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Data-driven model for marine engine fault diagnosis using in-cylinder pressure signals
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ABSTRACT
Effective diagnosis of marine engines that is crucial for safe and reliable ship operations requires fidel tools for
the identification of critical faults. However, the unavailability of extensive measured data-sets corresponding
to engine faulty conditions renders the development of such tools challenging. This study aims to develop a
data-driven fault estimation model considering information extraction methods and regression techniques
of low computational effort, namely multiple linear and polynomial regression. The required data-sets for
healthy and faulty conditions for four critical faults and their combinations are generated by employing a
calibrated zero-dimensional thermodynamic model representing a marine four stroke medium speed diesel
engine, which is validated against engine shop trial measurements. Fourier analysis of the derived in-cylinder
pressure profiles is employed to calculate the coefficients of the harmonic orders. Several harmonics coeffi-
cients sets are used as input to the regressionmodels to estimate the severity of the four considered faults. The
results demonstrate that initial 20 harmonics are sufficient to effectively estimate the severity for each fault,
whereas polynomial regression is highly effective, exhibiting R2 values greater than 98%. This study provides
insights on the data-driven simultaneous faults severity estimation, and as such it impacts the advancement
of cost-effective diagnostic methods for marine engines.
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1. Introduction

1.1. Background

Forthcoming technological developments in maritime industry are
driven by the 4th Industrial revolution (industry 4.0) concepts and
tools. Several state-of-the-art technologies have been identified as top
drivers including smart systems, advanced materials, big data ana-
lytics, robotics, sensors, and communications. Future developments
in the shipping industry include the use artificial intelligence (AI)
techniques and machine learning (ML) (Meier et al. 2019).

Fault diagnosis for marine engines and systems has progressed
from approaches employing human expertise to smart and intelli-
gent methods (Hou et al. 2020). The intelligent fault diagnosis typi-
cally relies on methods from Machine Learning (ML) and Artificial
Intelligence (AI), which have been attracting interest from various
industries including the shipping industry to support diagnostics and
prognostics of systems in a sustainable way.

Machine learning methods include supervised and unsupervised
learning of ship systems anomalies. Supervised learning methods for
fault diagnosis employ classification models to categorise the faults
and regression models to quantify the faults severity. A compre-
hensive review on the condition monitoring and fault diagnosis for
diesel engines is reported in Jones and Li (2000). Rao et al. (2022)
reviewed the real-time condition monitoring for cylinder liner pis-
ton rings for diesel engines. Various machine learning techniques
are employed to detect failures in ship machinery (Elmdoost-gashti
et al. 2023) and provide recommendations for appropriate mainte-
nance activities (Karatuğ et al. 2023). Several studies focusing on
faults or failure detection for engine subsystems, parts, actuators,
sensors are published in the pertinent literature. The state of the art
of fault diagnostic methods as well as their applications for detecting
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faults and degradation of ship mechanical and electrical systems is
discussed in the next section.

1.2. Literature review

Data-driven techniques using supervised classification algorithms
are employed for condition monitoring of engine subsystems. Hou
et al. (2020) proposed a fault classification using Support Vector
Machines (SVM) for the fuel oil supply system. A fault localisation
algorithm using association rule mining for marine engine subsys-
tems was developed by Cai et al. (2017) based on a historical faults
database. Jung et al. (2018) reported a comparative study on the clas-
sification techniques employed to detect common faults with varying
severity in a fuel system.

Artificial Neural Networks (ANN) are extensively employed for
supervised fault classification. Mesbahi et al. (2005) introduced an
ANN-based model to predict faults associated with the turbine
and condenser in steam power plants. Raza and Liyanage (2009)
developed an algorithm based on ANNs to clasify Faults related to
oil pumps faults. Stoumpos and Theotokatos (2022) proposed an
ANN-based approach to forecast sensor failures in dual fuel marine
engines. Velasco-Gallego and Lazakis (2022) developed a method-
ology combining a first-order Markov chain with both ResNet50V2
and Convolutional Neural Networks (CNN) to detect anomalies
in diesel generator sets through time series imaging. A methodol-
ogy based on Recursive Neural Networks (RNN) was demonstrated
by Senemmar and Zhang (2021) to simultaneously locate and classify
faults in ship systems.

Ensemble models that integrate various machine learning tech-
niqueswere developed for fault detection inmarine engines. Tsaganos
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et al. (2020) employed an ensemble (multi-technique) model to
classify common faults, such as fuel and air leakage for marine
two-stroke engines. An extreme learning ensemble was developed
by Kowalski et al. (2017) to classify 14 faults for a four-stroke diesel
engine. Wang et al. (2020) proposed a fault diagnosis framework
combining both supervised and unsupervised algorithms to classify
a limited number of engine faults at specific operating points. Per-
era (2016) demonstrated the effectiveness of a localised model with
data point clustering using Gaussian mixture sub-models and an
expectation-maximisation algorithm for fault detection in marine
engines. Several techniques, including One Class Support Vector
Machine (OCSVM), Support Vector Data Description (SVDD),
Global k-nearest neighbors (GKNN), Local Outlier Factor (LOF),
Isolation Factor (IF), and Angle Based Outlier Detection (ABOD),
were investigated and validated for a marine machinery system
by Tan et al. (2020). Furthermore, multi-class classification and
simultaneous fault diagnosis using Binary Relevance (BR), Clas-
sifier Chains (CC), Multi-Label k-Nearest Neighbors (MLKNN),
Binary Relevance k-Nearest Neighbors (BRKNN), and Multi-Label
Twin Support Vector Machines (MLTSVM) were presented by Tan
et al. (2021).

