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Abstract: The application of artificial intelligence models for the fault diagnosis of marine machinery
increased expeditiously within the shipping industry. This relates to the effectiveness of artificial
intelligence in capturing fault patterns in marine systems that are becoming more complex and where
the application of traditional methods is becoming unfeasible. However, despite these advances, the
lack of fault labelling data is still a major concern due to confidentiality issues, and lack of appropriate
data, for instance. In this study, a method based on histogram similarity and hierarchical clustering
is proposed as an attempt to label the distinct anomalies and faults that occur in the dataset so that
supervised learning can then be implemented. To validate the proposed methodology, a case study
on a main engine of a tanker vessel is considered. The results indicate that the method can be a
preliminary option to classify and label distinct types of faults and anomalies that may appear in the
dataset, as the model achieved an accuracy of approximately 95% for the case study presented.

Keywords: fault diagnosis; similarity analysis; hierarchical clustering; artificial intelligence; marine
machinery; maritime industry; anomalies; hyperparameter optimisation; shipping

1. Introduction

Industrial processes are growing in scale, and thus safety is becoming a crucial matter,
which is leading to an increase in safety monitoring demands [1]. To guarantee production
safety and minimise risks, stable operations of industrial processes are of paramount im-
portance ([2,3]). It is unsurprising, therefore, that the development of novel fault diagnosis
frameworks increased in the fields of process safety and risk assessment [4]. Fault diagnosis
can be defined as a process aimed at tracing a fault by means of its symptoms [5]. Thus,
fault diagnosis is one of the most important methods to ensure safety when employing
complex systems ([6–8]). It is a process that is widely studied and analysed by academics
in sectors such as chemical ([9,10]), manufacturing ([11–16]), and transportation ([17–19]).

If the shipping industry is analysed in detail, the safety and reliability of marine
machinery systems and components are some of the utmost challenges to be addressed [20].
The increase in complexity of marine machinery and the lack of effectiveness of tradi-
tional methods for these systems enabled the implementation of more sophisticated ap-
proaches [21]. Additionally, the limitations of conventional methods in this domain, such
as the time required for diagnosticians to analyse the amount of data acquired from sensors
coupled to machinery, drove the demand for developing automatic decision-making tools
to assess the current health status of the monitored systems [22]. These are probably the
main reasons that facilitated the employment of intelligent fault diagnosis in tandem with
artificial intelligence. Accordingly, artificial intelligence is widely employed to enhance
current practices regarding the fault diagnosis of marine machinery [23,24] and to enable
intelligent shipping technology ([25,26]).

J. Mar. Sci. Eng. 2024, 12, 1792. https://doi.org/10.3390/jmse12101792 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12101792
https://doi.org/10.3390/jmse12101792
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-6130-9410
https://orcid.org/0000-0002-0717-3049
https://doi.org/10.3390/jmse12101792
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12101792?type=check_update&version=1


J. Mar. Sci. Eng. 2024, 12, 1792 2 of 21

The application of artificial intelligence for fault diagnosis demonstrated multiple
benefits and opportunities that this technology can offer. Examples include the following:
(1) reduction in human error, (2) increase in the level of information and the utilisation
of sensor data, (3) enhancements in communication technologies, and (4) enhancements
in data analysis practices. Specifically, there was an increase in the consideration of deep
learning models for fault diagnosis [27,28]. However, deep learning-based fault diagnosis
methods require vast amounts of labelled data for adequate training [29]. Consequently,
most of the fault diagnosis studies within the shipping sector focus mainly on the fault
detection task, as the lack of fault data is still a major limitation for the implementation
of artificial intelligence for fault diagnosis [30]. Furthermore, even though fault data are
available, these data are usually unlabelled and/or imbalanced [31].

Hence, even though several methodologies were already proposed, there are still
certain issues that need to be tackled. In this study, the lack of fault label data issue is
addressed. The lack of fault data can limit most of the studies that consider deep learning
approaches, as they require vast amounts of data. Additionally, even if fault data are
available, these data are usually not labelled. Therefore, fault diagnosis models cannot be
employed. Despite this fact, most of the analysed methodologies assume that fault label
data are available, which is rare in real-world scenarios. Furthermore, after analysing all the
identified papers on fault diagnosis of marine diesel engines ([32–44]), there is no evidence
to the best of the authors’ knowledge that a methodology for the labelling of fault data was
proposed. For this reason, this study aims to present a new method for the labelling of
fault data. This method seeks to combine histogram similarity with hierarchical clustering
analysis. Special attention is also given to the selection of the parameters that are critical for
the performance of the model, such as the number of bins in the histogram and the number
of clusters. Additionally, as hierarchical clustering analysis is introduced, the challenges of
fault imbalance are also analysed.

The paper is structured as follows: Section 2 presents the existing related work and
state-of-the-art on this topic. Section 3 describes the proposed methodology. Section 4
introduces and discusses the results obtained after the implementation of a case study
on a main engine of a tanker vessel. Finally, Section 5 outlines the main conclusions and
future work.

