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Abstract: Due to the complexity of underwater environments, underwater target recognition based
on radiated noise has always been challenging. This paper proposes a multi-scale frequency-adaptive
network for underwater target recognition. Based on the different distribution densities of Mel filters
in the low-frequency band, a three-channel improved Mel energy spectrum feature is designed first.
Second, by combining a frequency-adaptive module, an attention mechanism, and a multi-scale fusion
module, a multi-scale frequency-adaptive network is proposed to enhance the model’s learning ability.
Then, the model training is optimized by introducing a time–frequency mask, a data augmentation
strategy involving data confounding, and a focal loss function. Finally, systematic experiments were
conducted based on the ShipsEar dataset. The results showed that the recognition accuracy for
five categories reached 98.4%, and the accuracy for nine categories in fine-grained recognition was
88.6%. Compared with existing methods, the proposed multi-scale frequency-adaptive network for
underwater target recognition has achieved significant performance improvement.

Keywords: underwater target recognition; Mel energy spectrum; frequency adaptation; attention
mechanism; multi-scale fusion

1. Introduction

Underwater target recognition utilizes sonar-received radiated noise or echo signals to
identify target objects [1]. These targets include various underwater entities, such as ships,
schools of fish, and submarines, and information regarding their locations and motion
states. Radiated noise features excellent concealment and long operational ranges [2],
making it a crucial method for underwater target recognition. However, the complexity
of underwater environments, the low signal-to-noise ratio (SNR) characteristics of radi-
ated noise [3], and the adversarial nature of underwater targets significantly increase the
difficulty of effective recognition. Consequently, underwater target recognition remains a
highly challenging task.

Underwater target recognition based on radiated noise mainly involves two pri-
mary processes: feature extraction and classifier design [4]. Traditional feature extraction
techniques encompass time-domain features, such as zero crossing rates [5], energy spec-
trum [6], and autocorrelation [7], and frequency-domain features like LOFAR [8] and
DEMON [9]. With rapid advances in computing technologies, it has been discovered that
features extracted using short-time Fourier transform (STFT) [10], wavelet transform [11],
and other time–frequency-domain methods exhibit superior applicability and representa-
tional capability for target recognition. Consequently, researchers have developed auditory
features based on auditory perception principles [12]. Mel frequency spectrum diagrams
were extracted utilizing Mel filter banks, leveraging the human ear’s high resolution for
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low-frequency sounds and lower resolution for high-frequency sounds [13]. Wang et al.
reported high accuracy of 94.3% using gamma-frequency cepstral coefficients (GFCC) [14].
Since most useful information in underwater signals is concentrated in low frequencies,
time–frequency features based on auditory characteristics have demonstrated more potent
information representation capabilities for radiated noise.

In recent years, deep learning underwater target recognition has become a trend [15].
Liu et al. utilized a one-dimensional convolution neural network (1D CNN) model to
identify the envelope modulation spectrum of underwater target radiated noise [9], demon-
strating good generalization ability. Hong et al. combined features and an 18-layer residual
network for underwater target classification [16]. Jin et al. introduced a sparse autoen-
coder (SAE) to recognize and classify underwater acoustic signals [17]. Han et al. used
a 1D CNN and a long short-term memory (LSTM) network [18], improving recognition
accuracy. Unlike traditional classifiers, deep learning requires only input rich in target
characteristics and learns through nonlinear decision-making [19]. Multi-scale fusion [20]
and attention mechanisms [21] are two crucial deep learning concepts. Multi-scale fusion in-
volves merging features at different scales, including both semantic and spatial features, to
mitigate information loss during convolution. Yan et al. proposed a multi-scale asymmetric
CNN [22], which conducts multi-resolution analysis to extract deeper multi-scale features
from the time and frequency domains, thus enhancing accuracy. Attention mechanisms can
focus on crucial information in input data and ignore irrelevant information, improving
the model performance. Liu et al. introduced a channel attention mechanism into the
model [23], enhancing the target’s intrinsic features. Fei et al. proposed a residual attention
CNN [24], achieving high accuracy.

In summary, current underwater target recognition techniques still focus on two
key steps: feature extraction and classifier design. In feature extraction, the research has
evolved from traditional statistical features to bioinspired features mimicking the human
auditory system. Regarding classifier design, the field has gradually transitioned from
traditional expert systems towards deep learning methods. The approaches for underwater
target recognition have evolved from conventional mathematical computations to artificial
intelligence [25].