Machine learning models dealing with a single parameter or sig-
nal are frequently employed for identifying specific engine faults.
These models require less computational power while providing
more information through instantaneous data acquisition. Krogerus
et al. (2018) analysed the common rail pressure signal in dual fuel
engines to diagnose fuel injection faults. Coraddu et al. (2022) pro-
posed a condition monitoring model based on the exhaust tem-
perature prediction in various operating conditions. Vibration sig-
nals measured from engine subsystems and components also exhibit
potential for diagnosing combustion engine faults. Xi et al. (2018)
developed a classifier to reduce human errors using independent
component analysis (ICA) on vibration data collected from mul-
tiple engine locations. Zabihi-Hesari et al. (2019) proposed a fault
diagnosis method for 12-cylinder engines using vibration signature
analysis and a neural network. Ayati et al. (2020) focused on clas-
sifying fuel injection faults based on vibration signatures. Feature
extraction methods were developed to obtain required information
for fault diagnosis from instantaneous signals, further reducing com-
putational time. For instance, Zhang et al. (2018) developed a fea-
ture extraction method for instantaneous crankshaft speed to detect
misfires in engine cylinders at three loads.

This study focuses on the extraction of pertinent information
from acquired in-cylinder pressure signals, and identification of the
following faults: blowby leakage, increased friction, injection issues,
and charge air cooler fouling in marine four-stroke engines. Several
levels of severity for these four faults as well as their combinations
were considered at the whole operating range of the investigated
marine engine.

1.3. Challenges and research gaps in fault diagnosis

The methods discussed in the preceding literature review require
tremendous amount of data for training.Most of the ships (especially
older) do not provide access to the engine manufacturer monitoring
system rendering the data acquisition challenging. Thermodynamic
models on the other hand are useful to generate the required realistic
data-sets, which can subsequently be used to train data-driven diag-
nostic models (Altosole et al. 2022). The dimensionality reduction
approach (Mohammad et al. 2022) can lower the number of required
input/features, resulting in considerably reducing the training data
amount and thus computational effort for data-driven models, with-
out deteriorating their accuracy. When the in-cylinder pressure is
used as input, the dimensions depend on the sampling rate of the

pressure signal; typically, samples are acquired every 0.5 − 1 degCA.
An effective method is required to reduce these signals dimen-
sions and extract the required information for the engine health
assessment.

Previous studies only focused on particular operating points of
the investigated marine engines and systems to identify faults. How-
ever, the whole operating envelope of the investigated marine engine
must be considered. The pertinent literature focused on detect-
ing specific faults on marine engines and their systems. However,
the capabilities of the engine diagnostics methods considering mul-
tiple faults combinations must be assessed. The development of
fault classification models was the main focus of previous studies,
whereas very few studies focused on quantifying the faults severity.
Yet, the degree of fault severity is required to provide the marine
engine health status. Computationally expensive ANNs were typi-
cally employed for estimating the combustion related faults by Patil
et al. (2023). However, the development of shipboard fault diagno-
sis systems requires the use of computationally inexpensivemethods,
such as simple regression.

1.4. Research aim

To overcome the preceding challenges, this study aims at developing
a data-driven fault estimation model for the following four critical
faults and their combinations: charge air cooler (CAC) fouling, cylin-
ders blowby, increased friction losses, and fuel injection timing. The
model consists of three blocks, namely input dimensions reduction,
data standardisation and regression, and estimates the engine faults
and their severity. A large marine four-stroke engine is investigated.
The in-cylinder pressures, the engine speed and load are the required
parameters for developing and using the data-driven fault estimation
model. This study proposes the processing of the in-cylinder pressure
signals by employing Fourier analysis to reduce the input dimen-
sions. Additionally, a feature standardisation method is employed,
whereas the K-fold splitting technique is used to split the testing and
validation data-sets. Two multivariate linear regression techniques
are tested to select the one with the highest accuracy. Moreover, two
parametric studies are performed; the former is employed to identify
the number of Fourier coefficients that provide adequate regression
model accuracy; the latter is employed to investigate the impact of
the test-to-train ratio on the regression model accuracy.

This study employs a zero-dimensional thermodynamicmodel to
generate the required data for the engine healthy and faulty condi-
tions. It must be noted that although healthy data can be acquired
from measurements (shop trial and shipboard), it is not possible to
obtain faulty data in the complete range of scenarios with multi-
ple simultaneous faults and/or varying fault severity. This model is
termed thermodynamic model henceforth to differentiate from the
data-driven fault estimation model.