2. Literature Review

Various models were developed for the fault diagnosis of marine machinery. Specifi-
cally, the study of deep learning approaches recently saw a significant increase. For instance,
a fault diagnostic approach based on an improved temporal convolutional network and
generative adversarial network for data augmentation was proposed by [45]. To validate
the proposed methodology, a case study on underwater thrusters was performed. The
results indicate that the proposed methodology could increase the average F1-score up to
8.5% compared to the original temporal convolutional network classifier.

Analogously, a probabilistic similarity and linear similarity-based graph convolutional
neural network for ship ballast water system condition monitoring was introduced by [46].
Initially, the introduced model transforms the dataset, which is related to the ship’s ballast
water system, into two distinct graph structures. The first graph represents a probabilistic
topology graph, while the second graph represents a correlation topology graph. This
graph configuration enabled the implementation of T-SNE for probabilistic similarity
and Pearson’s correlation coefficient for linear similarity. Thus, inter-sample neighbor
relationships could be established. Once these relationships were determined, early fusion
of the two graph structures was conducted to extract multi-scale feature information.
Finally, a graph convolutional neural network was introduced. The proposed model
achieved an accuracy of 97.49% on a simulated ship fault dataset case study. A multi-head
attention neural network was proposed by [47], which comprised a multi-head attention
mechanism, convolutional layers, and residual structure.
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Additionally, a rank-order similarity of the multi-head graph attention neural network
was applied by [48]. Analogous to [46], T-SNE and Spearman’s correlation coefficient were
introduced to determine both probabilistic similarity and rank order similarity so that a
neighbour relationship between samples could be established. Subsequently, early fusion
of the two graph structures was conducted, and then a graph attention neural network,
which incorporated multi-head attention, was employed. This proposed model led to an
accuracy of 97.58% for the case study introduced regarding a simulated ship engine dataset.
A multi-channel multi-scale convolutional neural network for ship pipeline valve leak
monitoring was developed by [49]. The proposed model facilitated fault feature extraction
from grayscale images and feature-level fusion application for fault classification. Thus,
the impact of data redundancy and noise could be mitigated.

A balanced adaptation domain-weighted adversarial network was considered by [50].
To validate the proposed methodology, two experimental scenarios were proposed, which
considered a Wärstilä9L34DF dual-fuel engine as an experimental subject, where the model
achieved an accuracy of over 90% diagnostic accuracy in scenarios with complete target
working condition labels.

If the application of data-driven methodologies for the fault diagnosis of marine
diesel engines is analysed in detail, an additional 94 papers were retrieved utilising the
following keywords in the Scopus database: “fault diagnosis”, “ship*”, and “diesel engin*”.
Of all the resulting papers, the most recent ones were analysed, focusing on the period
from 2020 to 2024. In total, thirteen papers were identified to fall within the area of the
application of artificial intelligence for the fault diagnosis of diesel engines in the shipping
industry ([36–48]). All of the studies considered simulated fault data generated from either
simulator software or experimental setups. The fault data were then utilised to train a
fault classification model. All the analysed studies employed supervised learning, which
means that fault data were required for the adequate training of the implemented models.
Therefore, fault labels are indispensable for the implementation of these models, even
though in most real-world scenarios, the lack of fault labelling data remains a major concern
due to confidentiality issues and lack of appropriate data. Consequently, the application
of all the identified models may be unfeasible if fault labels are not provided in advance.
For this reason, the development of methodologies, such as the one presented in this
study, is of preeminent importance to ensure adequate fault label data availability. Upon
further analysis of these models, it can be perceived that 54% relate the application of deep
learning methodologies. Specifically, the following models were considered: convolutional
neural network, back propagation neural network, adversarial neural network, long short-
term memory neural network, and convolutional autoencoder. All of these models were
implemented within the last two years, indicating that deep learning is gaining attention
in this field. However, hyperparameter optimisation remains unexplored, as there is no
evidence that the analysed studies incorporating deep learning considered hyperparameter
optimisation algorithms. Nonetheless, deep learning still demonstrated its capability to
accurately perform fault diagnosis tasks.

Despite the undeniable benefits of deep learning methodologies for fault diagnosis of
marine machinery, their limitations and disadvantages cannot be diminished. For instance,
deep learning methodologies usually require vast amounts of data to perform effectively.
Nevertheless, the amount of fault data available in this sector is usually limited. For this
reason, either unsupervised or semi-supervised models are employed when fault data are
not available. For instance, a semi-supervised principal component analysis was applied to
diesel engine fault diagnosis by [32]. Multi-parameter prediction models are also usually
employed for early detection of faults. An example of this is [33], which introduced a
combined neural network model comprising principal component analysis, convolutional
neural networks, and bidirectional long short-term memory neural networks for marine
diesel engines. A combination of expected behaviour models with exponentially weighted
moving average for fault detection was also proposed by [34]. However, as supervised
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learning is not employed, these models usually only enable the fault detection stage, leading
to a lack of studies in the fault identification phase.

