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Abstract

Timely and energy-efficient time series forecasting
can play a key role on edge devices, where power
requirements can be stringent. Spiking Neural Networks
(SNNs) are regarded as a new avenue in which to solve
time series problems, but with lower SWaP (Size, Weight,
and Power) needs. We propose an SNN pipeline to
process and forecast time series, developing a novel
data spike-encoding mechanism and two loss functions
that optimise the prediction of the upcoming spikes. Our
approach encodes a signal into sequences of spikes that
approximate its derivative, preparing the data to be
processed by the SNN, while our proposed loss functions
account for the reconstruction of the output spikes into
a meaningful value to promote convergence to top-level
solutions. Results show that our solution can effectively
learn from the encoded data and the SNN trained with
our loss function can outperform the same model trained
with SLAYER’s default loss.

Keywords: time series, forecasting, spiking neural
networks, neuromorphic, differencing, derivative

1. Introduction

Time series forecasting is a crucial task in
various domains, including finance, logistics, condition
monitoring and many others. The goal of time series
forecasting is to make predictions about the future
values of a given time series based on past observations.
Time series are composed of data points indexed by
time, and can be broadly classified into stationary
and non-stationary categories (Box et al. (2015) and
Hyndman and Athanasopoulos (2018)). Stationary time
series are characterized by statistical properties such
as mean, variance, and autocorrelation that remain

constant over time. This consistency simplifies the
analysis and forecasting processes, making stationary
time series ideal for applying many statistical methods.
Non-stationary time series, on the other hand, exhibit
changing statistical properties over time. These
changes can manifest as trends, seasonal patterns,
or structural breaks, which complicate the modelling
process. Non-stationary time series can lead to
unreliable and misleading results if not appropriately
addressed. Therefore, transforming non-stationary
time series into stationary ones is a crucial step in
time series analysis. Techniques such as differencing,
detrending, and seasonal adjustment are commonly used
to achieve stationarity (Hyndman and Athanasopoulos
(2018)). Classical methods of time series forecasting are
well-established and widely used due to their simplicity
and interpretability. These methods include the
Autoregressive Integrated Moving Average (ARIMA)
(Box et al. (2015)), which combines autoregression,
differencing, and moving averages to model time series
data, Seasonal ARIMA (SARIMA), and Exponential
Smoothing (Box et al. (2015)). These methods are
based on mathematical models that aim to capture
the statistical properties of the time series data and
often make use of transforms to render data more
stationary in the process. While these methods have
been widely used for many years, they can struggle to
accurately capture complex non-linear dependencies in
the data. Recent advancements in the Deep Learning
(DL) field have demonstrated promising results on
a range of time series datasets (Lara-Benitez et al.
(2021) and Sezer et al. (2020)). Notable results
have been achieved by Recurrent Neural Networks
(RNNs), Long-short-Term Memory (LSTM) networks,
and Transformers (Bandara et al. (2019), Hua et al.
(2019), and Wen et al. (2023)). However, these solutions
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often employ complex systems to overcome their lack of
ability to process time-dimensional data, and often have
high demands in terms of memory and power (Douglas
et al. (2022), Li and Sainath (2017), Nan et al. (2020),
Thompson et al. (2020), and Wang et al. (2019)).