Thenovelty of this study stems from: (a) the prediction of the
severity levels of the fault for each individual cylinder considering the
complete operating envelope of the investigated marine engine; (b)
the use of Fourier analysis as a dimensionality reduction technique,
providing the harmonic orders coefficients as input of the regression
model instead of the in-cylinder pressure data points; (c) the con-
sideration of four critical faults and their combinations with varying
severity; (d) the characterisation of the accuracy of the regression
techniques and its dependence on the harmonic orders number.

2. Methodology

Figure 1 presents the methodology flow diagram for developing the
data-driven model for each fault (top box), as well as its proposed
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Figure 1. Methodology flowchart (top box) along with data-driven model application at the bottom.

application with shipboard measurements (bottom box). The gener-
alisedmethodology to develop a fault estimationmodel for each fault
consists of the following six steps:

Step 1 Data generation: A validated thermodynamic model of the
investigated marine engine is employed to generate healthy
and faulty data-sets as reported in Subsection 2.1. Several
operating scenarios with combinations of four frequent faults
of varying severity are considered. A design of experiment
(DOE) approach is followed to perform simulation runs in
the entire operating envelope and considering combinations
of faults and their severity, thus generating the in-cylinder
pressure profiles.

Step 2 Dimensional reduction: This step employs Fourier analysis to
convert the in-cylinder pressure signals to harmonic-order
coefficients. Considering the coefficients of the first N har-
monic orders, the input dimensions reduce from720 (consid-
ering 1oCA sampling rate and four-stroke engine) to 2N+1
for each operating point. The detailed description of this
method is provided in Subsection 2.2.

Step 3 Data standardisation: The standardisation of the generated
data sets considering both the input and output parameters
of the fault estimation model is carried out by centering to
their mean values. This step is described in Subsection 2.3,

Step 4 Data splitting: Firstly, the data is separated in k-folds with
equal distribution of samples for all faults. Secondly, the folds
are classified into training and validation folds by the use
of the test to train ratio (γ ), which is provided as an input
parameter. This step is described in Subsection 2.4.

Step 5 Regression model training: Multivariate linear and polyno-
mial regression models are developed and trained by opti-
mising the loss function described in 2.5 by employing the
training data selected in step 4.

Step 6 Regression model validation: The trained model is validated
against the validation data selected in Step 4.

Steps 4, 5 and 6 are repeated K times for cross-validation with one
fold being used as the validation data set during training Section 2.5.
Themost accurate regressionmodel is selected among the developed
multivariate and polynomial regression models based on a paramet-
ric study with varying number of Fourier series coefficients. A second
parametric study based on the test-to-train ratio (γ ) is performed on
the selected model to assess the impact on its accuracy.

2.1. Data-sets generation

2.1.1. Investigatedmarine engine
The engine used for this study is the four-stroke Wärtsilä 9L46C
marine engine, which is a nine-cylinder turbochargedmedium speed
engine. In particular, this engine is installed in a RoPax ferry, the
propulsion plant of which consists of two identical engines, each one
driving a controllable pitch propeller and a power take-off generator
through a gearbox. The main particulars of this engine are listed in
Table 1 (Wartsila 2001).

The employed thermodynamic model uses semi-phenomeno-
logical models and widely acknowledged formulae to represent the
engine processes. The state variables at cylinders and manifolds are
calculated by employing the differential equations corresponding to
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Table 1. Investigated marine engine specifications.

Maximum Continuous Rating point 9,450 kW @ 500 r/min
No. of Cylinders 9
Cylinder Bore 460mm
Clutch-in Speed 300 r/min
Turbocharger ABB TPL 77-A30

the mass and energy conservation, whereas the pressure is calcu-
lated by the ideal gas law. The Woschni-Anisits combustion model
that is based on a single Wiebe function is employed for the heat
release calculation. The Woschni equation is employed for calculat-
ing the heat transfer coefficient between the gas and the cylinder
walls. The Chen-Flynn model (Chen and Flynn 1965) is used for
the estimation for the friction mean effective pressure (FMEP). The
turbocharger compressor and turbine are modeled by considering
the digital forms of the compressor and turbine maps. The shaft
speed of the engine and turbocharger is calculated by consider-
ing the respective angular momentum conservation equations. The
detailed description of the employed thermodynamic model is pro-
vided in Tsitsilonis et al. (2021), Tsitsilonis and Theotokatos (2021)
and Tsitsilonis et al. (2022).

The zero-dimensional thermodynamic DT for the investigated
engine is calibrated and validated by considering the steady state
measured parameters from the engine shop trials (factory acceptance
tests). DT calibration involves the determination of the combustion
and FrictionMean Effective Pressure (FMEP) parameters for the ref-
erence operating point, which is followed by the calibration of the
Woschni-Anisits model constants considering all remaining shop
test operating points. The employed DT calibration and validation
processes for the investigatedmarine engine are described in Tsitsilo-
nis et al. (2021), Tsitsilonis and Theotokatos (2021) and Tsitsilonis
and Theotokatos (2022). This DT was further validated against in-
cylinder pressure measurements acquired during the normal ship
operation at five steady state operating points.