In this manuscript, we have innovated in feature extraction and classifier design by
introducing an enhanced three-channel Mel energy spectrum feature for radiation noise
and proposing a multi-scale frequency-adaptive network. To obtain more comprehen-
sive frequency information, we have devised three Mel filters with varying distribution
densities across the entire frequency range to obtain Mel energy spectrum features with
diverse frequency resolutions. Drawing inspiration from multi-scale fusion and attention
mechanisms, we have introduced a multi-scale frequency-adaptive network, which em-
ploys visual geometry group (VGG) as the primary network for feed-forward operations,
with the network core containing a multi-scale fusion module. Within the multi-scale
fusion module are three branches of frequency-adaptive residual modules and a spatial
and channel squeeze-and-excitation module. The frequency-adaptive module applies two
different-sized frequency pooling kernels to the frequency enhancement algorithm for
adaptive computation and frequency attention learning. Integrating multi-scale fusion,
attention mechanisms, and adaptive computation enhances the model’s learning ability
and improves recognition performance. Additionally, we have introduced a sample aug-
mentation strategy based on time–frequency masking and data confusion and a focal
loss function to optimize the network architecture during the model learning process and
enhance performance on challenging samples. The main contributions of this study are
summarized as follows:

(1) Based on the varying distribution densities of Mel filters across different frequency
ranges, we designed a three-channel improved Mel energy spectrum feature. This
fused feature exhibits superior inter-class separability.
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(2) We propose a multi-scale frequency-adaptive network to enhance the model’s learn-
ing capability. This model employs a frequency-adaptive module and an attention
mechanism, combined with a multi-scale fusion module.

(3) To address imbalanced sample distribution problems, we introduce a sample aug-
mentation strategy based on a time–frequency mask, data confusion, and a focal loss
function. This improves the model’s performance on complex samples.

(4) Systematic experiments were conducted using the ShipsEar dataset to evaluate the
improved features and the proposed model. The results demonstrate that the recogni-
tion accuracy reached 98.4% for five classes and 88.6% for nine classes, outperforming
existing models.

The organization of this paper is as follows: Section 2 details the methodology, in-
cluding feature extraction and model design; Section 3 covers the experimental analysis,
detailing the experimental data, settings, and a comprehensive analysis of the results.

2. Materials and Methods
2.1. Feature Extraction

The Mel energy spectrum is a spectrogram derived from the short-time spectrum via a
Mel filter bank. These filters are designed based on the human auditory system, which is
more sensitive to lower frequencies and less sensitive to higher frequencies. A Mel filter
bank typically consists of multiple triangular band-pass filters with a dense distribution in
the low-frequency range and a sparse distribution in the high-frequency range. Adjacent
triangular band-pass filters overlap, each responding to a specific frequency range [26].
Therefore, the Mel energy spectrum retains more low-frequency information, benefiting
target classification and recognition. The particular steps for extracting the Mel energy
spectrum features are as follows.

(1) Conduct short-time Fourier transform to the signal s(n) to obtain the amplitude
spectrum |S(t, f )|:

|S(t, f )| =

∣∣∣∣∣∣
+∞

∑
m=−∞

s(n)w(m− n)e
−

j2πkn
N

∣∣∣∣∣∣, 0 ≤ k ≤ N − 1, (1)

where t and f are the time and the, and w(n) is the Hamming window.
(2) Obtain the energy density function P(t, f ) of s(n) based on |S(t, f )|:

P(t, f ) = S(t, f )× S∗(t, f ), (2)

where S∗(t, f ) is the complex conjugate of S(t, f ).
(3) Translate the energy density function P(t, f ) through a set of Mel filters; the energy

density function P̃mel(t, f ) after filtering is expressed as

P̃mel(t, f ) =
N

∑
m=1

∑ fm+1
k= fm−1

P(t, f )Hm[k], (3)

where N represents the number of triangular bandpass filters in the Mel filter bank,
and Hm[k] is the frequency response function of a triangular bandpass filter with a
center frequency fm and a response frequency range of ( fm−1, fm+1). Hm[k] is defined
as follows:

Hm[k] =


0 k < fm−1 or k > fm+1

2(k− fm−1)
( fm+1− fm−1)( fm− fm−1)

fm−1 ≤ k ≤ fm

2( fm+1−k)
( fm+1− fm−1)( fm− fm−1)

fm ≤ k ≤ fm+1,

(4)
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where the center frequency fm of the Mel filter can be obtained from the corresponding
frequency f :

fm = 2959× log10(1 +
f

700
). (5)

(4) Transform the energy density function P̃mel(t, f ) of the Mel-filtered signal into a
logarithmic scale to obtain the logarithmic Mel energy spectrum Pmel(t, f ):

Pmel(t, f ) = log10(P̃mel(t, f )). (6)

The characteristic information of ship-radiated noise is primarily concentrated in
the low-frequency range. To obtain more comprehensive low-frequency information, we
adjust the number of Mel filters in the high-frequency and low-frequency ranges while
extracting Mel energy spectrum features. We designed different feature extraction schemes
by increasing the number of Mel filters in the low-frequency range.