Neuromorphic (NM) engineering is an emerging
field that aims to leverage brain-like computations to
create efficient systems (Christensen et al. (2022)).
This has been made possible by the technological
advancements in NM vision sensors (Brandli et al.
(2014)), and NM chips Akopyan et al. (2015), Davies
et al. (2018), Furber et al. (2014), and Orchard et al.
(2021), which enable sparse, asynchronous perception
and processing. Such sparsity and asynchronicity can
be fully exploited by means of Spiking Neural Networks
(SNNs), a type of neural network that operates on the
principles of spike-based information processing. In
the context of time series forecasting, however, their
inherent time-based nature is what puts them forward
as a potential alternative to the current approaches in
the literature. SNNs, in fact, use spiking neurons as
processing units that accumulate information depending
on their timing of arrival and only fire when necessary,
thus inherently involving time in computations and
leading to lower computational demands. SNNs can
thus build sparse temporal representations and propagate
essential information only, and harness the potential to
provide accurate responses with low latency and power
requirements. Because of this, they can be an excellent
choice for time-series forecasting problems that heavily
rely on time as a defining element of the data. Further to
this, recent advances in the field have shown how SNNs
can be successfully applied to a range of other tasks such
as image classification and segmentation (Kim et al.
(2022), Kirkland et al. (2020), Kirkland et al. (2022),
Neftci et al. (2017), and Parameshwara et al. (2021),
Vicente-Sola et al. (2022)), where they demonstrate
competitive results to their counterparts in conventional
DL.

In this paper, we propose to expand the field
of application of NM computing to that of time
series. Our approach aims to answer the question
of whether it is possible to incorporate a classical
time-series preprocessing step like differencing into a
spike-encoding mechanism that makes data amenable
to SNNs. Furthermore, we explore the possibility
of leveraging biologically-inspired concepts and the
information from the encoding system to devise ad-hoc
loss functions that could optimize the predictions. In
this effort, we show how our approach, inspired by NM
vision sensors and by the differencing transform, not
only manages to do this by means of a population of
spiking neurons but also how the proposed encoding

approximates the derivative of a signal, given the right
assumptions. We incorporate this in a solution featuring
a simple SNN embedding weight and delays learning
through the Spike Layer Error Reassignment in Time
(SLAYER) (Shrestha and Orchard (2018)), which in
turn allows the network to adapt to different time scales
and changing patterns in the data. Furthermore, we
propose two loss functions for the SLAYER learning
rule, that exploit the distance between two consecutive
output spikes (inter-spike interval) and the significance
of each spike as a result of the encoding respectively.
Through a series of experiments, we show that SNNs
are a viable option to process time series data and
that our signal-reconstruction-based loss function can
outperform the same model trained using the default
loss function in SLAYER as well as a SARIMA-based
approach, therefore successfully learning to predict the
next upcoming spike in a way that optimizes the quality
of the decoding into the signal’s original domain.

2. Related Works

A typical neuromorphic dataset consists of a series
of events indexed by time (Brandli et al. (2014)). As
such, tasks derived from the use of these datasets can
easily be regarded as a type of time series application.
However, what is commonly regarded as time series
is limited to specific datasets where the interest is in
predicting future trends in data, especially in contexts
such as finance, energy, and transportation, to name
a few. These normally contain real-valued continuous
data, which is ill-suited for neuromorphic computation
due to its spike-based processing nature. Therefore,
appropriate encoding mechanisms are required. In
Yarga et al. (2022), the authors do an excellent job
of reviewing and testing several different real-to-spike
encoding systems. The encoding system we present
in this work is similar to the Send-on-Delta (SOD)
method presented in Yarga et al. (2022). However, they
apply the encoding to the result of a spectrogram and
cochleagram, and they consider the difference between
the signal at the current timestep and the signal at
the timestep when a spike was emitted last. In our
case, we encode the signal itself and always consider
two consecutive timesteps. Another difference is in
the thresholding system. Because they use Short-Time
Fourier Transforms (STFTs) and cochleagrams, they use
two encoding neurons (positive and negative change)
for each frequency bin, each with the same threshold.
In our case, we define a baseline threshold and a set
of multiplicative thresholds based on this. A further
spike-encoding mechanism is developed in Sharma and
Srinivasan (2010). Here, the authors focus on the
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Figure 1: Excerpt from the Panama dataset. The blue
and orange lines are the signal and the lag-1 version
of the signal respectively (with their means subtracted).
The green line is the difference signal.