Subsequently, the validated DT is employed to generate the
required data-sets considering the investigated engine operation at
both healthy and faulty conditions; the latter are associated with sev-
eral engine components faults and degradation. As mentioned in the
methodology section, combinations of the previously identified four
most frequently occurring faults/degradation (for which experimen-
tal data collection remains challenging (Lamaris andHountalas 2010;
Hountalas 2000; Rubio et al. 2018)) with varying severity are consid-
ered (Banisoleiman and Rattenbury 2006). The DT was employed to
obtain the engine performance parameters including the in-cylinder
pressure profiles. These four most common faults/degradations are
as follows.

(1) Fuel injection issues:The advance and retard of the start of
injection (SOI) occurs due to wear and tear of the fuel injection
system (pumps and injectors), which results in deteriorating
the engine performance. This study employs the SOI advance
and retard to represent the fuel injection fault. Other injec-
tion issues, for example, worn injectors, were kept out of the

Table 2. Faults, model input parameters, and corresponding severity.

Faults Input parameter Parameter Calculation Range of βfault

SOI Start of injection (SOI) θSOI,faulty = θSOI,healthy(1 ± βSOI) −0.6 – 0.6 (9 points)
FMEP Friction Mean Effective Pressure (fmep) fmepfaulty = fmephealthy(1 + βFMEP) 0–0.6 (5 points)

Blowby Blowby area (ABB) ABB = π
[D2cyl − (Dcyl − 2ta)2]

4
βBlowBy 0–0.6 (5 points)

CAC CAC effectiveness (ηAC ) ηAC,faulty = ηAC,healthy(1 − βCAC) 0–0.6 (5 points)
at: gap thickness.

scope of this study, asmore detailedmodelling approaches along
with experimental data are required. Such cases can be investi-
gated in future studies. The SOI is an input parameter of the
thermodynamic model.

(2) Increased friction losses: Increased engine friction losses due
to lubricating oil quality, or excessive bearing wear and tear
result in reducing the engine brake power. This fault is induced
in the DT by adjusting the Friction Mean Effective Pressure
(FMEP).

(3) Blowby: Leakages of exhaust gases from the cylinder due to
wear and tear in cylinder liner and piston rings cause the engine
performance deterioration. This fault is modelled by using the
blowby area (according to Table 2) and the nozzle flow equation
to calculate the leakage gas mass flow rate (Perceau et al. 2022).

(4) Charge Air Cooler (CAC) fouling: This fault is attributed to
the deposits and fouling in both sides (air, cooling water) of the
CAC, and results in reducing the heat transfer rate from the air
to the cooling water. It is modelled by reducing the charge air
cooler effectiveness.

As faults and degradation are uncertain phenomena occurring
in the systems and components, their combinations and varying
severity may arise during the engine lifetime. To capture these com-
binations and generate the required data-sets for the fault estimation
model, the full factorial design method reported in Cavazzuti (2013)
is employed to model the four faults with five severity levels for the
FMEP,CACand blowby faults, and 9 levels for the SOI fault. The fault
severity is represented byβfault . The healthy conditions correspond to
βfault = 0, whereas the most severe fault corresponds to βfault = 0.6
for the FMEP, CAC and blowby faults, as well as βfault = ±0.6 for the
most extreme SOI retard and advance, respectively.

Increments of (βfault) by 0.15 were considered to represent the
faulty conditions with several levels of severity. The increment of 0.15
may seem high for certain faults like FMEP and blowby, as these
faults symptoms can be perceived easily by visual/audible observa-
tion. However, the preceding wider ranges are considered, as this
study objective is to assess the potential of Fourier coefficients to
diagnose specific faults and their combinations.

Table 2 lists the input parameters for the considered four
faults/degradation, the equations to estimate these parameters, and
the ranges of the corresponding β . In total, 1,125 (5 × 5 × 5 × 9)
combinations were generated with the full factorial design method
for each operating point at steady state conditions for the investigated
marine engine.

To retain the engine power output almost constant with vary-
ing faults severity, the engine injected fuel amount was adjusted by
using a PID controller. It should be noted that this study consid-
ers all the engine cylinders being at the same health condition. The
cases of different faults for different cylinders is out of this study
scope. It was assumed that the acquired in-cylinder pressure will be
pre-processed to remove offsets according to the method reported
in Tsitsilonis and Theotokatos (2018), and subsequently corrected
according to ISO3016 and manufacturers guidelines. Hence, the
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ambient conditions impact on the engine performance parameters
was not considered in this study.

To facilitate the fault/degradation analysis over the whole engine
operating envelope, 50 operating points corresponding to steady
state conditions were considered. These operating points are illus-
trated in Figure 2. Cumulatively, 56,250 (1125 × 50) simulation runs
are performed for the considered fault combinations and severity lev-
els, thus representing the conditions occurring on the investigated
marine engine throughout its lifetime. The impact of the differ-
ent faults combination on the engine performance parameters is
presented and discussed in Subsection 3.1.

2.2. Dimensional reduction using Fourier coefficients

The in-cylinder pressure diagram conveys crucial information char-
acterising the engine processes and their inter-dependencies, as
reported in Tsitsilonis et al. (2021). To effectively capture the pres-
sure diagram for a four stroke diesel engine with cycle duration of
720◦CA, 720 points corresponding to 1◦CA are typically required.