In addition, even though fault data is available, faults may not be labelled. Thus,
supervised learning cannot be employed unless either fault labelling models are used or
faults are labelled manually. Certain studies addressed the limited amount of fault data for
fault diagnosis. For instance, the study proposed by [51] introduced incremental learning
of new faults while effectively suppressing the overfitting due to instance paucity and
biased diagnosis. A semi-supervised model that considers imbalanced distribution of
fault categories and out-of-distribution samples in a simultaneous manner was proposed
by [52]. However, to the best of the authors’ knowledge, the studies focusing on the
labelling of fault data is limited. For this reason, this study aims to develop a new fault
labelling model that combines histogram similarity with hierarchical clustering analysis.
The consideration of these models relates to the objective of creating more explainable
models that are simple but effective if compared with the current developments regarding
deep learning methodologies. The main contributions of this study are as follows:

• The introduction of histogram similarity for evaluating differences between dis-
tinct faults.

• The combination of histogram similarity with hierarchical clustering for effective fault
labelling, while facilitating model’s explainability.

• The consideration of the silhouette coefficient for the selection of parameters.
• The application of the above fault labelling framework to the case of a main engine of

a tanker vessel to assess the effectiveness of the proposed methodology.

3. Methodology

Having explored the main contributions of this paper, a graphical representation of
the proposed methodology is introduced in Figure 1. The first step is the operational states’
identification stage, which aims to discard those instances that relate to either transient
or idle states. The median centring is the second step. This step is performed to better
capture variations in the resulting operational sequences. The third and final step of data
pre-processing is data normalisation. Regarding the proposed model, the histogram of each
sequence needs to be generated first, as described in step 4. In step 5, a histogram similarity
metric is introduced to obtain the similarity matrix that is considered as input for the
implementation of hierarchical clustering. The clusters identified after the implementation
of hierarchical clustering analysis in step 6 correspond to the distinct faults identified.
Thus, the fault labelling of data is the main objective of the proposed methodology so
that supervised learning can then be implemented at a later stage to enhance the fault
identification process. In the subsequent subsections, the different steps of the proposed
methodology will be explained in detail.

3.1. Operational States Identification

Even though marine machinery generally runs under steady-state conditions, fluctu-
ations often occur due to environmental conditions or variations in the operating profile
of the vessel. Consequently, these fluctuations need to be identified and discarded from
the analysis. To do so, the method introduced by [53] is implemented. The method is
comprised of two main steps: (1) image generation through the application of the first-order
Markov chain, and (2) image component analysis. The results of this method are reviewed
manually to ultimately discard transient and idle states.

Prior to applying the first step, the sliding window algorithm is introduced to segment
the original time series into sequences of n length. Then, the transition matrix is estimated
for each sequence utilising the first-order Markov chain. By treating the resulting transition
matrix as an image, the image is binarised by classifying the pixel values as either 0 (if
the probability associated with the pixel is 0) or 1 (otherwise). Once binarised, the distinct
transition clusters in the image are labelled through pixel connectivity analysis. In this
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study, the 4-neighbour adjacency criterion is applied. If an isolated pixel is detected, the
sequence is considered to be in a transient state and should be treated accordingly.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. Graphical representation of the proposed methodology. 

3.1. Operational States Identification 
Even though marine machinery generally runs under steady-state conditions, fluctu-

ations often occur due to environmental conditions or variations in the operating profile 
of the vessel. Consequently, these fluctuations need to be identified and discarded from 
the analysis. To do so, the method introduced by [53] is implemented. The method is com-
prised of two main steps: (1) image generation through the application of the first-order 
Markov chain, and (2) image component analysis. The results of this method are reviewed 
manually to ultimately discard transient and idle states. 

Prior to applying the first step, the sliding window algorithm is introduced to seg-
ment the original time series into sequences of n length. Then, the transition matrix is es-
timated for each sequence utilising the first-order Markov chain. By treating the resulting 
transition matrix as an image, the image is binarised by classifying the pixel values as 
either 0 (if the probability associated with the pixel is 0) or 1 (otherwise). Once binarised, 
the distinct transition clusters in the image are labelled through pixel connectivity analy-
sis. In this study, the 4-neighbour adjacency criterion is applied. If an isolated pixel is de-
tected, the sequence is considered to be in a transient state and should be treated accord-
ingly. 

3.2. Median Centring 
Median centring is applied to discard baseline shifts from the analysis so that the 

model can focus on abnormal patterns. To apply median centring, the median is first esti-
mated. Subsequently, the median is subtracted from each instance in the sequence. 

3.3. Normalisation 
Normalisation is applied to ensure that all sequences have the same range of values 

[0, 1]. Accordingly, Equation (1) is utilised. 

Figure 1. Graphical representation of the proposed methodology.

3.2. Median Centring

Median centring is applied to discard baseline shifts from the analysis so that the
model can focus on abnormal patterns. To apply median centring, the median is first
estimated. Subsequently, the median is subtracted from each instance in the sequence.

3.3. Normalisation

Normalisation is applied to ensure that all sequences have the same range of values [0, 1].
Accordingly, Equation (1) is utilised.

x′ =
x − xmin

xmax − xmin
(1)

where xmin and xmax are the minimum and maximum value of the sequence, respectively.