interval between two spikes to perform the encoding
and train their SNN using an evolutionary algorithm.
In Mateńczuk et al. (2021), the authors perform a
comparison of a conventional multi-layer perception
(MLP) and LSTM with their spiking implementations
on financial time series. In Reid et al. (2014),
the authors delve into the application of a specific
type of SNN, the Polychronous Spiking Network, for
financial time series prediction. This demonstrates
the feasibility and effectiveness of SNNs in handling
time series data, particularly in the domain of financial
forecasting. Concerning encoding, they employ a
one-to-one encoding system between discretized time
series values and encoding neurons. The authors
in Gao et al. (2021) utilize an STDP-trained SNN
to predict price spikes in price time series and deal
with high-frequency data, demonstrating encouraging
results. Here, data undergoes a Poisson encoding,
a type of rate-based encoding utilized to transform
real-valued data into random sequences of spikes. In
Liu et al. (2024) the authors propose a Single-Modal
Pulse Encoding Module, composed of an image feature
extractor (which considers plots of time series) and
an SNN LIF-based module. The overall approach
seems to attain state-of-the-art accuracy levels, thus
highlighting the potential of SNNs in the time series
domain. Nevertheless, the encoding scheme could
potentially introduce a non-negligible overhead, as it
requires several feature extraction steps before the
encoding can finally take place.

3. Data Encoding and Processing

To approach the time series forecasting problem,
we used the Panama Short-term electricity load
forecasting (Panama) (Madrid and Antonio (2021)) and
the Electricity Transformer Temperature with one-hour
resolution (ETTh1) (Zhou et al. (2021)) datasets. Both
these datasets contain energy readings coupled with
other information, such as temperature at the time
of the reading and wind speed. In this work, we
propose a novel system for forecasting, and therefore we

focus on a univariate forecasting problem for simplicity;
therefore, we only consider the electricity load readings
and the oil temperature (the target variable in the
ETTh1 dataset) and use them as the input variable
and the target variable. In Figure 1, we report an
excerpt of the electricity load from the Panama dataset.
The datasets above were collected using conventional
(non-NM) sensors; therefore, they are composed of
real-valued data points. Hence, for conversion into a
spike representation, we design an encoding mechanism
that draws inspiration from NM vision sensors (Brandli
et al. (2014)). These produce a positive or negative event
whenever the change in lighting in the scene is above a
certain value. As a result, information can be encoded
in the timing of such events and a higher degree of
sparsity is achieved. Drawing inspiration from this, our
encoding mechanism transforms a real-valued input into
a sequence of spikes emitted by a population of neurons.
Each neuron in such a population is responsible for
emitting a spike whenever the change in the signal is

above a certain threshold V
(i)
th , both in a positive and

negative direction. In other words, if the input signal has
a strong enough variation from time step t to time step
t+1, one of the neurons will emit a spike; if no variation
happens, or if the variation is too small, no spike will
be emitted, hence increasing sparsity. This is achieved
by considering the difference of the input signal with a
lagged (delayed) version of itself by one time step. A
representation of this can be found in Figure 1 (green
line). The result is a set of spike trains, i.e. a sequence
of spikes indexed by time, emitted by each neuron in
the encoding layer. The so-obtained encoding can be
easily reversed by considering the threshold each neuron
is associated with. Similarly to a quantization problem,
the fidelity of the reconstruction of the original signal
from the encoding is proportional to the granularity (i.e.
number of neurons and values of thresholds) of the
encoding.

In order to quantify the information loss from the
encoding, in Table 1, we report an exploratory search
of the reconstruction mean squared error (MSE) on the
Panama dataset, using a different number of encoding
neurons with different thresholds. We used different
sets of multiplicative thresholds for our encoding, i.e.
each neuron was assigned a value n ∈ Z \ {0},
then multiplied by the base threshold, so that the actual

threshold would be V
(i)
th = n · Vth. The selection

of the base thresholds was aided by the analysis of
the variations present in the dataset. By visualising
the variations that take place and their number of
occurrences (Figure 2), we get a rough estimate of
the ranges threshold could be varied in. Interestingly,
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Table 1: Mean Squared Error between the original signal and reconstructed signal using different encodings. Neuron
multipliers should be interpreted as referring to two neurons each (positive and negative versions of each). For instance,
(1,2) with base threshold 9 refers to neurons with thresholds (-18, -9, 9, 18). The range(1, 60, step=2) indicates a range
of values starting from 1 and increasing by two up to 60. In bold, are the best MSE values from the reconstructions.