Fourier series (Shatkay 1995) is a method to represent continuous
periodic signals through superposition of harmonic orders repre-
sented by sine and cosine terms. This method is useful to assess
the complete in-cylinder pressure signal or its variation for differ-
ent cycle phases (compression, expansion, gas exchange) through
estimating the amplitudes for each harmonic order. Several efforts
to reconstruct the in-cylinder pressure signals using Fourier analy-
sis were reported in the pertinent literature (Johnsson 2006; Zeng
and Assanis 2004; Taraza et al. 2005). Fourier series coefficients are
proven useful to reduce dimensions inmachine learning applications
as reported inManjunath Aradhya et al. (2008). Alternative methods
including wavelet decomposition or local Fourier transform focus on
signal specific windows. The computational power required for the
above methods considering the whole signal or local windows does
not vary significantly. Therefore, this study focuses on the Fourier
analysis to extract information from the in-cylinder pressure in the
complete engine cycle.

By employing Fourier analysis, the in-cylinder pressure signal can
be approximated by the following equation (Zeng and Assanis 2004):

p(φ) = A0 +
∞∑
n=1

Ancos
(
2πnφ
T

)
+

∞∑
n=1

Bnsin
(
2πnφ
T

)
(1)

Figure 2. Engine load diagram (power/speed) and simulated operating points.

Figure 3. Reconstruction of pressure signal (first 360◦CA) from N number of har-
monic orders using 2N+1 Fourier coefficients.

where T denotes the signal period equal to 720◦CA for four-stroke
engines, A0 corresponds to the average value of the pressure sig-
nal, An and Bn represent the cosine and sine terms coefficients for
the nth harmonic order; the amplitude of each harmonic order is√
A2
n + B2n).
The total number of harmonic orders required to exactly repre-

sent the pressure signal (resulting in zero error) tends to infinity.
For reducing the pressure signal dimensions, a limited number of
harmonics is sufficient, provided that the required information for
estimating the engine faults is retained.

Figure 3 shows the reconstructed in-cylinder pressure profile con-
sidering N numbers of harmonic orders that require 2N + 1 Fourier
coefficients. As N increases, the error in the reconstruction of the
original pressure signal is reduced. A parametric study is also carried
out using different values of N to assess the potential for information
capture and accuracy of the final diagnostic model for predicting the
engine faults, which is described in Section 3.

Figure 4 shows the variation of A0 with the fault severity for
the CAC and FMEP faults at full load and 462.5 rev/m. The points
plotted in black represent the single fault conditions. The coeffi-
cient A0 representing the average pressure value in the cylinder
is correlated with the fault severity βfault . This correlation extends
to the other faults and coefficients derived from pressure profiles,
showcasing a potential to map a regression for estimating βfault .
It is inferred from the derived results that the fault combinations
compared to single faults affect the Fourier coefficients values. This
further supports the selection of the Fourier coefficients as input
for developing regression models to forecast the faults and their
severity.

Hence, a separate fault estimation model is recommended to
avoid complexity, as the Fourier coefficients ranges at different faults
do not vary significantly (21–27 bar from Figure 4). The devel-
oped regression model for each fault employs the first N harmonics
with 2N+1 Fourier series coefficients (A0, An,BN with n = 1−N) as
input to estimate the fault severity parameter βfault . The combined
output of all fault models is displayed in an array format and are
employed to detect the combination of faults at each engine operating
point. Therefore, all the developed data-driven fault estimationmod-
els (for each fault) must be employed to provide the engine health
status.
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Figure 4. A0 coefficient (average in cylinder pressure) value for CAC and FMEP faults present alone (black) and in combination (orange) with other faults at 462.5 rev/m and
full load. (a) CAC Fouling and (b) Friction loss.

2.3. Data standardisation

Considerable differences in the input data-sets ranges pose chal-
lenges for developing accurate machine learning models. To address
this challenge, centering of the data-sets is required (Gal and Rubin-
feld 2019). All numerical attributes the pertain to the input and
output parameters of the developed regression models are standard-
ised by removing their mean and scaling them to the unit variance.
In this respect, each input attribute equally contributes to the objec-
tive function used for themodel training. For a numerical attribute x,
the standardised attribute x′ is calculated according to the following
equation:

x′ = x − μ

σ
(2)

where μ is its mean value, and σ denotes its standard deviation.

2.4. Data splitting

The optimisation of the regression model hyper parameters depends
on the separation of training and validation/test data-sets. The strat-
ified K-fold cross-validation technique (Kuhn and Johnson 2013) is
used to verify that the regressionmodel is not overfittedwith training
data. First, the data sets generated for each fault are divided into five
folds (k= 5) with equal distributions of their severity levels. Figure 5
shows the distributions of fault severity for each fault for all folds.
Each fold exhibits a similar distribution of the fault severity levels.

However, to effectively validate the developed regression models
(specific to each fault), a parametric study for separation of the train-
ing and test or validation data-sets must be carried out considering
the same data distribution ratio. Therefore, these folds are further
divided into training and test (validation) folds by employing the test
to train ratio (γ ), which is defined by following equation:

γTest/Train = Ftest
FTrain

(3)

where F denotes the respective data-sets folds.
Five iterations (γ = 1/5) are performed by selecting one fold as

the validation/test data-set, and the remaining four folds as the train-
ing data-sets. For each iteration, the R2 value is used to evaluate the
developed regression models accuracy for each fault.