A frequency of 1000 Hz is set as the boundary between the low and high-frequency
ranges. The total number of Mel filters is N, the number of Mel filters in the low-frequency
range is denoted as Nl , and the center frequency of the Mel filters in the low-frequency range
is denoted as fl = [ f1, f2, . . . , fNl ]. Similarly, the number of Mel filters in the high-frequency
range is denoted as Nh, and the center frequency of the Mel filters in the high-frequency
range is denoted as Pmel(t, f ) = [Pmel(t, fl), Pmel(t, fh)]. The Mel energy spectrum feature is
denoted as Pmel(t, f ) = [Pmel(t, fl), Pmel(t, fh)]. Figure 1 presents different design schemes
for the Mel filter bank The extraction schemes are as follows:

(1) The default scheme consists of 128 Mel filters, with 38 filters in the low-frequency range.
(2) The number of Mel filters is adjusted to 48 in the low-frequency range and 80 in the

high-frequency range.
(3) The number of Mel filters in both the low- and high-frequency ranges is 64 each.
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Figure 2 illustrates the three-channel improved extraction process of the Mel energy
spectrum. The Mel energy spectrum features Pmel(t, f ) is denoted as P, and the features gen-
erated by the three schemes are denoted as Pde f ault, Plow48, Plow64, respectively. Combining
the Mel energy spectrum features from the three schemes, the three-channel improved Mel
energy spectrum graph feature Pf used = [Pde f ault, Plow48, Plow64] was constructed. Compared
to a single Mel energy spectrum feature, the three-channel feature provides richer frequency
distribution information, enhancing recognition accuracy.
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2.2. Data Augmentation

Data augmentation techniques have been proposed to improve recognition perfor-
mance. The study employs SpecAugment [27] and Mixup [28] methods to simulate the
signal loss caused by external factors during signal acquisition, thereby increasing data
diversity. Figure 3 shows an example of the features of the enhanced Mel energy spectrum.
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Figure 3. The Mel spectrogram after data augmentation.

The SpecAugment method enhances data by masking the spectrum’s time–frequency
domain. Masking in the frequency domain simulates the attenuation characteristics of
underwater signals.

During the frequency domain masking, the band-stop filter in the frequency range
[ f1, f2] is formulated as

X′( f ) =

{
0, f1 ≤ f ≤ f2

X( f ), otherwise
. (7)

The expression for random masking in the time domain range [t1, t2] is

X′(t) =

{
0, t1 ≤ t ≤ t2

X(t), otherwise
. (8)

The Mixup method augments the dataset and reduces the influence of noisy samples
on the model by mixing two different audio samples and their corresponding labels in
arbitrary proportions. Specifically, a new sample and label are formed via weighted
linear interpolation of the features and labels of two randomly selected samples (xi, yi)
and (xj, yj):

x̂ = λxi + (1− λ)xj

ŷ = λyi + (1− λ)yj.
(9)

where λ represents the interpolation factor, λ ∈ (0, 1).

2.3. Multi-Scale Frequency-Adaptive Network

This section introduces the principle and framework of the multi-scale frequency-
adaptive network. Figure 4 shows the overall structure of the network, with VGG [29]
serving as the backbone network for feedforward computation. The VGG structure com-
prises three convolutional modules, where each module has its internal convolutional
modules replaced by multi-scale frequency-adaptive modules. The network comprises
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two convolutional layers, one residual layer, and a multi-scale fusion (MSF) module. The
MSF module includes three frequency-adaptive residual (FAR) branches and a spatial and
channel squeeze-and-excitation (scSE) module.
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2.3.1. Frequency-Adaptive Residual Module

In underwater target recognition, the time–frequency spectrum of radiated noise con-
tains fewer critical details in the time dimension due to ships’ relatively stable motion state
and mechanical structure over short periods. However, it contains a wealth of critical infor-
mation in the frequency dimension. Hence, this paper proposes a frequency enhancement
algorithm (FEA) to enhance the frequency information in the features, thereby improving
the model’s ability to learn features. The principle of the FEA is illustrated in Figure 5. The
input feature map x undergoes frequency pooling operations to compress the frequency
dimension. This is followed by feature extraction through convolutional layers, which indi-
rectly expands the receptive field in the frequency dimension. Subsequently, upsampling
restores the dimensions to match the original input feature map size. Finally, the result is
summed with the input feature map x to obtain x1 to preserve the practical information
from the original feature map. The enhanced feature map x1 can be expressed as

x1 = U[wD[x]r×1 + b]r×1 + x, (10)

where D[·]r×1 represents a pooling operation with a pooling kernel size of r× 1; U[·]r×1
represents an upsampling operation with an upsampling kernel size of r× 1; and w and b
denote the convolutional layer’s weight matrix and the bias value, both of which are r× r.
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Figure 5. The structure of the frequency-adaptive algorithm.

