systems. It is
important to note that the SSB depicted in Fig. 2(b) is a novel
mechanism, quite different from the usual SSB observed in
Kerr resonators [16,18,26,37]. The detailed description of
the emergence of this SSB phenomenon is discussed in the next
section. Following the trajectory of the field intensity in the
middle resonator (in red) in Fig. 2(b), an interesting character-
istic can be observed. The field intensity remains low for low
input powers, jumps to a high value after a certain input power,
and finally comes back to a low value in the SSB region. This
effectively allows the system to be used as an all-optical switch
with certain low and high cut-off powers. Apart from the sta-
tionary states, numerical simulations of Eq. (1) also reveal other
homogeneous solutions, such as slow-time oscillations inside
the resonators of the chain. Such Kerr-induced oscillations
of the field intensities have been observed here with and with-
out the occurrence of SSB in the system, as depicted in the
upper and lower panels of Fig. 2(c), respectively. Oscillations
of all field intensities are observed in the upper and lower panels
of Fig. 2(d). In the upper panel, the middle resonator field in-
tensity dominates over the end resonator field intensities, which
always oscillate in phase. On the other hand, the lower panel
shows a perfect periodic switching of the field intensities in the
end resonators, where each of the three field intensities becomes
dominant over the other two at certain instances. It is notewor-
thy that these homogeneous slow-time oscillations have much
lower frequencies compared to the fast-time oscillations in
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Fig. 2. Evolutions of optical intensities in N � 3 “input to end” CROW system. Panels (a)–(c) show the evolutions of the field intensities in
different resonators as a function of input power. The field intensities in the end resonators are depicted in blue and black, whereas the field intensity
in the middle resonator is depicted in red. For (a), ζ � 0.5, j � 1. A field intensity crossing point appears in (a). Before the crossing point, the field
intensity in the middle resonator is higher than the fields in the end resonators and beyond this point, the end resonator fields become more intense
than the middle resonator field. Panel (b) depicts spontaneous symmetry breaking of the end resonator light field intensities for ζ � 5, j � 2.
Symmetry unbroken and symmetry broken oscillations are depicted in the upper (ζ � 3, j � 2) and lower (ζ � 5, j � 2.5) panels of (c), respec-
tively. In this and all successive figures, the dotted lines stand for the positions of the maxima and the minima of the oscillations, and the shaded
regions in between highlight the span of the oscillations. Upper and lower panels of (d) are examples of symmetry unbroken and complete symmetry
broken oscillations, respectively. Used parameters: jf j2 � 22, ζ � 3, j � 2 [(d) upper panel], jf j2 � 37.79, ζ � 5, j � 2.5 [(d) lower panel].
Time step for integration is 0.005.
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resonators, such as Turing oscillations. All of the observed phe-
nomena pave the way for the N � 3 system to become an ef-
ficient option for optical field routing in integrated systems.

4. ANALYTICAL SOLUTION FOR N� 3 CROW
SYSTEM

Input power, jf j2, scans for an N � 3 CROW, when inputs
are provided to only end resonators, are presented in Fig. 3. In
Figs. 3(a) and 3(b) the analytical solutions to Eq. (1) are dis-
played. One may find details on the analytical solutions to
Eq. (1) in Appendix A. Figures 3(a) and 3(b) reveal surprisingly
rich and interesting dynamics for such a simple system. As
mentioned earlier, for nonzero input powers, Ψ2 ≠ Ψ1,3 due
to coupling conditions. The difference in coupling causes per-
sistent differences in the evolutions of the fields circulating the
resonators, quite evident from the vastly different solution
curves of Figs. 3(a) and 3(b). The analytical solutions of the
end resonators, Fig. 3(b), reveal not one but two distinct sets
of asymmetric solutions occurring for the end resonators.
One set (blue) arises in a manner similar to that of previous
studies—a pitchfork bifurcation emanating from the (red) sym-
metric solution line. The more surprising part is the second
asymmetric solution set (green), which does not originate from
a pitchfork bifurcation of the symmetric line. Indeed, it does
not originate from the symmetric solution line at all. The green
solution sets form entirely isolated solution “bubbles”, an iso-
lation seen most prominently in Fig. 3(a). Isolated sets of asym-
metric solutions have not been seen in any past works, to our