2.5. Regressionmodel

The selection of the appropriate regression technique is essential in
machine learning applications. Parametric models employ a finite set
of hyperparameters (θ) that are obtained through training and error
minimization using a training data set (D) with input x (Bishop and
Nasrabadi 2006). The hyper parameters are used to predict the out-
put based on new inputs unrelated to data-set D, according to the
following equation:

P(x | θ ,D) = P(z | θ) (4)

Linear regression, artificial neural networks (ANN) and support
vector regression (SVR) with a linear kernel are examples of para-
metric models with increasing complexity (Gkerekos et al. 2019). As
the main focus of this study is on the reduction of dimensionality, its
application to estimate the faults with simple form of the paramet-
ric regression techniques is used to map the fault severity. This study
evaluates the following two linear regression techniques:multiple lin-
ear regression and polynomial regression. In both cases, the input
parameters include the Fourier coefficients, along with the speed and
power of the engine. The severity levels of the faultβfault are predicted
as output variables for each fault. The combination of faults can be
inferred from the derived βfault for each fault.

2.5.1. Multiple linear regression (MLR)
Linear regression is one of the simplest machine learning algorithms,
which consider a linear combination of input parameters along with
a bias (θ0) to map the output parameters. The developed model
governing equation is:

βfault,cyl(Ccyl, θcyl) = θ0,cyl + θ1,cylC0,cyl + θ2,cylC1,cyl

+ · · · + θn,cylCn,cyl

= θ0,cyl +
n∑
j=1

θj,cylCj,cyl (5)

where Ccyl = [Speed, Power,A0,A1, . . . ,AN ,B1, . . . ,BN]cyl consists
of the engine speed and power along with the Fourier coefficients,
whereas n denotes theCcyl length, equal to 2N + 1+ 2 (sumof length
of A0,AN ,BN , engine speed and power).
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Figure 5. Fault severity distribution of data points for each fault from the simulation. (a) BlowBy. (b) CAC. (c) FMEP and (d) SOI

2.5.2. Polynomial regression (PR)
Polynomial regression (PR) is a form of linear regression known
as a special case of multiple linear regression. It maps the rela-
tionship between input and output parameters as an nth degree
polynomial (Gkerekos et al. 2019; Bishop and Nasrabadi 2006).

Each fault severity is derived according to the following governing
equation of degree 2:

βfault,cyl(Ccyl, θcyl) = θ0,cyl + θ1,cylC1,cyl + θ2,cylC2,cyl

+ · · · + θn,cylCn,cyl + θn+1,cylC1,cylC2,cyl

+ θn+2,cylC1,cylC3,cyl + · · ·
+ θ2n−1,cylCn−1,cylCn,cyl + θ2n,cylC2

1,cyl

+ θ2n+1,cylC2
2,cyl + · · · + θn2+n,cylC

2
n,cyl (6)

The error for both the employed linear regression methods (MLR
and PR) is calculated according to the following equation:

ePR/MLR = argmin
θcyl

{ D∑
i=1

(βfault,cyl,i − βfault,cyl(Ci,cyl, θcyl))2
}

(7)

Where Ci ∈ [Speed,Power,A0, . . . ,AN ,B1, . . . ,BN] represents the
input corresponding to the ith sample of the training data for MLR
and PR (degree 2), whereas D is total number of the training data
samples.

The hyper parameters for both techniques (MLR and PR) are cal-
ibrated by minimising the loss function using the gradient descent
method. The model accuracy is quantified using the R2 value, which

is calculated according to Equation (8), for both training and valida-
tion data. Only the R2 values for the validation data are presented in
the next section to assess the models accuracy.

R2 = 1 −
∑n

i=1(y − ŷ)2∑n
i=1(y − ȳ)2

(8)

Where,
∑n

i=1(y − ŷ)2 is the sumof residuals and
∑n

i=1(y − ȳ)2 is the
total sum of squares (equal to variance) of the data with ȳ being the
mean value.

3. Results and discussion

First, the quantification of the faults effects on the critical engine
parameters including the brake specific fuel consumption, the maxi-
mum in-cylinder pressure and the exhaust temperature are assessed
in Section 3.1. Secondly, the test/validation results of the regression
models for each fault are presented followed by the parametric stud-
ies on the number of Fourier coefficients (2N+1) as well as the test
to train ratio (γ ) to investigate the impact on the regression model
accuracyR2. This analysis highlights the amount of input dimensions
required to train the regression models without loosing considerable
information to predict each fault severity. Finally, the impact of the
data-sets number used for training on the fault prediction accuracy
considering the harmonic orders (N) is quantified.

3.1. Impact of faults on engine performance

The generated data-sets at healthy conditions and faults combina-
tions are analysed to assess their impact on the engine performance
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Figure 6. Impact of the fault pairs with different severity (β) on the maximum in-cylinder pressure at 100% load and 500 r/min.