The frequency-adaptive module (FAM) utilizes three pooling kernels of different sizes
to the FEA and adaptively computes and allocates the frequency weights for each branch.
The model structure is shown in the left part of Figure 6. Initially, the feature size is reduced
through a convolutional layer, followed by two frequency enhancement blocks with pooling
kernel sizes of 2 × 1 and 2n × 1, respectively, resulting in two feature maps Q1 and Q2 that
possess different frequency receptive fields. The features Q1 and Q2 from the two branches
are combined to obtain a merged feature Q. Subsequently, two rounds of global average
pooling (GAP) and fully connected (FC) layers produce two frequency tensors: Hq1 and
Hq2. This process is represented by the following formula:

Hqi = FCi(GAP(Q)), (11)

where i represents the number of frequency channels, and Hqi denotes the frequency tensor
adaptively selected. i ∈ 1, 2, Hqi ∈ RH×1×1, and H represent the frequency information.
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The final output of the module is represented as

Q̂ = Q1 × Hq1 + Q2 × Hq2. (12)

As shown in Figure 6, the residual network backbone consists of the following compo-
nents: two convolutional layers, two batch normalization (BN) layers, and two rectified
linear unit (ReLU) activation functions. FAM is positioned between the two convolutional
layers of the residual network backbone to extract more frequency features and capture
deeper semantic features.

2.3.2. Squeeze-and-Excitation Module

The squeeze-and-excitation (SE) module is an implementation of an attention mech-
anism with which to emphasize important features selectively [30], which measures the
importance of features along specific dimensions to enhance meaningful features and
suppress irrelevant ones. Assuming an input feature map X with the size H ×W × C, the
goal of the SE module is to recalibrate X to generate a corrected feature map X̂ through
operation FSE(·). FSE(·) is a function that maps X during the correction process to X̂ and
can be constructed based on different types of modules.

Spatial Squeeze and Channel Excitation Module (cSE)

The cSE module is illustrated in Figure 7. The input feature map X is passed through
global average pooling to generate the vector Z, Z ∈ R1×1×C. The k-th element in vector Z
is referred to as

Zk =
1

H ×W

H

∑
i=1

W

∑
j=1

Xk(i, j), k = 1, 2, . . . , C, (13)

where Xk(i, j) represents the k-th channel feature map of X.
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Figure 7. A spatial compression and channel excitation module.

During the activation process, the traditional approach involves first reducing dimen-
sionality and then increasing it through two fully connected layers to extract dependencies
among feature channels. Although this approach reduces the complexity of the model, the
dimensionality reduction process disrupts the direct correspondence between channels and
weights, adversely affecting the inter-channel dependencies. Wang et al. [31] introduced
a local cross-channel interaction method to address this issue, which efficiently executes
through one-dimensional convolution while adaptively determining the size of the convo-
lutional kernel. Specifically, the compressed channel vector is used to compute the weights
of each channel through one-dimensional convolution. Subsequently, a sigmoid activation
function is applied to map the weight vector to the range of 0–1. Finally, the channel weight
vector is multiplied by the input feature map X to generate the corrected feature map X′.
X′ can be represented as

X′ = σ[(w1Z + b1)]·X, (14)

where w1 and b1 represent the weight matrix and bias of the one-dimensional convolution,
respectively; σ[·] denotes the sigmoid function; and the symbol “·” denotes the dot product
of vectors or matrices.
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The formula for calculating the adaptive convolutional kernel size is

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣, (15)

where C denotes the number of channels of vector Z, b = 1, and γ = 2.