3.4. Histogram Generation

The main objective of this study is to evaluate whether histogram similarity analysis
can be utilised to identify distinct abnormalities, such as fault patterns. It is assumed that
the analysed faults disrupt the distribution of the evaluated sequences, which can then be
detected through frequency analysis after the determination of the histogram. To determine
the histogram, the number of bins and the range of data need to be first defined. The latter
relates to [0, 1], as the sequences were normalised in the preceding step.

Once both the number of bins and the range of data is determined, the bin width is
calculated using Equation (2).

∆ =
1
k

, (2)
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where k is the number of bins. The numerator is equal to 1 because, due to the normal-
isation of the sequences, the difference between the maximum and minimum value of
each sequence is 1. After estimating the bin width, the bin boundaries for each i-th bin
are determined.

LB = (i − 1)∆ (3)

UB = i∆ (4)

Determining the bin boundaries allows for counting the instances that fall into each
bin. Thus, the frequencies for the defined bins can be obtained.

3.5. Histogram Similarity Estimation

To evaluate the similarity between a pair of histograms, the following correlation
coefficient is utilised:

(h1, h2) =
∑i

(
h1i − h1

)(
h2i − h2

)
√

∑i

(
h1i − h1

)2
∑i

(
h2i − h2

)2
. (5)

Equation (6) is an adaptation of the Pearson’s correlation coefficient, where h1 and h2
are the two histograms being compared. h1 and h2 represent the means of the histograms,
which are estimated as follows:

hk =
1
n∑

i
hki, (6)

where n is the number of bins. By estimating the similarity between each pair of histograms,
a similarity matrix can be obtained, which serves as the input for the subsequent step.

3.6. Hierarchical Clustering Analysis

Hierarchical clustering is employed to cluster the histograms of each sequence based
on their level of similarity. This type of method was selected due to the following reasons:

(1) There is no need to define the number of clusters before implementing the model.
(2) It does not focus on the distribution of the data, so this model can be implemented for

different distribution types.
(3) It enhances the interpretability by enabling the visualisation of results through den-

drograms.
(4) Nested structures in the data can be revealed, which commonly occurs when dealing

with distinct faults in marine machinery.

As shown in Algorithm 1, the clustering process is divided into 18 steps. The
first three steps involve initialising the required variables to adequately perform the clus-
tering analysis. Specifically, the following variables are needed: number of current clusters
(n_clusters), and the distance matrix (distance_matrix). Subsequently, the iterative process
then begins to obtain the hierarchical structure comprised of clusters (see steps 4–9). To
do so, the type of linkage is defined. Before selecting a type of linkage, a comparative
study was conducted with other widely known types of linkage. For instance, the single,
complete, average, weighted, centroid, and ward linkages were analysed. However, cen-
troid and ward linkages provided the most precise results. The application of the linkage
determines how the clusters are constructed in each iteration. Consequently, the most
similar pair of clusters or instances, as determined by the application of either the centroid
or ward linkage, is joined to form a cluster. The distance matrix is then updated accordingly.
This process is repeated until the number of current clusters is 1, indicating that no more
clusters can be formed.

As indicated throughout the methodology section, a total of two hyperparameters
needs to be defined to adequately perform the fault labelling task. These hyperparameters
are the number of bins that define the histogram and the number of clusters that will
define the resulting fault labels. To select the optimal number of clusters, the distance
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metric is considered. First, a search space for both the distance and the number of bins
is defined. Next, each potential configuration from this search space is applied as the
number of bins of the resulting histograms and the cut-off used distance to determine
the number of clusters. Finally, the corresponding labels for each instance, based on the
clusters defined, are obtained. The final configuration that defines the optimal number of
clusters and bins of the resulting histograms is the one that yields the maximum silhouette
coefficient. The silhouette coefficient is selected as a metric to identify the best configuration
of hyperparameters because the ground truth is unknown, and thus a metric is required that
can be utilised to find the best configuration of hyperparameters without requiring fault
label availability. For this reason, the silhouette coefficient can be employed to evaluate
the consistency of the clusters and to determine whether the instances are well-clustered
or not, as this coefficient is one of the most widely known coefficients when considering
clustering analysis. To estimate this coefficient, the following equation is considered:

S =
b − a

max(a, b)
, (7)

where a is the mean intra-cluster and b is the mean nearest cluster distance. This process
corresponds to the steps 11–18 of Algorithm 1. In terms of complexity, the computation
of the similarity matrix is O(n2), and as it takes n steps to search, the overall complexity is
O(n3). Thus, this methodology may be unfeasible for high-dimensional data. However, as
previously stated, the main purpose of this methodology is to label enough fault data to
enable the training and implementation of a fault classification model.

Algorithm 1. Hierarchical clustering model

Input: similarity matrix, similarity_matrix.
distance search space, distances_search.
Output: resulting clusters, c.