knowledge, with the exception of a significantly different setup
with unbalanced input conditions [27]. A justified question to
ask is the following: as interesting, perhaps, as the discovery
of a novel SSB origin is, if these solutions are isolated, does
this not imply that they are unreachable under experimental
conditions—and hence entirely useless? We report that this is,
highly surprisingly, not actually the case. Figures 3(c)–3(f )
show, as a counterpart of the discussed analytical results, the
results of the numerical integration of Eq. (1) via standard
Runge-Kutta methods [Figs. 3(c) and 3(d) are extended ver-
sions of Fig. 2(b)]. In Figs. 3(c) and 3(d) the input power is
stepwise increased following a suitable system relaxation time,
while in Figs. 3(e) and 3(f ) the input power is similarly stepwise
decreased. Unlike the analytics, which provide the full solution
sets, these scans predict the real-world behaviors and evolutions
of the circulating fields under experimental conditions. From
Fig. 3(d), we see that in the input-increasing-scan, just after
jf j2 � 20, the field intensities of the end resonators suddenly
jump away from the red symmetric solution line and begin
evolving, instead, along the green, isolated, asymmetric solu-
tion line. This is accompanied by a substantial drop in the
middle resonator power, as seen in Fig. 3(c). The obvious ques-
tion is, how. How does the system find the isolated set? The
answer lies in the stability of Eq. (1). Performing a linear sta-
bility analysis, in Appendix C, we find that, at the point where
the isolated asymmetric solutions occur, the symmetric solu-
tion line experiences a Hopf bifurcation (Appendix D) leading
to system oscillations with wide-ranging intensity changes.

Symmetric 
solution line

Pitchfork bifurcation 
solution line

Isolated symmetry broken 
solution line

Analytical
solution line

(a) (c) (e)

(b) (d) (f)

Fig. 3. Circulating field intensities, Ψn�� jψnj2�, against input power, jf j2, for an N � 3 “input to end” CROW system. For detuning ζ � 5
and inter-resonator coupling j � 2, we present in (a), (b) the analytical solutions to Eq. (1) for the fields circulating the middle Ψ2 and end
resonators Ψ1,3, respectively. In panels (c), (d) and panels (e), (f ), respectively, we display the results of numerical integrations of Eq. (1) for stepwise
increasing and stepwise decreasing values of the input field intensity. In all panels, different “relationships” of solutions are colored accordingly for
visual benefit; by this we mean that when fields Ψ1,3 are on the green solution line, this means that Ψ2 is also on its own respective green solution
line. These results are discussed thoroughly in the main text, but we highlight the possibility of end-resonator-symmetric solutions (red) and two
distinct end-resonator-symmetry-broken solutions (green and blue).
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These oscillations allow for the system to eventually find, and
settle on, attractive and stable, but isolated, asymmetric solutions.
This process is shown in Fig. 4. As the increasing-input-scan

continues further an optical bistability in the asymmetric states
leads to the system losing stability once again and proceeds, this
time, to settle on the stable upper branch of the original symmet-
ric solution line. Owing to the strong stability of this upper
branch, we find that a reverse scan in this case reveals none of
the asymmetric solutions of the forward scan, only bistability
jumps. Figure 3 has revealed that even for low values of
N , Eq. (1) describes a system capable of extremely intricate
dynamics.

5. CROW SYSTEMS WITH N > 3

To reveal the full potential of the CROW systems, we continue
to study the homogeneous solutions in N > 3 systems.
Figure 5 shows SSB phenomena occurring in the CROW sys-
tems with N � 5 and N � 10, with inputs provided only to
the end resonators. In both systems, SSB bifurcations can be
observed between different symmetric field pairs.

For lower input powers in the N � 5 system, jψ1j2 �
jψ5j2 ≠ jψ2j2 � jψ4j2 ≠ jψ3j2 and jψ3j2≠ jψ1j2. In Fig. 5(a),
where ζ � 3.5 and j � 1, the field intensity in the middle res-
onator (in black, index 3) is suppressed greatly for all input
power values. The intensities of the fields within the end res-
onators (indices 1 and 5—depicted in blue and cyan) and the
set of resonators coupled to the end resonators (indices 2 and
4—depicted in red and green) display spontaneous symmetry
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Normalized input power, 

Normalized input power, 

Time steps

Binary states(b)
(c)