Channel Squeeze and Spatial Excitation Module (sSE)

The sSE module is illustrated in Figure 8. The input feature map X undergoes a
convolution with 1 output channel and a kernel size of 1 × 1, resulting in a feature map
of size H ×W × 1. The weight matrix is mapped using the sigmoid function. Finally,
the weight matrix is multiplied with the original feature map in the spatial dimension to
generate the corrected feature map X′′ . The corrected feature map X′′ can be represented as

X′′ = σ[(w2Z + b2)]·X, (16)

where w2 and b2 represent the weight matrix and bias of the convolution with an output
channel of 1 and a kernel size of 1 × 1; σ[·] denotes the sigmoid function.
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Spatial and Channel Squeeze Excitation Module (scSE)

The scSE module is illustrated in Figure 9, which is achieved by adding the outputs of
the parallel cSE and sSE modules. Thus, the corrected feature map X′′′ is as follows:

X′′′ = X′ + X′′ . (17)
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2.3.3. Multi-Scale Fusion Module

The MSF module is the core of the entire multi-scale frequency-adaptive network,
extracting rich and deep semantic features. The principle of the multi-scale fusion module
in this paper is to use three convolution branches of different scales to capture and fuse
information at varying receptive ranges. These branches share weights, differing only in
their receptive field sizes. This approach helps reduce model parameters and mitigates
the risk of overfitting commonly associated with complex models. The parallel-connected
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network architecture dramatically enhances the model’s training efficiency. The structure
of the multi-scale fusion module is depicted on the right of Figure 10, consisting of multi-
scale feature extraction and multi-scale feature fusion parts. The feature extraction part
incorporates frequency-adaptive residual modules in the three branches, using convolution
kernels of 3 × 3, 5 × 5, and 7 × 7. The 1 × 1 convolutions before and after the module are
used to reduce parameter volume and lower the computation complexity of the model. The
feature fusion part involves merging features extracted from each branch in the channel
dimension through concatenation, and feature enhancement using squeeze excitation mod-
ules. Residual connections are implemented to mitigate gradient explosion and vanishing
issues during training.
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2.3.4. Focal Loss Function

Due to the challenges in acquiring underwater acoustic signals and the substantial
annotation workload [32], the available datasets for underwater target recognition are
relatively small. Additionally, the varying occurrence frequencies and durations of different
vessels contribute to imbalanced data labels. To address these issues, this paper applies the
focal loss function [33] to underwater target recognition. The focal loss function introduces
a modulation factor to the standard cross-entropy loss which adjusts the weight of easily
classified samples, causing the model to focus more on difficult-to-classify samples. The
formula for focal loss is as follows:

L(pi) = −
n

∑
i=1

(1− pi)
γ log(pi), (18)

where pi is the probability that the model predicts the i-th sample as belonging to the actual
class, and γ is the tuning parameter that controls the attenuation degree of the loss for
readily classified samples, and it is commonly set to 2. (1− pi)

γ is referred to as the decay
factor, which reduces the contribution of the loss arising from readily classified samples.

To address the imbalance between positive and negative samples, a balance factor α
is introduced into the focal loss function. The improved focal loss function is expressed
as follows:

L(y, pi) = −αi

n

∑
i=1

(1− pi)
γ log(pi),αi =

{
α y = 1

1− α y = 0
, α ∈ [0, 1], (19)
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where y represents the true label of the sample.

3. Results
3.1. Experimental Data

The dataset used in this experiment is the ShipsEar dataset [34]. This dataset was
recorded under various sea conditions at the Vigo port in Spain during autumn 2012 and
summer 2013. The dataset consists of 90 audio samples with durations ranging from 15 s to
10 min, including 11 categories of ships and 1 category for background noise. According
to the ship tonnage standard, the samples are categorized into four major groups: A, B, C,
and D, with background noise classified as E. The specific classification of the samples is
shown in Table 1. In the data-preprocessing stage, the samples, recorded at a sampling rate
of 22,050 Hz, were segmented into 3 s intervals with a 33% overlap, totaling 5582 segments.
Subsequently, the samples were divided into training, validation, and test sets in a ratio of
7:1.5:1.5.

Table 1. Sample classification in the ShipsEar dataset.

Category Quantity Target

A 925 Dredger/Fishing
boat/Mussel/Trawler/Towboat

B 766 Motorboat/Pilot boat/Sailboat
C 2112 Passenger ship
D 1218 Ocean liner/Ro-Ro ship
E 561 Natural noise

3.2. Experimental Setup

The software platform for this experiment is the PyTorch 2.2.2 framework, running on
a Windows 11 system. The hardware platform features an Intel Core i9-13900K CPU with
64 GB of RAM, and an NVIDIA RTX 4090 GPU with 16 GB of VRAM. The Adam optimizer
was employed for training, utilizing the focal loss function mentioned in this paper. The
initial learning rate was 0.001, with an adaptive update strategy utilized to converge the
model, eventually reducing it to 0.00001. The batch size was set to 32, and each experiment
was trained for 100 epochs, and repeated 30 times.