1. Initialisation. The model considers as many clusters as sequences being analysed.
2. The similarity_matrix of dimensions n × n, where n is the number of sequences being analysed,
is set as the distance matrix that is considered during the clustering process.
3. Set the number of clusters, n_clusters, to n.
4. while n_clusters > 1 do
5. Apply centroid linkage as follows:

d
(

hi, hj

)
=

∥∥∥chi
− chj

∥∥∥
2

6. Group the two most similar clusters/instances according to the results of the centroid linkage.
7. Update the similarity matrix.
8. Set n_clusters to n_clusters—1.
9. end while
10. The silhouette array is initialised as an empty matrix.
11. for each distance in distances_search do
12. The distance is set as the cut-off distance to determine the distinct clusters.
13. Each instance is associated with its respective label based on the configuration of clusters.
14. The silhouette index is estimated and stored in silhouette.
15. end for
16. The maximum value in silhouette array is detected, which relates to the best results obtained.
17. The distance associated to the best silhouette value is obtained, best_distance.
18. The final clusters are obtained by considering the best_dinstance, and the resulting labels
are returned.

The overall algorithm utilised for the implementation of this methodology is presented
in Algorithm 2.
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Algorithm 2. Proposed methodology

Input: Sequences to be analysed, sequences.
Number of bins to be considered for histogram generation, n_bins.
Definition of the distance search space, distances_search.
Output: resulting clusters, c.

1. Median centring is applied individually in each of the sequences.
2. Normalisation is applied individually in each of the sequences.
3. for each b in n_bins do
4. Generate the histogram for each sequence and store it in histograms.
5. Obtain the similarity matrix following the process in Section 3.5.
6. Apply Algorithm 1 to obtain the resulting clusters in this iteration.
7. Store the clustering results.
8. end for
9. Obtain the configuration that leads to the maximum silhouette score.
10. Return the clusters that relates to the best configuration obtained.

4. Case Study and Results

Having explored the methodology introduced in the preceding section, a case study
is presented to evaluate its performance in the labelling of fault data. Consequently,
the power parameter of a main engine of a tanker vessel is examined. This parameter
is examined in terms of data collected at a 1 min frequency and includes more than
65,000 instances. To adequately assess the proposed methodology, three distinct types
of anomalies were injected into the data being analysed. The selection of the types of
anomalies to be considered in this case study was based on its criticality and frequency
of occurrence within marine machinery parameter datasets. The first type of anomalies
is point anomalies (A1), which can be defined as sudden changes (spikes) that deviate
significantly from the remaining data points that are placed in a similar context [54]. The
second type of anomalies relates to change points (A2), which occur frequently when
analysing marine machinery parameters due to fluctuations to either environmental or
operating conditions. These points need to be adequately detected and discarded from
the analysis. If the stationary process is assumed and a single realisation for statistical
parameter estimation is performed with inadequate detection and elimination of change
points, it can lead to either biased or inaccurate results [55]. The final type of anomaly
relates to contextual anomalies (A3), which are data points that deviate significantly from
the expected behaviour in a specific context. In total, 799 sequences with point anomalies,
811 sequences with change point anomalies, and 810 sequences with contextual anomalies
are considered (see Table 1 for further details).

Table 1. Categorisation of sequences of case study 1.

Type of Anomaly Number of Instances % of Total

Point 799 33.0%

Change Point 811 33.5%

Contextual 810 33.5%

2420 100.0%

To better understand the types of anomalies analysed in this study, a graphical rep-
resentation of each is presented in Figures 2–4. The anomalies are injected just after the
application of the operational state identification stage. Figure 2 shows an example of a
sequence with point anomalies. In total, two clear spikes can be observed, corresponding
to the two-point anomalies. An abrupt change occurs around instance 50, where the power
increases from approximately 3550 kW to 3700 kW. Subsequently, the power decreases
again from 3700 kW to 3550 kW. An analogous pattern can be observed for the second spike,
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where the value increases by more than 100 kW before a subsequent decrease of more
than 150 kW occurs. In contrast, Figure 3 shows an example of a change point anomaly.
In this example, two distinct operational states can be identified. The first operational
state begins around 3600 kW and lasts for about 50 instances. Subsequently, an abrupt
adjustment occurs, initiating the second operational state. This second state lasts for more
than half of the sequence. Finally, another abrupt change occurs, returning to the initial
operational state, which lasts until the end of the sequence. Figure 4 presents an example
of a contextual anomaly. In this sequence, a linear trend is observed, which may indicate
that the engine is not running under an operational state; thus, the sequence needs to be
discarded from the analysis.
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The data pre-processing steps median centring and normalisation are also applied.
Subsequently, the histograms are generated. As shown in Figure 5, clear differences can
be identified for each type of anomaly. For instance, the histograms related to point
anomalies tend to have isolated frequencies in higher bins, which relate to each of the
point anomalies presented in the sequence. It can also be observed that these bins tend to
have fewer frequencies compared to the bins that relate to the normal sequences, as the
number of spikes presented in a sequence tends to be minimal. Consequently, the result is a
histogram highly skewed to the right with a long tail toward higher values. Regarding the
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second type of anomalies, change point anomalies, a bimodal distribution can be perceived.
This bimodal distribution occurs due to the two distinct operational states that occur in this
type of sequence. Finally, the last type of anomaly, which relates to contextual anomalies,
tends to present a unimodal histogram that is widely spread. Thus, by performing a visual
inspection, one can identify that the histogram of spike anomalies tends to be highly skewed
to the right, change point anomalies tend to present a bimodal distribution, and contextual
anomalies tend to present a unimodal distribution that is widely spread. Therefore, the
estimation of a similarity matrix that considers the similarity degree between a pair of
histograms is expected to capture the similarity between sequences that present the same
type of anomalies and the dissimilarity between sequences that present different types
of anomalies.
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Regarding the number of bins, it can be observed that with a reduced number of bins,
the differences between types of anomalies can be captured. Thus, even though a higher
number of bins can provide further information, as also perceived in Figure 5, it can also
increase the computational cost of the model. Thus, a search space is defined to identify
the lowest number of bins that facilitates the best results whilst attempting to reduce the
complexity and computational cost of the model. The search space was set to [2, 240],
240 being the length of the sequence. The best results are obtained when the number of
bins considered is 5.