Figure 7. Impact of the fault pairs with different severity (β) on the exhaust temperature upstream turbine at 100% load and 500 r/min.

parameters. For brevity reasons, the results obtained at the operating
point of 500 r/min and full load are only provided herein show-
casing the impact on the maximum in-cylinder pressure Figure 6
and exhaust gas temperature Figure 7, considering pairs of the four
different faults and their severity levels β ∈ [0, 0.15, 0.5, 0.45, 0.6].

Thein-cylinder maximum (peak) pressure is a critical perfor-
mance parameter affecting the engine BSFC and the engine compo-
nents thermo-mechanical limits. Themaximum in-cylinder pressure
is mostly affected from βCAC and βSOI . High CAC fouling severity

increases the in-cylinder pressure, whilst advancing the SOI reduces
it. Simultaneous presence of these two faults (with same severity)
only slightly affects the maximum in-cylinder pressure, as shown in
top middle plot of Figure 6. Evidently, with more fuel injected, the
energy content of the exhaust gas and thus the exhaust temperature
before the turbine increases. Exhaust gas leak in the form of a blowby
reduces the maximum cylinder pressure, however, the change is not
considerable and requires more data to conclude on the effects of the
blowby fault.
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Table 3. Regression model training time for each fault with different number of
harmonics (N) used as input with γ = 0.2.

Training time (s)

Harmonics number (N) Blowby CAC FMEP SOI

Linear Regression
10 0.02 0.02 0.02 0.017
20 0.05 0.05 0.0.35 0.031
30 0.07 0.09 0.07 0.08
40 0.11 0.1 0.1 0.09
50 0.16 0.15 0.14 0.14

Polynomial Regression
10 0.36 0.36 0.35 0.34
20 1.92 1.9 2.1 1.83
30 8.10 7.9 8 7.5
40 27.5 27.5 27.25 26.1
50 79.07 77 77.5 74

The exhaust gas temperature upstream of the turbocharger tur-
bine is also an important parameter from the point of viewof thermo-
mechanical limits of engine componentsmaterials, and it determines
the loss of exhaust gas energy as well as the performance of the tur-
bine (Galindo et al. 2018). The exhaust gas temperature (varying

Figure 8. MLRmodels accuracy (R2) variation on validation data with the initial N number of harmonics considered by using 2N+1 Fourier coefficients as inputs to regression
model. (a) BlowBy. (b) CAC. (c) FMEP and (d) SOI.

from 760 to 880K) greatly depends on the charge air cooler fouling
severity as shown in the top plots of Figure 7. The combination CAC
with other faults (except SOI) increases the exhaust temperature with
lower values of β . The SOI fault, on the other hand, exhibits slight
effects on the exhaust temperature, unless it is combined with fric-
tion and blowby faults, which cause an increase in temperature with
a slight severity βSOI .

From the above discussion, it is evident that, combination of faults
with less severity exhibits a greater impact on the engine performance
parameters compared to the presence of a single fault. Therefore,
a data-driven fault estimation model is developed to predict the
severity of each fault.

3.2. Validation of regressionmodel for each fault

Effect of Fourier coefficients on the regression models accuracy:
The time required for training of MLR and PR models for each
fault with varying number of Fourier coefficients used as input is
showcased in Table 3. As expected, the MLR model required shorter
training time compared to the polynomial regressionmodels (PR). In
addition, the training time further increases with increased number
of inputs dimensions. The model accuracy (R2) variations for each
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Figure 9. PR models accuracy (R2) variation on validation data with the initial N number of harmonics considered by using 2N+1 Fourier coefficients as inputs to regression
model. (a) BlowBy. (b) CAC. (c) FMEP and (d) SOI.

fault on validation data-sets as function of the harmonics number
(N) are presented for MLR and PR in Figures 8 and 9, respectively.

The higher number of harmonic orders retain higher amount of
information from the in-cylinder pressure signal showcasing poten-
tial to estimate the fault severity using linear regressionmodel. How-
ever, the regression models accuracy also depends on the particular
fault type and the employed training data. The MLR model estimat-
ing faults severity related to Blowby, friction and injection exhibited
R2 values greater than 0.94 with only 10 harmonics. Lower number
of data points with high severity levels for the Blowby fault resulted in
very high accuracy of fault estimation. The R2 values in Figure 9(a)
for Blowby faults are close to 0.99 with only 10 harmonics used as
input. The cooler fouling fault severity estimation using the same
regression type with 10 harmonics exhibited R2 close to 0.65. There-
fore, although it is inferred that the first 10 harmonic orders con-
tain sufficient information to diagnose combustion chamber related
faults, the faults not directly related to combustion chamber require
higher number of harmonics.

However, the PR models developed for each fault exhibited
greater accuracy. Even in the case where only 10 harmonic orders
were used as input, the calculated R2 exceeded 0.99 for the CAC
and friction faults, whereas R2 for the blowby and injection faults
was even higher. These results indicate that the instantaneous in-
cylinder pressure conveys essential information for estimating faults

and their severity. This information can be derived using traditional
dimensionality reduction techniques and subsequently used for fault
diagnosis without the need for complex regressionmodels. The noise
from the measurement of pressure signal must be removed prior of
using it as input for the proposed diagnostic model. The model does
not consider uncertainties involved in in-cylinder pressure measure-
ments, whichmay require alternative regressionmethods depending
on the error type.