3.3. Experimental Results and Analysis

After preprocessing the ShipsEar dataset based on the established experimental param-
eters, experiments were conducted and the results were analyzed. Initially, the frequency
pooling kernel in the frequency-adaptive algorithm was optimized by designing and evalu-
ating different kernel sizes to determine the optimal parameter configuration. Precision,
recall, and F1 scores were used as evaluation metrics, and a confusion matrix was utilized
to analyze the ship attributes within the dataset. Subsequent ablation experiments analyzed
the integration of various modules in the model and their contributions. Comparative
experiments were conducted using various features, loss functions, and models. Finally,
the dataset was carefully partitioned for detailed underwater target recognition.

3.3.1. Parameter Optimization

To investigate the impact of the frequency pooling kernel within the frequency-
adaptive module on the model, we conducted experiments using various sizes of pooling
kernels. In the experiments, a pooling kernel of size 2 was used as the baseline, and the ratio
of the pooling kernel size in the other branch to the baseline was defined as the pooling
kernel size ratio, serving as a reference indicator. The experimental results, presented in
Figure 11, indicated that initially, as the pooling kernel size ratio increased, accuracy also
gradually increased, suggesting that a larger pooling kernel could increase the receptive
field, allowing the model to learn more frequency information. When the pooling kernel
size ratio reached 4, the accuracy peaked at 98.4%. However, as the ratio increased further,
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the accuracy began to decline. This indicated that as the receptive field continued to expand,
the frequency information within the features gradually diminished, leading to the decline
in the effectiveness of the frequency-adaptive algorithm in the other branch and adversely
affecting the model’s learning, resulting in a sharp drop in recognition accuracy. Therefore,
the pooling kernel’s selection range must be carefully controlled. We selected a pooling
kernel size ratio of 4 in the subsequent experiments.
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3.3.2. Performance Evaluation

In this experiment, precision, recall, and F1-score were used to evaluate the perfor-
mance of the model. The formulas used to calculate each metric are as follows:

Precision =
TP

TP + FP
, (20)

Recall =
TP

TP + FN
, (21)

F1− score =
2TP

2TP + FP + FN
, (22)

where TP represents true positives, which signifies the number of samples correctly pre-
dicted as the positive class by the model; FP represents false positives, which indicate
the number of samples incorrectly predicted as the positive class by the model; and FN
represents false negatives, which denotes the number of samples incorrectly predicted as
the negative class by the model.

Apart from the precision, recall measures the model’s coverage rate of the positive
class, and the F1-score considers both metrics, making it particularly suitable for scenarios
with imbalanced classes. The recognition results for the five types of ships are shown
in Table 2.

Table 2. The recognition results for five types of ships.

Category Precision Recall F1-Score Support

A 0.967 0.978 0.973 92
B 0.962 0.962 0.962 52
C 0.991 0.987 0.989 225
D 0.990 0.990 0.990 96
E 1.0 1.0 1.0 47

Average 0.984 0.984 0.984 512
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Table 2 reveals that the precision, recall, and F1-score for each type of ship are above
96%, indicating a high recognition accuracy for the model. The metrics for category E are
perfect, with a recognition accuracy of 100%, suggesting a solid capability to discriminate
against background noise and other types of ships. The metrics for categories A, B, and C
are relatively lower, potentially due to the uneven distribution of sample categories.

The confusion matrix in Figure 12 further confirms the points mentioned above,
where the intensity of color in the confusion matrix represents the number of samples.
In the matrix, category C has many samples, making it more prone to prediction errors.
The diagonal elements correspond to the number of samples correctly predicted for each
category, while the off-diagonal elements correspond to the number of samples incorrectly
predicted. Categories B and C each had one or two samples incorrectly predicted as
category A, possibly because category A includes shallow-water vessels like dredgers that
might produce more considerable ocean background noise in shallow waters, potentially
affecting prediction results.
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3.3.3. Ablation Study

To validate the effectiveness of the multi-scale frequency-adaptive network modules
proposed in this paper, ablative experiments were conducted on the ShipsEar dataset. To
facilitate result analysis, subsequent experiments employed accuracy as the evaluation
metric. The three-channel improved Mel spectrogram features, in conjunction with data
augmentation, were employed as model input. The residual network replaced the previ-
ously described VGG module, serving as the baseline (BS) for the ablative experiments.
The FAM, scSE, and MSF of the MSFAN were individually embedded into the baseline
model, ensuring consistency in training parameters and environmental conditions across
experiments. Table 3 displays the recognition accuracy achieved after embedding different
modules into the model. The data in the table show that incorporating scSE and FAM
significantly increased recognition accuracy by 1.6% and 2.7%, respectively. This indicates
that the frequency-adaptive and squeeze-and-excitation modules enhance the neural net-
work’s extraction of deep features. Adding the multi-scale fusion module resulted in a 4.2%
improvement in recognition accuracy compared to the baseline, indicating a substantial en-
hancement. Further improvements in accuracy by integrating the other two modules with
the multi-scale fusion module demonstrate the module’s ability to expand the network’s
receptive field, enhance feature representation, and, when integrated with other modules,
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enable more precise target identification. Therefore, incorporating the described modules
can significantly enhance model recognition accuracy.