Once all histograms are generated, the similarity matrix is estimated, which encom-
passes the similarity degree between each pair of histograms. The resulting matrix is
introduced as the input of the hierarchical clustering, where the centroid linkage is utilised.
To evaluate the labels obtained from the hierarchical clustering, both the accuracy and the
confusion matrix are estimated. The accuracy metric is considered, as it is probably the
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most popular metric utilised when addressing a multi-class classification task. To estimate
the accuracy, the following equation is considered:

accuracy =
TP + TN

TP + TN + FP + FN
. (8)

Regarding the confusion matrix, it can be defined as a cross table that describes
the number of occurrences between two rates: true (actual) classifications and predicted
classifications. A graphical representation of a confusion matrix is shown in Figure 6.
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Additionally, the macro precision, macro recall, macro F1, Matthews correlation coef-
ficient, Cohen’s Kappa coefficient, and average execution time are estimated. The macro
precision and macro recall are estimated by utilising Equations (9) and (10), respectively.

Macro Average Precision (MAP) =
1
K

K

∑
i=1

precisioni, (9)

Macro Average Recall (MAR) =
1
K

K

∑
i=1

recalli, (10)

where K is the number of classes, precision equals to TP
TP+FP , and recall equals to TP

TP+FN .
By determining the macro average precision and macro average recall, the macro F1 can be
estimated as indicated by Equation (11).

Macro F1 = 2 ×
(

MAP × MAR
MAP + MAR

)
. (11)

The Matthews correlation coefficient (MCC) can be defined as follows:

MCC =
c × s − ∑K

k pk × tk√(
s2 − ∑K

k p2
k

)(
s2 − ∑K

k t2
k

) , (12)

where:
c = ∑K

k Ckk is the total number of correctly predicted elements,
s = ∑K

i ∑K
j Cij is the total number elements,

pk = ∑K
i Cik is the number of times that class k was predicted,

tk = ∑K
i Cki is the number of times that class k truly occurred.
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Finally, Cohen’s Kappa coefficient (K) is calculated by utilising Equation (13).

K =
c × s − ∑K

k pk × tk

s2 − ∑K
k pk × tk

(13)

Despite the fact that the proposed model performs clustering, classification metrics
can be applied due to the manual labelling of the injected anomalies. The accuracy of the
model is 95.20%. As Figure 7 shows, 2304 instances were accurately classified. The model
suggested that the most optimal number of clusters for this case study is four, rather than
the initially anticipated three (point anomalies, change point anomalies, and contextual
anomalies). This is because certain sequences exhibited high variability, which made it
challenging to differentiate between contextual and change point anomalies. The additional
cluster is marked as red in the resulting confusion matrix (XX). A total of 49 sequences
were clustered into this additional group. Additionally, 67 sequences were misclassified,
with point anomalies incorrectly labelled as contextual anomalies, and vice versa. These
misclassifications are attributed to the high variability of certain sequences containing point
anomalies, which can be easily confused with contextual anomalies.
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To complement the above results, an additional six parameters are explored. Specif-
ically, the exhaust gas outlet temperatures of each of the six main engine cylinders are
analysed. Analogous to the main engine power parameter, the proposed methodology ef-
fectively differentiates among the three distinct types of anomalies. As observed in Figure 8,
the minimum accuracy, which is 94.27%, is obtained when analysing the exhaust gas outlet
temperature of cylinder 5. In contrast, the maximum accuracy, which is 99.78%, is achieved
when cylinders 4 and 6 are considered. The main results of this study are summarised in
Table 2.

An additional case study is implemented to further analyse the following aspects:

• The limited number of faults. Faults can be considered rare events if compared to
normal operations, as a fault during operational conditions may lead to an inadequate
functioning of marine machinery. Thus, preventive actions are usually performed
in advance to avert any fault that can jeopardise the operations of the systems. This
results in a lack of fault data, which can limit most of the studies that utilise deep
learning approaches, as they require significant amounts of data for training. For
this reason, recent studies focus on data augmentation techniques. Nevertheless, this
study aims to provide an alternative for the labelling of fault data based on histogram
similarity and hierarchical clustering. While the first case study contained a significant
amount of fault sequences (2420 sequences), the third case study considers a total of 35
anomaly sequences to analyse whether the proposed model is effective with a limited
amount of fault data.