(e) (f)

20 40 60 80 100 120 1400

20 40 60 80 100 120 1400
Normalized input power, 

 ytivacart ni dezil a
m ro

N
 ,sei tisnet ni

(a)

Normalized input power, 

(d)

20 40 60 80 100 120 1400

50 100 150 200 250 300 3500

0
2
4
6

0

4

8

12

0 1000 2000
0

3

6

3

6

0 1000 2000

0

2

4

6

8

0

2

4

6

8

0 2000 0 2000 0 2000
Time steps

1

3

0
4

8

0
4
8

0

N
or

m
al

iz
ed

 in
tra

ca
vi

ty
 

in
te

ns
iti

es
, 

 ytivacartni dezila
mro

N
 ,s eitisne tni

N
or

m
al

iz
ed

 in
tra

ca
vi

ty
 

in
te

ns
iti

es
, 

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5
Resonator #

6 7 8 9 10

Resonator #
1 2 3 4 5

1 2 3 4 5

Fig. 5. Evolutions of optical intensities in (a)–(c)N � 5 and (d)–(f )N � 10 “input to end” CROW systems. Panel (a) and (b)-upper panel show
the evolutions of the field intensities in different resonators as a function of input power. The end resonator field intensities are depicted in cyan and
blue. In (a), the end resonator field intensities and the neighboring resonator’s field intensities (depicted in red and green) display spontaneous
symmetry breakings. In (b), the field intensities within coupling-wise symmetric resonators always remain symmetric and they display oscillations.
Overlapping (lower-left panel) and non-overlapping (lower-right panel) oscillations are observed. In (c), we demonstrate three of the possible light
intensity distribution conditions in the resonators with bright-red (dark-red) referring to bright (dark) resonators (left configuration: ζ � 3.62,
J � 1, jf j2 � 59.18; middle configuration: ζ � 3.62, J � 1, jf j2 � 37.88; and right configuration: ζ � 3, J � 2, jf j2 � 112.99). Input power
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(a) ζ � 3.62 and j � 1, (b) ζ � 3 and j � 2, (d) ζ � 1.5 and j � 4, and (e) ζ � 1 and j � 6. Time step for integration is 0.005.
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breakings. The system also shows bistability jumps. In the
upper panel of Fig. 5(b), we can observe two isolated regions
with symmetry unbroken oscillations in the system. The lower
panel shows oscillations of circulating field intensities in time
corresponding to the two different regions. Figure 5(c) depicts
some of the possible steady state light field intensity distribu-
tions among different resonators for the N � 5 CROW sys-
tem. Here, the state of a resonator is assumed to be bright
if the circulating field intensity within the resonator is more
than the average of all the resonator’s field intensities in the
respective CROW arrangement for a particular combination
of system parameters and input powers.

Figures 5(d) and 5(e) depict the input power scans of the
N � 10 system for two different sets of parameters. In
Fig. 5(d), independent SSBs of all field intensities within res-
onators with symmetric coupling conditions are observed, with
SSB bubbles crossing each other. The initial SSB region is fol-
lowed by a symmetry restored region, which then is followed by
regions of oscillating full asymmetric solutions, and sub-
sequently non-oscillating full asymmetric solutions. Figure 5(e)
depicts SSB of all coupling-wise symmetric pairs, symmetry re-
stored regions with and without oscillations, and bistability
jumps of the circulating field intensities leading to a second
region of full asymmetry. This full asymmetric region also dis-
plays oscillations for certain ranges of input powers with and
without overlaps. The lower panels of Fig. 5(e) show examples
of field intensity oscillations in time corresponding to three dif-
ferent oscillatory regions. For CROW systems with an odd
number of resonators, we observe �N − 1�∕2 symmetry broken
field pairs, since the middle resonator is not symmetric to any
other resonator. However, for CROW systems with an even
number of resonators, there are N∕2 symmetric pairs at low
power; therefore, we can observe up to N∕2 symmetry broken
field pairs.