Models comparison:Although, the PRmodel exhibits high accu-
racy on the considered faults severity prediction, it is imperative
to check its over-fitting tendency compared to the linear regression
model. Statistical methods based on generalised degree of freedom,
such as Akaike Information Criterion (AIC), are useful to compare
the model accuracy, however the cross-validation technique is found
to be more robust and effective to diverse distributions according
to Hauenstein et al. (2018). Figures 8 and 9 illustrate the k-fold cross
validation results for the linear and polynomial models, respectively.
The R2 values are reduced for the PR model compared to the LR
model for the same number of harmonics.

The PRmodel with the first 20 harmonic orders (41 Fourier coef-
ficients as input) has the potential to attainR2 values greater than 0.95
for all the considered faults. From the cross validation (4 cases where
validation/test fold was different) for the injection and friction faults,
it was inferred that the models seem to over-fit the training data-sets
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Figure 10. PRmodels (R2) variations versus the test to train ratio forCAC fault. Higher
test to train ratio means that less data-sets were used for training.

for the cases where more than 40 harmonic orders were employed as
input. This reduces the accuracy of the PR models in specific valida-
tion folds. Based on the preceding discussion, it can be inferred that
the PRmodels are effective and hence, they are selected for conduct-
ing the parametric study to assess the impact of data-sets amount
used for training on their accuracy.

Effect of training data-set amount on accuracy: Figure 10
presents the accuracy of the polynomial regression models for the
four considered faults with respect to the test-to-train ratio of data.
As the test-to-train ratio increases, the amount of training samples
used for training gets reduced, which lowers the accuracy of the
models on the validation data sets. The R2 drops greatly for values
of test-to-train ration above 0.6. This indicates that up to 60% of
the data-sets can be used for the training of the PR models without
loosing accuracy.

4. Study implications

The data-driven model proposed in this study (consisting of blocks
of dimensionality reduction (by Fourier analysis), standardisation,
and regressionmodels) provides a tool for performingmarine engine
diagnostics based on measure parameters (in-cylinder pressure,
speed, and power). Therefore, it is beneficial to support operations on
smart and future autonomous ships. The advantage of low computa-
tional power and memory requirement makes their easy shipboard
implementation (edge computing) that supports predictive main-
tenance of the machinery and contributes to reduced operational
costs. Moreover, due to their dependency on the collected data used
for training, this data-driven model can be updated to self-adapt
the current operating conditions of the monitored marine engine.
The model can be extended to other internal combustion engine
types including propulsion, electricity generation, providing that
in-cylinder pressure signals can be acquired.

The input parameters (in-cylinder pressure signal) required for
the proposed data-driven model can be obtained by direct measure-
ment on each cylinder (which is common in advanced ships) or
intermittent measurement using portable devices. It is also expected
that the development of systems andmethods to estimate in-cylinder
pressure signals, for example, using the measured instantaneous
engine torque as reported in Tsitsilonis and Theotokatos (2022)), will
further help develop diagnostic methods and will be benefited by
their integration with the proposed data-driven model.

5. Conclusions

This study focuses on the development of a data-driven fault estima-
tion model using a novel method for the extraction of information
from in-cylinder pressure signals. The proposed data-driven model
facilitates the fault detection (classification model) and the quantifi-
cation of the detected faults severity. The main findings of this study
are summarised as follows.

• Each fault severity can be identified by determining changes in
engine parameters like maximum cylinder pressure, and exhaust
temperature. The proposed model however can accurately iden-
tify each fault severity in presence of simultaneous faults.

• The Fourier coefficients derived from the in-cylinder pressure sig-
nals convey the required information pertinent to the faults and
their severity, and therefore, their use can facilitate the engine fault
diagnosis process.

• The first 10–20 harmonics are sufficient to identify and estimate
the faults severity, which reduce the input dimensions to maxi-
mum 43 (41 coefficients, engine speed, load) per operating point,
instead of providing whole signal.

• Considerable improvement of the accuracy for both the multi-
variate linear and polynomial regression techniques was exhib-
ited when 20 harmonics were employed, compared to the case
of 10 harmonics. The polynomial regression model considering
the first 20 harmonic orders (41 Fourier coefficients) exhibited
accuracy more than 0.99 for all faults.

• The estimation of the charge air cooler fouling requires the use
of at least 20 harmonics and polynomial regression to achieve
acceptable accuracy.

• The polynomial regression model training required around 40%
of the total data-sets (56,250) to obtain R2 above 0.98.

This study considers the same faults/degradation for all the cylin-
ders of amulti-cylinder engine, whereas the employed data-sets were
numerically generated. The developed regression models are trained
by employing the in-cylinder pressure signals generated by using
the engine digital twin without accounting for any measurement
errors, sensor uncertainties and faults, or human interventions. A
process is required to remove noise and errors from the measured
in-cylinder pressure signals prior to feeding them as input to the pro-
posed model. Future studies could consider combinations of faulty
cylinders, investigate the sensitivity and impact of the measured
parameters uncertainties, as well as validate the proposed models in
shipboard operations.
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