• Fault imbalance. It is not uncommon when dealing with this type of case study that
the different fault types exhibit varying frequencies. This is because certain fault types
may occur more frequently than others, which can be rare. To validate whether the
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proposed model can handle fault imbalance, the model is tested using three types of
anomaly sequences. The distribution of the anomaly sequences is as follows: 20 out
of 35 anomaly sequences relate to point anomalies, 5 out of 35 relate to change point
anomalies, and 10 out of 35 relate to contextual anomalies (please see Table 3 for
further details).

• Explainability. The proposed model considers hierarchical clustering to understand
the classifications provided through the model based on the histogram similarity.
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Table 2. Main classification results for the first and second case study.

Parameter Accuracy Micro
Precision

Micro
Recall Micro F1 MCC K Average Execution

Time (s)

Power 0.952 0.952 0.952 0.952 0.930 0.928 32.77
Cylinder 1 Exh. Gas Out. Temp. 0.960 0.960 0.960 0.960 0.940 0.940 46.50
Cylinder 2 Exh. Gas Out. Temp. 0.986 0.986 0.986 0.986 0.980 0.979 46.15
Cylinder 3 Exh. Gas Out. Temp. 0.994 0.994 0.994 0.994 0.991 0.991 46.06
Cylinder 4 Exh. Gas Out. Temp. 0.997 0.997 0.997 0.997 0.996 0.996 47.50
Cylinder 5 Exh. Gas Out. Temp. 0.942 0.942 0.942 0.942 0.910 0.910 45.70
Cylinder 6 Exh. Gas Out. Temp. 0.994 0.994 0.994 0.994 0.996 0.996 46.67

Figure 9 graphically presents the resulting dendrogram for the current case study.
To enhance interpretability, single linkage was considered instead. As illustrated, the
model successfully identifies the three distinct types of anomalies. The red labels refer to
change point anomalies, the green labels to contextual anomalies, and the orange to the
point anomalies. The analysis only reveals two misclassifications occurred, which relate to
sequences 3 and 4, and were incorrectly categorised as change point anomalies instead of
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point anomalies. Consequently, the resulting accuracy for this case study is 94.29%. The
confusion matrix can also be evaluated by consulting Figure 10.

Table 3. Categorisation of sequences of case study 3.

Type of Anomaly Number of Instances % of Total

Point 20 57%

Change point 5 14%

Contextual 10 29%

35 100.0%
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The mentioned misclassification can be further analysed due to the explainability of
the model. Firstly, the 3 and 4 sequences could be considered as a fourth independent
cluster, as it can be perceived that they are not very similar to any of the other sequences.
This can also be perceived with the sequences 26 and 29. For instance, if sequence 3 is
graphically represented, as seen in Figure 11, the histogram is distinct to the ones indicated
in Figure 5. Thus, it can be determined that this misclassification is related to the lack of
similarity between sequences 3 and 4 and the remaining sequences. This difference relates
to the high variability of the sequences, which fail to isolate the point anomalies presented.
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Finally, to assess whether the proposed methodology can handle different types of
faults than the ones presented in the previous case study, a new case study is introduced
where the following type of fault patterns are considered: (1) drop (F1), (2) noise (F2),
(3) exponential increase (F3), (4) sudden fluctuations (F4), and (5) stuck (F5). The drop
pattern usually occurs when there is a loss of signal due to, for instance, power failure,
physical disconnection, or sensor malfunction. Even though in these situations the result
of these faults tends to be a drop to either 0 or a very low value, in this study, the fault
is simulated in a way that the drop is not as abrupt. The second fault pattern refers to
random noise that was added to the signal in order to simulate calibration issues with the
sensor. The third fault pattern relates to exponential increase, which may occur due to
signal malfunction. The fourth fault pattern aims to address unpredictable variations in the
sensor readings due to, for instance, electrical interference or external disturbances. Finally,
the fifth and last fault pattern occurs when the sensor’s output remains at a fixed value,
which does not reflect the actual measurement of the signal. This can occur due to sensor
malfunction or inadequate data imputation of missing values. A graphical representation
of each of these simulated fault patterns is introduced in Figures 12–17.
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The first analysis performed in this case study evaluates the effectiveness of the
proposed methodology in dealing with imbalanced data. The analysed scenarios and the
corresponding balanced accuracy are shown in Table 4. As it can be observed, the model’s
performance of the model is not affected by data imbalance until the percentage of one
fault-type data, compared to the total number of normal instances, reaches 20%. However,
the balanced accuracy obtained is indicative of good performance, obtaining values of
0.82 and 0.85 for the cases of 10% and 20%, respectively.

Table 4. Performance of the proposed model based on the percentage of one fault type data compared
to the total number of normal instances.

Percentage of One Fault Type Data Compared to the Total Number of
Normal Instances Balanced Accuracy

10% 0.82
20% 0.85
30% 0.92
40% 0.93
50% 0.93
60% 0.94
70% 0.94
80% 0.95
90% 0.95
100% 0.95

Furthermore, an additional analysis that considers a total of 800 sequences (160 se-
quences) for each fault type was conducted. In this instance, an accuracy of 92.89% was
achieved. The confusion matrix of this analysis is introduced in Figure 18. The misclassifi-
cations primarily occur between F2 and F3, with a total of 51 sequences being misclassified.
Additionally, a total of 6 F5 were incorrectly classified as F4. All sequences for F1 and F4
were classified correctly.