Neuron Multipliers Base Threshold

9 13 23 33 53

(1) 2852.88 2578.11 2033.40 1690.30 1476.04
(1, 2) 2259.65 1846.16 1187.73 910.15 944.43
(1, 2, 3) 1788.29 1328.03 731.51 576.37 814.01
(1, 2, 3, 4) 1417.18 962.62 478.96 433.10 800.42
(1, 2, 3, 4, 5) 1126 704.65 337.55 380.05 791.72
(1, 2, 3, 4, 5, 10) 494.50 274.81 311.93 354.15 773.62
(1, 2, 3, 4, 5, 10, 20, 30) 347.37 274.67 283.07 338.37 767.10
range(1, 60, step=2) 509.33 938.30 2530.13 4449.87 6885.43

Figure 2: Bar chart of the variations in the Panama
dataset. Each bar represents the number of times that
amount of change is found in the data.

as highlighted in Table 1, the minimum MSE is
not achieved by using the largest number of neurons
and lowest thresholds, thus highlighting how threshold
selection can be a crucial step.

3.1. Approximation of the Derivative

Before the application of the spiking function, our
encoding method can be formally expressed as the
average variation of the amplitude of the signal between
two points in time:

m =
x(t+∆t)− x(t)

∆t
, (1)

where x(t) is the input signal and ∆t is the time step.
We observe that equation (1) denotes the slope of signal
x around time t. Interestingly, as ∆t becomes smaller,
(1) becomes an increasingly better approximation of the
derivative of signal over time d

dtx(t) ≈ m. Therefore,
assuming that x(t) is smooth around time t, our

encoding method approximates the instantaneous rate of
change, or the derivative, of x(t). In practical terms,
the goodness of such approximation is constrained by
the choice of thresholds for the neurons, and by the
time resolution (i.e. sampling frequency) of the datasets.
However, by considering a single time step interval and
a small enough threshold, such an approximation can be
relatively accurate. In Figure 3, we intuitively show the
goodness of the approximation when the input signal is a
sine wave (hence with a cosine derivative). In the figure,
the spikes closely follow the evolution of the derivative
(green line) over time, with each spike representing a
different amount of variation in the original signal (blue
line).

By means of our encoding system, we obtain two
major advantages. Firstly, by taking the (approximate)
derivative of the signal, we are looking at its rate
of change. This means that we can determine how
fast the signal is changing and in which direction,
regardless of its absolute value at a given time. The
rate of change of a signal can be a crucial indicator
of underlying patterns, and analyzing it can provide us
with deeper insights into the behavior of the signal. In
addition, explicitly using the derivative can also expose
information about the second derivative of the signal for
the SNN to learn. This can help highlight the presence
of inflection points, where the rate of change of the
signal changes from increasing to decreasing, or vice
versa, hence possibly allowing learning of more robust
representations. Secondly, by performing this operation,
we are effectively applying a differencing transform to
the input signal. This, in the context of time series
analysis, helps increase stationarity in the signal, hence
reducing the effect of trends and seasonal patterns. As a
result, the representation learning and the forecasting of
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Figure 3: Example of a sinusoidal input signal with its derivative and spike-encoding. The sin (blue) and cos derivative
(light green) have been scaled to match the height of the plot. Note the concurrent presence of high-grade spikes (upper
and lower rows) with higher values in the cosine and the presence of lower-grade spikes when the derivative approaches
zero.

the signal can be more precise and reliable (Broersen
(2006), Hogenraad et al. (1997), and Xiao and Gong
(2022)).