Figure 5(f ) shows some of the possible bright-dark
conditions achievable in N � 10 CROW systems. These dem-
onstrate the power distribution capabilities of the CROW
systems. Different arrangements of bright-dark resonators,
achievable via tuning the input power, can be used as different
binary states. Therefore, the system can be used as an optical
analog-to-digital converter where an analog optical input is
transformed into a digital binary bit-string and multi-bit logical
operations can be performed on them. Moreover, in Ref. [39],
the authors have discussed the possibilities of having different
dynamical fast-time solutions in the systems. These solutions,
e.g., solitons, depend on the interplay of the dispersion profiles
and nonlinear gains in the systems. The power redistribution
that can be achieved in CROW systems can significantly
change the intensity-dependent nonlinear gains in the resona-
tors, affecting the fast-time dynamics. Therefore, by exploiting
the interactions of the Kerr effect and coupling between reso-
nators one can gain control over the fast-time dynamics in these
systems.

Motivated by the fact that a rich variety of SSBs can be ob-
served in the CROW system, we performed input power-
detuning scans for N � 3, 5, 10, 20 and the corresponding
results are depicted in Fig. 6. All the scans are performed
for increasing input power. The scans demonstrate different

thresholded symmetry breaking conditions and oscillations
of the circulating field intensities through different colored re-
gions. Two fields are considered to be symmetric if the differ-
ence of their normalized intensities lies within an upper limit
(here we choose 0.05). These scans can be used to allocate dif-
ferent amounts of homogeneous power in different resonators.

6. “INPUT TO ALL” CROW SYSTEMS

In this section of the paper, we aim to study the CROW con-
figurations where all the resonators are provided with input
fields. Since in these systems, all the resonators in the chain
have access to input power [as shown in Fig. 7(a)], richer non-
linear effects are expected to be observed. The high degree of
controllability of fields, due to inputs to all the resonators,
makes this section important, especially for the experimentalists
working on integrated coupled resonator systems.

For N � 4, the full asymmetry of circulating field inten-
sities in different resonators is depicted in Fig. 7(b) for a wide
range of input power values. The end resonator field intensities
(in blue and green) initially remain symmetric and have less
power than the middle resonators (indices 2 and 3, shown
in black and red). With increasing input power, before the
SSB region, a region of oscillation appears. The near-switching
behaviors of the field intensities are depicted in the Appendix E.
It is important to note that in the full asymmetric region, the
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Fig. 6. Colormap of different symmetry breaking conditions as a
function of input power and detuning for (a) N � 3, (b) N � 5,
(c) N � 10, and (d) N � 20 “input to end” CROW systems.
Purple regions stand for symmetry unbroken case and the yellow
stands for completely asymmetric case. The colors in between (differ-
ent shades of green) stand for different levels of symmetry breakings in
the systems. The watershed portions with stripes in each panel display
the regions of oscillations. In all cases, the scans are done from lower to
higher input powers for certain detuning values. In other words,
Eq. (1) is scanned for all detuning values starting from zero input
power. For each input power, the initial values of the field amplitudes
are selected to be the steady state value of the last step (smaller input
power). The scans for all detunings are done in parallel. For the scans
j � 2 �a�, 1 (b), 3.5 (c), and 3 (d).
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crossing of the various fields’ intensities leads to two very
localized regions of three-level asymmetry. These particular
crossings are intriguing since despite the different coupling con-
ditions for the end and middle resonators, at some distinct in-
put power levels one of the middle resonators becomes
symmetric to one of the end resonators. The two SSB bubbles
close by forming inverse bifurcation structures after a certain
input power leading to two separated pairs of circulating field
intensities. Here, each pair contains the fields within resonators
that have symmetric coupling conditions, as observed for lower
input powers. It can be observed that the dominance order of
intensities of the pairs switches between before and after the
SSB region.

With increasing N , more and more interesting nonlinear
phenomena are observed. For an N � 5 system, Fig. 7(c)
shows the input power-dependent redistribution of relative op-
tical intensities among different resonators. The intensity of the
middle resonator field (index � 3, in black) gradually decreases
from being higher than any other fields at small input powers to
being extremely suppressed after the complete symmetry break-
ing of all the fields. Figure 7(d) gives an insight into the oscil-
lations in the system, which is portrayed via the Poincaré
section plot, where the maxima and minima of the temporal
oscillations of the respective field intensities are presented by
dots for each input power. At the beginning of the oscillatory
regime, the maxima and minima of the initially symmetric field
intensities overlap completely. Therefore three regions of oscil-
lations appear, the overlap regions of which gradually increase
with input power. After the region of periodic oscillations, the
system drives into the region of chaos with increasing input
power, where all the field intensities oscillate asymmetrically.
This symmetry broken chaotic oscillation region ends in

symmetry broken stationary states. The full asymmetry closes
with two inverse bifurcation structures. The SSB enforces high
suppression of circulating power in the middle resonator,
whereas the outer resonators always have higher circulating field
intensities. A detailed overview of the oscillations for the
N � 5 system is given in Appendix E.