Table 3. Results of ablation experiments on different modules.

Module Recognition Accuracy

BS 91.8%
BS-scSE 93.4%
BS-FAM 94.5%
BS-MSF 96.0%

BS-MSF-scSE 96.1%
BS-MSF-FAM 97.2%

BS-MSF-FAM-scSE 98.4%

3.3.4. Comparison of Different Features

Table 4 displays the recognition accuracy of different features processed through
the model. It is observed fusion features significantly enhances recognition performance
compared to traditional single features. Among single features, the Mel frequency cepstrum
coefficient (MFCC) achieves a recognition accuracy of 93.9%, 1.5% higher than the Mel
spectrogram and substantially higher than the 83.6% accuracy of STFT. This indicates
that both MFCC and the Mel spectrograms effectively represent the spectral features of
underwater acoustic signals, with MFCC yielding better results. In contrast, STFT struggles
to accurately describe these characteristics. Feature fusion further improved accuracy due
to comprehensive feature representation. Incorporating differential features (DF) as part
of the fusion, DF-Mel achieves a 2.3% higher accuracy over the single Mel spectrogram.
DF-MFCC shows a 2.1% improvement over a single MFCC, highlighting that differential
features can enhance overall feature quality. The improved Mel filter bank designed
in this paper provides corresponding MFCC fusion features (3C-IMFCC). However, its
recognition performance is lower than that of the improved Mel spectrogram. This might
be due to the potential loss of high-order information during the conversion from the
Mel spectrogram to MFCC via discrete cosine transform (DCT), which removes spectral
correlations. Therefore, the three-channel improved Mel (3C-IMel) spectrogram features
exhibit superior performance.

Table 4. Recognition accuracy following model-based feature processing.

Features Recognition Accuracy

STFT 83.6%
Mel 92.4%

MFCC 94.0%
DF-Mel 94.7%

DF-MFCC 96.1%
3C-IMel 98.4%

3C-IMFCC 97.1%

To assess the discriminability between different features visually, this paper employs
the t-SNE algorithm to visualize the feature separation post-training. Figure 13 displays
scatter plots of Mel, MFCC, DF-Mel, DF-MFCC, 3C-IMFCC, and 3C-IMel features, mapped
from high- to two-dimensional vectors. Different colors are used to represent various
categories. The three-channel improved Mel spectrogram features show an apparent
separation effect with compact intra-class clusters. This demonstrates their strong inter-class
separability and intra-class cohesion, which are crucial characteristics of effective features.
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3.3.5. Comparison of Loss Functions

To illustrate the effectiveness of the focal loss function used in this paper during model
training, we compared the performance of various loss functions on the model’s recognition
accuracy. As shown in Table 5, compared to the cross-entropy loss function, the focal loss
function, which performs excellently on imbalanced datasets, shows an improvement in
recognition accuracy. This indicates that the focal loss function is more prominent when
dealing with imbalanced data.

Table 5. Comparative analysis of recognition accuracy across loss functions.

Loss Function Cross-Entropy Loss Function Focal Loss Function

Accuracy 97.5% 98.4%
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To fully demonstrate the focal loss function’s ability to enhance model performance on
imbalanced data, we balanced the quantities of each class in the ShipsEar dataset. Table 6
shows the adjusted distribution of samples in the ShipsEar dataset after balancing.

Table 6. Sample classification in the balanced ShipsEar dataset.

Category Quantity Target

A 500 Dredger/Fishing
boat/Mussel/Trawler/Towboat

B 500 Motorboat/Pilot boat/Sailboat
C 500 Passenger ship
D 500 Ocean liner/Ro-Ro ship
E 500 Natural noise

The performance of each loss function on the model trained with the adjusted dataset
provides a contrast, with the results shown in Table 7. The recognition accuracy with
focal loss is similar to cross-entropy loss on the balanced dataset. This suggests that the
adjustment parameters in the focal loss function are not significant in a balanced dataset
but are crucial for optimizing performance on imbalanced datasets.

Table 7. Recognition accuracy across loss functions in the balanced dataset.