Thus, results indicate that the consideration of histogram similarity in tandem with
hierarchical clustering can be an option for the identification and labelling of anomalies;
specifically, when there is no previous indication of the type of anomalies. However, the
limitations of the proposed methodology cannot be diminished. For instance, the fault
patterns need to be captured by the generated histograms so that the model can be effective.
In addition, it can be computationally expensive when dealing with high-dimensional
data. Despite these challenges, this methodology was proposed to label sufficient data
to subsequently perform supervised learning. In an attempt to enhance the proposed
methodology based on the obtained results, the future work guidelines are indicated below.

• Anomalies needed to be injected to validate the proposed methodology due to the lack
of fault data. An implementation of a real-world case study is expected once fault data
is available to the authors.

• Additional key ship machinery parameters such as auxiliary engine cylinder pressure
and temperature can be explored and trialled further.
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• Analogously, due to the lack of fault data, univariate analysis was performed. How-
ever, a multivariate analysis could also be performed, while then adapting the pro-
posed methodology accordingly.

• Utilise other histogram similarity methods to generate a more robust similarity matrix.
• Develop an ensemble model that can be adapted to the dimensions and characteristics

of the data.
• The silhouette coefficient is suggested as a metric for identifying the optimal parame-

ters. However, other coefficients need to be evaluated to create a more robust model.
• Create a holistic framework where the proposed methodology is incorporated as a

preceding step of a fault diagnosis tool.
• Develop a more efficient method to reduce the computational cost, as the introduced

agglomerative clustering approach has a complexity of O(n3), resulting in an average
execution time of 35.59 s for the first case study.

• Even though the model showed good performance when the data was imbalanced,
this performance is reduced when the dataset is severely imbalanced. Therefore,
further work needs to be conducted to ensure that the methodology can handle highly
imbalanced datasets.

• Develop a framework that integrates the developed methodology with a fault diag-
nosis model so that a fault diagnosis model can be trained and deployed when fault
label data are missing in real industrial applications.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 22 
 

 

Figure 17. Example of a sequence with a stuck value, which may occur due an inadequate data 
imputation performance or sensor malfunction. 

The first analysis performed in this case study evaluates the effectiveness of the pro-
posed methodology in dealing with imbalanced data. The analysed scenarios and the cor-
responding balanced accuracy are shown in Table 4. As it can be observed, the model’s 
performance of the model is not affected by data imbalance until the percentage of one 
fault-type data, compared to the total number of normal instances, reaches 20%. However, 
the balanced accuracy obtained is indicative of good performance, obtaining values of 0.82 
and 0.85 for the cases of 10% and 20%, respectively. 

Table 4. Performance of the proposed model based on the percentage of one fault type data com-
pared to the total number of normal instances. 

Percentage of One Fault Type Data Compared to the Total Number 
of Normal Instances 

Balanced Accuracy 

10% 0.82 
20% 0.85 
30% 0.92 
40% 0.93 
50% 0.93 
60% 0.94 
70% 0.94 
80% 0.95 
90% 0.95 
100% 0.95 

Furthermore, an additional analysis that considers a total of 800 sequences (160 se-
quences) for each fault type was conducted. In this instance, an accuracy of 92.89% was 
achieved. The confusion matrix of this analysis is introduced in Figure 18. The misclassi-
fications primarily occur between F2 and F3, with a total of 51 sequences being misclassi-
fied. Additionally, a total of 6 F5 were incorrectly classified as F4. All sequences for F1 and 
F4 were classified correctly. 

 

Figure 18. Confusion matrix of the fifth case study presented. 

Thus, results indicate that the consideration of histogram similarity in tandem with 
hierarchical clustering can be an option for the identification and labelling of anomalies; 
specifically, when there is no previous indication of the type of anomalies. However, the 

 F1 F2 F3 F4 F5 

F1 160 0 0 0 0 

F2 0 131 29 0 0 

F3 0 22 138 0 0 

F4 0 0 0 160 0 

F5 0 0 0 6 154 
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5. Conclusions

The lack of labelled data is still a major concern for the development of fault diagnosis
and prognosis approaches within the shipping industry. Accordingly, further efforts are
required in the preceding steps to ensure that fault data are available and adequately la-
belled. Specifically, when deep learning techniques are advancing in this area of knowledge;
techniques that require vast amounts of data.

Consequently, this study proposes a methodology based on histogram similarity
and hierarchical clustering. Special attention is given to selecting critical parameters
for model performance, including the number of bins defining the histogram and the
number of clusters. The silhouette coefficient is suggested as a metric for identifying the
optimal parameters.

To highlight the performance of the proposed methodology, a case study on a main en-
gine of the tanker vessel is introduced. Specifically, the power engine parameter and a total
of three distinct types of anomalies are analysed. Results indicate that the proposed method
is simple and effective, achieving an accuracy of approximately 95% for the introduced case
study. The proposed method can work for different data distributions, when the dataset is
not severely imbalanced, and when the characteristics of the faults are unknown. However,
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the method also presents several disadvantages, such as the dependency on adequately
capturing fault patterns by the generated histogram.
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