ForN � 10, as shown in Fig. 7(e), we again observe an SSB
region; however, the SSB bubbles here twist and cross each
other to provide different levels of symmetry breakings. At
the end, following bistability jumps, the field intensities in
the resonators form two inverse bifurcation structures, one by
the fields within the end resonators, and one by all other fields.
It is noteworthy that all the inner resonators at this point be-
have almost symmetrically. For N � 50, depicted in the upper
panel of Fig. 6(f ), SSB bubble crossings generate a much more
complex scenario with many possible levels of SSB. However,
a noticeable phenomenon in this case is the group formation of
the field intensities within the SSB bubble, where two pairs of
fields with little differences in intensities emerge. These inter-
mediate pairs split up with multiple bistability jumps and a
series of regroupings occurs. Finally, the field intensities merge
into two symmetric pairs through two inverse bifurcation struc-
tures. For the first time, it has been observed that the field
intensities jump between different levels of circulating power,
forming a unique cage-like diagram in the regrouping section.
Even if various resonators in the system have coupling-wise
asymmetry, it is seen in both Figs. 7(e) and 7(f )-upper panel
that after the inverse bifurcations only two bunches sustain,
one by the fields within the end resonators, and the other
one by all other fields. All the inner resonators at this point
behave almost symmetrically. These SSB-induced intra-cavity
field distributions in coupled resonator systems are not only
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intriguing for generating multi-logic levels with higher func-
tionalities in all-optical devices but also give an idea for observ-
ing various soliton dynamics at different input power levels.

In the lower panel of Fig. 7(f ), we demonstrate the corre-
sponding dark-bright conditions of different resonators as a
function of input power. As mentioned earlier, a resonator is
considered to be bright (shown in yellow) if the field intensity
within that resonator is more than the average of all the field
intensities of all the resonators. Otherwise, it is considered to be
dark (shown in purple). The dark-bright condition plot shows
that these configurations of CROW systems have great poten-
tial in all-optical computing. The input-output access to all the
resonators makes it ideal for loading and unloading a bit-stream
of data in a digital computing platform, with the ability to per-
form logical operations via the control of optical field distribu-
tions within the resonators.

It can be noted that due to the randomness associated with
SSB, the dominance of circulating field amplitudes following
symmetry breaking of each symmetric pair in a CROW is
chosen randomly. For different simulation runs, the intracavity
power plots can swap among the two resonators undergoing
symmetry breaking. Similarly, in experiments, in a perfect sym-
metric case, after symmetry breaking, the dominance will be
randomly assigned each time the system is pumped. This
can be avoided, in order to achieve repeatability, by applying
small input biases to the resonators. The resonators with the
bias fields will always dominate in terms of circulating powers
over their counterpart. However, this solution is not applicable
for “input to end” CROW systems, where we cannot apply bias
to all the resonators. In this case, relative detunings can be in-
troduced between different resonators to achieve similar effects.

From an experimental outlook, we can consider silicon ni-
tride resonators with radii 100 μm. If we assume the internal
losses to be κl � 50 MHz and under the condition of critical
coupling, i.e., κe � 50 MHz, one unit of normalized input
power (jf j2 � 1) corresponds to 0.109 mW.

7. DISCUSSION AND OUTLOOK

To summarize, a theoretical framework has been developed to
examine different states of light in CROW systems. In CROW
systems with inputs to the end resonators, we can observe a
plethora of different symmetry breaking phenomena. The
spontaneous symmetry breaking causes different light field
intensities in different resonators. At low input powers, mirror
symmetric pairs of resonators within the chain experience equal
circulating powers. When the input power is increased, more
complex light distributions within the resonator chain emerge,
corresponding to multiple concurrent spontaneous symmetry
breaking events. Symmetry broken oscillations are observed
in N � 3, 5, 10 and 20 CROW systems for higher input
powers and detunings. Periodic switchings between different
pairs of field intensities are also observed. Due to the access
of higher input powers to all resonators, richer nonlinear phe-
nomena are observed in CROW systems with all resonators
coupled to input waveguides. Extended regions of N -level
SSBs and chaotic oscillations are observed in this type of
CROW configuration.