3.2. Learning and Loss Functions

To leverage the spiking signal obtained through the
encoding mechanism described in the previous section,
we develop a simple two-layer fully connected neural
network architecture using Intel’s LAVA framework
(Intel (2021)). More specifically, the SNN consists of
two layers of fully connected Current Based (CuBa)
Leaky Integrate-and-Fire (LIF) (Lapicque (1907))
neurons, representable by the following discrete system:

v[t] = (1− α)v[t− 1] + x[t]

s[t] = v[t] ≥ vth,
(2)

where v[t] is the discrete-time internal state (voltage) of
the neuron, α is a leakage factor, x[t] is the discrete-time
input, s[t] is the spiked value at time t, and vth is the
threshold of the neuron. The neuron is also paired
with a reset mechanism that resets the voltage to zero
whenever a spike is emitted. While it has been shown
that better-performing spiking neuron model alternatives
might exist (Manna et al. (2022)), the LIF neuron
is arguably the most widely used in the literature,
hence making it a good choice for future benchmarking
purposes. Other than this, it can represent a valid option
to increase efficiency due to its reduced computational
complexity.

We adopt an advanced version of the Spike Layer
Error Reassignment (SLAYER) (Shrestha and Orchard
(2018)) learning rule to train our network in a supervised
manner. The standard way of utilising SLAYER is
with the loss function defined by equations (6) and (7)
in (Shrestha and Orchard (2018)), named SpikeTime
in the LAVA framework. Through this, the trains of
target spikes and output spikes are convolved in the
time dimension with a Finite Impulse Response (FIR)
exponential kernel and then compared using MSE. By
convolving with the FIR kernel, the loss aims to aid
the resolution of the credit assignment problem through
time. Further to this, we also experiment with two
different loss functions that we design specifically for
this task. The ISILoss draws inspiration from the
concept of minimizing the differences in the inter-spike
intervals (ISI) in the target and output spike trains;
the DecodingLoss leverages the information from the
encoding paradigm to decode the signal and compare
the reconstructed versions of the target and output.

3.2.1. ISILoss Function. As outlined above, the
ISILoss function is inspired by the concept of
minimizing the differences in inter-spike intervals
between two spike trains. Ideally, the ISIs should be
computed for each spike train and then compared to each
other. However, this is non-trivial in a back-propagation
environment for several reasons. Two spike trains may
have different numbers of spikes and, hence, different
numbers of ISIs to compare. A possible solution for
this is to adopt placeholders with pre-assigned values
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where the number of spikes differs. However, this
can be time-consuming and sensitive to the chosen
pre-assigned value for the interval. Furthermore, this
will likely include non-derivable operations, which
could break the gradient calculation chain and result
in unstable behaviours. For this reason, we adopted a
heuristic method based on transforming the spike trains
by means of derivable operations only. Specifically, we
define a time-step vector R = [1, 2, . . . , N ], where N is
the number of time steps in the spike trains. We use R
to re-scale each spike in the spike train by the time step
at which it occurred:

sR(t) = s(t)⊙R, (3)

where ⊙ denotes the element-wise multiplication
(Hadamard product) between the spike train s(t) and R.
Finally, we perform a cumulative sum operation on the
re-scaled spike train. To do this, we define a unitary
upper triangular matrix T of size N × N and perform
matrix multiplication with sR(t). By doing this, we
obtain a vector of size N that contains the cumulative
sum of sR(t). The result is then normalized with respect
to R.

scs(t) = (sR(t) · T )⊙
1

R
. (4)

The final loss is calculated as a mean squared error of
the resulting vectors:

L(scs(t), ŝcs(t)) =
1

N

N∑
i=0

(s(i)cs (t)− ŝ(i)cs (t))
2, (5)

where ŝcs denotes the target spike train, transformed as
discussed. The idea behind such a heuristic is that by
utilizing a cumulative sum, all the time steps present
in the spike train contribute to the final loss calculation
by some value (likely) different than zero. This allows
carrying along some information about the cumulative
time of the last spikes with each time step, hence
assigning some weight to their role in the spike train,
even if no spike was present.