Loss Function Cross-Entropy Loss Function Focal Loss Function

Accuracy 98.9% 99.1%

3.3.6. Comparison of Different Models

To validate the performance of the multi-scale frequency-adaptive network presented
in this paper, we compared its recognition accuracy from 30 repeated experiments with
that of other popular models. The results are illustrated in Figure 14.
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The results show that recognition accuracy improved for each model after data aug-
mentation. This indicates that data augmentation enhances model performance and gener-
alization, reduces overfitting risk, and improves robustness. The proposed model demon-
strated consistently higher recognition performance across the 30 repeated experiments
than all other models, suggesting that it is both effective and robust.
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3.3.7. Fine-Grained Recognition

Ref. [34] partitions the dataset by categorizing ships based on tonnage attributes. This
method of classification, using similar attributes across categories, can introduce errors
in recognition tasks. We adopted the partitioning method from ref. [35] to enable a more
comprehensive analysis of the ShipsEar dataset. A subset with nine categories, termed
ShipsEar2, is selected for recognition. These nine categories include dredger, fishing boat,
motorboat, sailboat, container ship, passenger ship, roll-on/roll-off ship, sailing ship, and
natural noise. Table 8 shows the training-testing split, with an additional 15% of samples
randomly selected from the training set for validation.

Table 8. Training-testing dataset splitting situation.

Category ID in Training Set ID in Test Set

Dredger 80, 93, 94, 96 95
Fish boat 73, 74, 76 75

Motorboat 21, 26, 33, 39, 45, 51, 52, 70, 77, 79 27, 50, 72
Mussel boat 46, 47, 49, 66 48
Ocean liner 16, 22, 23, 25, 69 24, 71

Passenger ship 06, 07, 08, 10, 11, 12, 14, 17, 32, 34, 36, 38, 40,
41, 43, 54, 59, 60, 61, 63, 64, 67 9, 13, 35, 42, 55, 62, 65

Ro-Ro ship 18, 19, 58 20, 78
Sailboat 37, 56, 68 57

Natural noise 81, 82, 84, 85, 86, 88, 90, 91 83, 87, 92

Table 9 shows the recognition results of ShipsEar2 using MSFAN. The average met-
ric for each ShipsEar2 category is 0.88, indicating excellent overall model performance
and feature processing in the nine-class recognition task. Lower results in the five-class
recognition task are attributed to increased classification difficulty and dataset partitioning
changes. Metrics below 0.5 were observed in the Dredger and Sailboat categories due
to insufficient samples, with only six Sailboat samples in the test set. Thus, insufficient
samples can introduce significant randomness, affecting the results.

Table 9. Recognition results of ShipsEar2 using the MSFAN.

Category Precision Recall F1-Score Support

Dredger 1.0 0.45 0.621 20
Fish boat 0.75 0.75 0.75 16

Motor boat 0.893 0.704 0.787 71
Mussel boat 0.703 0.963 0.813 27
Ocean liner 0.852 0.821 0.836 56

Passenger ship 0.934 0.929 0.931 351
Ro-Ro ship 0.868 0.894 0.881 66

Sailboat 0.208 0.833 0.333 6
Natural noise 1.0 1.0 1.0 91

Average 0.908 0.886 0.891 704

Figure 15 illustrates the use of the t-SNE algorithm to visualize model-processed
features across different categories in ShipsEar2.
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To demonstrate the effectiveness of ShipsEar2, we compare the proposed MSFAN
model with SE-ResNet [36]. The three-channel improved Mel energy spectrum is compared
against the reference contrast features used in previous experiments. The recognition
results are shown in Figure 16.
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Figure 16. Comparative analysis of recognition results of ShipsEar2.

The results indicate that in the complex task of fine-grained recognition, MSFAN
significantly outperforms the SE-ResNet model regarding recognition accuracy, with im-
provements reaching up to 2%. The enhancement in recognition performance is more
pronounced with the 3C-Imel feature than other features.

4. Conclusions

This paper introduces a feature extraction method using a three-channel improved
Mel energy spectrum. Experiments show that this feature provides stronger inter-class
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separability and intra-class cohesion than traditional MFCC and Mel energy spectrum
features. Additionally, we propose a novel MSFAN model for underwater acoustic target
recognition. This network combines frequency-adaptive residual modules, squeeze-and-
excitation modules, and multi-scale fusion mechanisms, enhancing feature representation
capacity. Rigorous evaluation of the ShipsEar dataset using a focal loss function shows that
the proposed MSFAN model enhances recognition accuracy and generalization, achieving
98.4% accuracy, surpassing existing models.

Moreover, fine-grained classification on a nine-category subset achieves 88.6% accu-
racy, marking considerable advancements over existing techniques. The MSFAN-based
methodology marks a significant leap forward in underwater target recognition, espe-
cially in feature extraction, model design, and training strategies. This work provides
novel insights and a robust framework, offering new perspectives in underwater acoustic
target recognition.
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