Future research will address the dynamic behavior of optical
fields in the resonators and the effects of asymmetry in different
parameters on the homogeneous states of the systems. SSBs in
other complex arrangements of microring resonators will also
be addressed. The controllable distribution of light field inten-
sities among different resonators could be a key feature for
large-scale optical computing and light-field steering in inte-
grated photonics. The combination of linear coupling between
different resonators and optical nonlinearities in high-Q micro-
resonators makes the CROW systems a promising candidate for
integrated optical neural networks. CROW systems are also
promising candidates for observing symmetry broken vector
solitons with N different values of circulating intensities
[32]. These can be useful for generating N distinct intercon-
nected frequency combs, which would be very useful in neuro-
morphic computing, telecommunications, and especially in
space technologies due to compactness. Together with the lat-
est concepts of dispersion engineering [47–49] the studied non-
linear effects in this work will lead to a lot more interesting
soliton dynamics.

APPENDIX A: THREE-RESONATOR CROW—
ANALYTICAL SOLUTIONS

For a three-resonator CROW system the equations of motion
take the form

∂ψ1

∂τ
� −�1� iζ1�ψ1 � ijψ2 � ijψ1j2ψ1 � α1f , (A1a)

∂ψ2

∂τ
� −�1� iζ2�ψ2 � i�jψ1 � jψ3� � ijψ2j2ψ2 � α2f ,

(A1b)

∂ψ3

∂τ
� −�1� iζ3�ψ3 � ijψ2 � ijψ3j2ψ3 � α3f : (A1c)

Here f is the input pump amplitude provided to the nth res-
onator (n � 1, 2, or 3) provided with detuning of ζn.

In steady state, all the equations become equal to zero.
Solving the steady state equations for an “input to all”
CROW system (α1 � α2 � α3), one can obtain

Ψ3
1 − Ψ3

3 � 2ζ3Ψ2
3 − 2ζ1Ψ2

1 � �1� ζ21�Ψ1 − �1� ζ23�Ψ3 � 0,

(A2a)

Ψ3
2�C2

3 � 1� �Ψ2
2�2C2C3 � 2C4� �Ψ2�C2

2 � C2
4�

� Ψ1C5, (A2b)
����−
�
1 −

j2

D1

−
j2

D3

�
� i�Ψ2 − ζ2�

����
2

Ψ2

�
����1 − i

�
j
D1

� j
D3

�����
2

F , (A2c)

where Ψn � jψnj2, Dn � −�1� iζn� � iΨn (for n � 1,2
or 3), C1 � 1 − ζ2ζ3 − jζ3, C2 � C1 � ζ2Ψ3 � jΨ3, C3 �
ζ3 − Ψ3, C4 � −C3 − ζ2 − j, C5 � �1� C3�Ψ1 − ζ1 − j� −
jζ1 � jΨ1�2 � �ζ1 − Ψ1 � C3 � 2j�2, and F � jf j2.

For an “input to end” CROW system, α2 � 0; therefore
Eq. (A3) takes the form
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Ψ3
1 −Ψ3

3 � 2ζ3Ψ2
3 − 2ζ1Ψ2

1 � �1� ζ21�Ψ1 − �1� ζ23�Ψ3 � 0,

(A3a)

Ψ3
2 − 2ζ2Ψ2

2 �Ψ2�1� ζ22� � Ψ1

����j
�
D3

D1

� 1

�����
2

, (A3b)

����D2 � j2
�

1

D1

� 1

D3

�����
2

Ψ2 �
����
�

j
D1

� j
D3

�����
2

F: (A3c)

APPENDIX B: FIELD INTENSITY CROSSINGS
FOR N� 3 “INPUT TO END” CROW SYSTEMS

For a symmetric CROW system, Eq. (A3b) takes the form

Ψ3
2 − 2ζΨ2

2 �Ψ2�1� ζ2� − 4j2Ψ1 � 0, (B1)

where we have considered ζ1 � ζ2 � ζ3 � ζ and
D1 � D2 � D3. At the crossing points, Ψ1 � Ψ2,

Ψ2 � ζ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 − 1

q
: (B2)

Further using Eq. (A3c), at the crossing points, one can
obtain

F 0 �
���� −3� i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 − 1

p
2

����
2�

ζ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 − 1

q �
. (B3)

The conditions for having different numbers of crossings are
mentioned in Table 1. Input power scans for different system
parameters show different numbers of field crossing points
in Fig. 8.