3.2.2. DecodingLoss Function. The DecodingLoss
is a cost function that builds on top of an other piece of
knowledge from the time series encoding: the meaning
of each neuron’s firing. As a matter of fact, by means
of our encoding, each neuron will be assigned a specific

threshold and encode values that fall in the range V (i)
th ≤

x(t) < V
(i+1)
th . We use this to reconstruct a signal

starting from some output spike train s(t), and compare
it with the decoded target spike train ŝ(t). This is
possible by following a similar paradigm as in Section

3.2.1. We start by defining a vector of values that
correspond to each neuron’s threshold:

V =
[
−V

(M/2)
th , . . . , −V

(1)
th , V

(1)
th , . . . , V

(M/2)
th

]T
, (6)

where V
(i)
th denotes the (positive) threshold of neuron i.

We also define a convenience unitary vector A of size M
that we can use to perform a neuron-wise addition per
each time step. In our experiment, we test both with and
without this step in the DecodingLoss function. Finally,
we utilised the unary upper triangular matrix T that we
previously defined to perform a cumulative sum. The
final reconstructed output is thus obtained:

srec(t) = (A · (s(t)⊙ V )) · T, (7)

where srec(t) is the reconstructed output and can be
either of size N or M × N depending on whether the
matrix multiplication by A was performed. Finally, the
MSE is computed on the reconstructed output and target
output:

L(srec(t), ŝrec(t)) =
1

N

N∑
i=0

(s(i)rec(t)− ŝ(i)rec(t))
2, (8)

where ŝrec(t) denotes the reconstructed target signal.
In this case, the cumulative sum has a more physical
meaning than the ISILoss, as each value thus obtained
directly corresponds to the value of the reconstructed
signal. As a result, we can compare the reconstructed
signal with the original signal in the original domain
and compute the MSE loss on the final outcome of
the obtained spikes. This approach is in line with the
metric utilized to evaluate the quality of the results.
Consequently, it theoretically allows for the learning of
spike trains that, even if not identical to the target spikes,
can nevertheless be an equivalently good approximation
of the target signal, hence easing the optimization
problem by expanding the landscape of acceptable
solutions.

4. Results

To evaluate our system, we design a set of
experiments using different settings. In each
experiment, the data is encoded into spikes through
the methodology described in Section 3. The encoded
data is then split into smaller segments of length 128
or 256, with each consecutive segment having an
overlapping of 75% with the previous one. Overall,
the initial 80% of the datasets are utilized for training,
thus leaving the remaining unseen 20% available for
testing. Hyper-parameter tuning of the encoding system
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Table 2: Collated results on the Panama dataset with
each loss function against the number of encoding
neurons. In each cell, the average reconstruction MSE
(rounded to the closest integer) is reported, with the best
results highlighted in bold for each different number of
encoding neurons.

Loss Fn/N. Neurons 4 8 12 16
DecodingLoss 302 938 1719 2926
ISILoss 326 1350 2669 4718
SpikeTime 283 1033 1988 3252