(a) (b)

(c) (d)
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Fig. 8. Field intensity crossings for N � 3 “input to end” CROW systems. Panels (a)–(c) show input power scan of resonator light intensities for
CROW systems with N � 3. In panel (a) the end resonator field intensities (shown in black) do not cross the field intensity in the middle resonator
(shown in red). The middle resonator field intensity crosses end resonator field intensities once in panel (b) and twice in panel (c). Panel (d) shows
the ratio of field intensities circulating in end resonators and middle resonator. Brown line shows the ratio for (b), and green line shows the ratio for
(c). Panel (d) demonstrates the potential for relative power distributions among the resonators in N � 3 CROW systems. Used parameters:
(a) ζ � 0.5, j � 0.1, (b) ζ � 0.5, j � 1, and (c) ζ � 1.66, j � 0.6.

Table 1. Number of Field Intensity Crossing Points for
N � 3

Number of Crossing Points Conditions

0 4j2 < 1

1 4j2 > 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 − 1

p
> ζ

2 4j2 > 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4j2 − 1

p
< ζ
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Fig. 9. SSB mechanism in N � 3 CROW system. Panels (a) and
(b) show real and imaginary parts of eigenvalues of the Jacobian matrix
of the system as given by Eq. (C2). The shaded region in panel (a) de-
picts the region where y-axis is above zero. When the real part of any of
the eigenvalues enters the shaded region, the system becomes unstable.
The dashed line (which is at the same place as the dashed line in Fig. 4
of the main manuscript) depicts the input power value for which the real
part of one eigenvalue of the system goes above zero. The SSB between
the circulating intensities in the end resonators occurs at this point.
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APPENDIX C: EIGENVALUE ANALYSIS FOR
N� 3 “INPUT TO END” CROW SYSTEM

For the N � 3 CROW system, the normalized coupled LLEs
take the form

∂ψ1

∂τ
� −�1� iζ�ψ1 � ijψ2 � ijψ1j2ψ1 � f , (C1a)

∂ψ2

∂τ
� −�1� iζ�ψ2 � i�jψ1 � jψ3� � ijψ2j2ψ2, (C1b)

∂ψ3

∂τ
� −�1� iζ�ψ3 � ijψ2 � ijψ3j2ψ3 � f , (C1c)

where ζ is the normalized detuning, j is the normalized cou-
pling, ψn is the normalized field envelope in the nth resonator,

and f is the input field amplitude. We define ψn � ψ̄n � δψn,
where ψ̄n is the steady state value and δψn is the infinitesimal
perturbation. Considering the complex conjugates of each field
envelope, the evaluation equations for the perturbations can be
written as _A � JA, where A � �δψ1, δψ	

1 , δψ2, δψ	
2 , δψ3,

δψ	
3 �T . The Jacobian matrix J can be written as

J �

2
6666666664

Δ1 ijψ̄1j2 ij 0 0 0

−ijψ̄1j2 Δ	
1 0 −ij 0 0

ij 0 Δ2 ijψ̄2j2 ij 0

0 −ij −ijψ̄2j2 Δ	
2 0 −ij

0 0 ij 0 Δ3 ijψ̄3j2
0 0 0 −ij −ijψ̄3j2 Δ	

3 ,

3
7777777775
,

(C2)
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Fig. 10. Switchings in “input to end” CROW systems. Periodic switchings of the fields within coupling-wise symmetric resonators for (a),
(b) N � 5, (c), (d) N � 10, (e)–(h) N � 20 are depicted. Perfect sinusoidal switchings (a), (c), (e), (g) are confirmed by the complete overlaps
of the phase space plots (b), (d), (f ), (h). Used parameters: (a) jf j2 � 108.34, ζ � 3, j � 1, (c) jf j2 � 39.18, ζ � 4.2, j � 3.5, (e) jf j2 � 67.53,
ζ � 4, j � 3, (g) jf j2 � 120.05, ζ � 4, j � 3. Time step for integration is 0.005.
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where Δn � −�1� iζ − i2jψ̄nj2�. When the real part of any of
the eigenvalues of the matrix becomes positive, the system be-
comes unstable to perturbations.

APPENDIX D: ORIGIN OF THE NOVEL
SYMMETRY BREAKING MECHANISM IN N� 3
CROW SYSTEM

In the main text, we have discussed the occurrence of a novel
type of SSB in the N � 3 CROW system, where the system
jumps from an initial symmetric state to an isolated set of asym-
metric solutions via oscillations. The system starts to oscillate
when the real part of any of its eigenvalues goes above zero.
This is depicted in Fig. 9.

APPENDIX E: OSCILLATIONS IN CROW
SYSTEMS

In the main paper, we have observed different types of oscil-
lations in “input to end” CROW systems. We have also ob-
served the perfect periodic switching in N � 3 CROW
systems. In Figs. 10 and 11, we will observe different types
of oscillations present in the N > 3 CROW systems with dif-
ferent input conditions.

APPENDIX F: EFFECTS OF FABRICATION-
INDUCED ASYMMETRIES ON SSBS IN CROW

In the main paper, we have considered all the resonators form-
ing the CROW systems to be identical. However, fabrication
processes always introduce some uncertainties, which cause
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Fig. 11. Oscillations in “input to all” CROW systems. (a) Input power scan of resonator light intensities for CROW system with N � 4,
ζ � 1.5, and j � 1. (b) Evolutions of field intensities over time in the oscillatory region [shaded region in (a)] with jf j2 � 5.68. (c) Input
power scan of resonator light intensities for CROW system with N � 5, ζ � 2,5, and j � 2. (d) and (e) show oscillations with maintained
symmetry between fields within resonators with symmetric coupling conditions, whereas (f ) shows switching oscillations between them. (g) depicts
five-field chaos. (h) shows near-switching oscillations. jf j2 � 12.93 �d�, 20.20 �e�, 24.44 �f �, 29.09 �g�, 34.14 �h�. Time step for integration
is 0.005.

2386 Vol. 12, No. 10 / October 2024 / Photonics Research Research Article



different resonators to have different optical path lengths of the
optical modes confined in them. Therefore, there are inherent
relative detunings between the resonances in different resona-
tors. Such differences in detunings cause differences in coupled
powers to the resonators with symmetrical coupling conditions
under otherwise identical pumping conditions. Thus, in the
absence of any initial symmetry between the coupling-wise
symmetric resonators, we do not observe SSBs. Instead, we ob-
serve nonlinear enhancement of asymmetries of circulating
power in them, which has been observed previously in single
resonator systems [27] and coupled twin resonators [50]. In
such a case, the dominating field following the SSB is not ran-
domly chosen; instead, the resonator that has higher circulating

optical power in the low input power regime always dominates
over the other resonator having identical coupling conditions.
In this section, we have analyzed the effects of introducing
structural asymmetries among different resonators. We have in-
troduced Gaussian noise to the detunings with standard devia-
tions of 1%, 5%, and 10% of the mean detuning for the
N � 10 “input to end” CROW system and presented the in-
put power scan in Fig. 12. It can be observed that (inside the
region enclosed by the dashed black box) the SSB bubbles for
the “no-defect” case (standard deviation of detuning distribu-
tion, 0% of its mean value) are not present for increased struc-
tural asymmetries. However, Kerr-effect-induced enhancement
of circulating power differences in the coupling-wise symmetric
resonators can be observed. Apart from this region (black box),
there is no significant qualitative change in the distribution of
optical powers across different resonators.

Figure 13 focuses on the region within the black dashed box
in Fig. 12. One can observe that with increasing Gaussian noise
on the resonance frequency detunings of the resonators, the
field profiles deviate from SSB profiles. However, even in sys-
tems with asymmetries, the differences of circulating optical
intensities in resonators with identical coupling conditions
are enhanced.

Moreover, it is possible to balance the inherent asymmetries
between the resonators forming a CROW by all-optical ways
[27]. In integrated systems, heating different resonators with
integrated heaters [51] can help to overlap the resonance
frequencies of the different resonators. One can also make
the resonators highly coupled to each other, which broadens
the resonances, ensuring spectral overlap [41].
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