is performed here by considering a trade-off between
overall reconstruction error (see Table 1) and number
of encoding neurons. For each input segment, a target
one is generated by looking at one time step ahead,
effectively creating a challenge for the network to learn
the upcoming spike. We design experiments in order
to consider different numbers of encoding neurons,
different segment sizes and different loss functions.
To attain a higher robustness in our results, we run
each experiment setting at least 150 times, and train
the SNN for a total of 500 epochs. Collectively, the
amount of performed experiments exceeds 15000.
To evaluate the quality of the generated output, we
decode the output spikes to obtain a reconstruction of
the forecast signal and then compare it with the target
sequence. The totality of the experiments is averaged
and reported in Table 2 and 3. From our results, we
can observe that, overall, the SNNs trained using the
DecodingLoss function achieve lower reconstruction
MSE than the SpikeTime and ISILoss. The ISILoss
shows a considerably higher error with respect to
its counterparts, except in the case of few-neurons
encoding in the Panama dataset, where the overall error
diminishes. The SpikeTime loss manages to achieve
good performances and, in the 4-encoding-neurons
case in the Panama dataset, even performs better
than the DecodingLoss. An interesting observation
is that the forecasting error increases monotonically
with the number of encoding neurons for all the loss
functions. This might seem counterintuitive given
the higher level of representation from the encoding,
however, is not surprising: due to the way the pipeline
is conceived and training is performed, a higher number
of encoding/decoding neurons translates into more
spike trains to be learnt by the SNN, which arguably
represents a more complex task to solve. As a matter of
fact, by comparing the reconstruction of the prediction
with the reconstruction of the target, and not the target
itself, the quantization error that would normally be
incurred by a lower number of neurons is disregarded,

Table 3: Collated results on the ETTh1 dataset with
each loss function against the number of encoding
neurons. In each cell, the average reconstruction MSE
is reported, with the best results highlighted in bold
for each different number of encoding neurons. The
reported values are to be multiplied by 10−3.

Loss Fn/N. Neurons 4 8 12 16
DecodingLoss 2.52 4.51 5.77 6.55
ISILoss 3.36 6.71 8.16 8.72
SpikeTime 3.04 5.54 6.65 7.49

thus allowing for a simplified task and, conversely, for
a more difficult one when considering more neurons.
Motivated by the results above, the DecodingLoss-based
solution is selected for further comparisons with other
more classical methods like SARIMA. SARIMA is a
model that is able to account for trends and seasonality
in the data, effectively making it a suitable option
amongst the classical methods for the data employed in
this study. Through this comparison, the objective is to
provide a more solid context as to what the performance
of the proposed solution signifies and to provide a
useful benchmarking point for future reference. In
order to use SARIMA, a prior must be known regarding
the periodicity of the data, which is inputted into the
model prior to fitting. Furthermore, in order to ensure a
fair comparison, a hyperparameter search is performed
to find the best-fitting parameters. Experiments are
carried out in conditions similar to the experiments
above, with the task set at predicting the next time step
in the series. To obtain single-time step predictions, the
model is refitted on the newly observed data every time
a prediction is made. Results on the Panama dataset
show that the best SARIMA found via the parameter
search step achieves an average MSE between predicted
and actual points of 4948.31, whereas the proposed
method reaches an average of 2531.03. An example of
a prediction relative to these results is given in Figure 4.
On the ETTh1 dataset, the SARIMA model achieves an
MSE of 1.72, whereas the proposed model sits at 0.39.
An example prediction of this is reported in Figure 5.

5. Conclusions

In this work, we addressed the problem of time
series forecasting using SNNs. Our approach included
utilising a novel encoding scheme that incorporates
the concept of signal differencing, which is helpful in
making time series more stationary. Given the right
conditions, we also show how this methodology of
information encoding approximates the derivative of an
input time series (or signal). Further to this, we develop
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Figure 4: Example from the Panama dataset of values
predicted by the proposed solution trained with the
DecodingLoss function. The red dots represent the
target data points, whereas the orange line represents the
reconstructed prediction.

a simple, yet effective, SNN trained with the SLAYER
learning rule, and define two novel loss functions,
the ISILoss and the DecodingLoss functions. We
perform over 15000 experiments employing different
combinations of hyperparameters, dataset splits and
number of encoding neurons. We train our SNN
using our novel loss functions and SLAYER’s own loss
function SpikeTime. Our results show that SNNs trained
using the DecodingLoss function in combination with
our encoding scheme achieve better results than the
other two cases. Moved by these results, we proceed
with comparing our DecodingLoss-based solution with
a popular conventional approach to forecasting: the
SARIMA model. The comparison of the prediction
errors serves as a further demonstration that our
proposed SNN can indeed be effectively applied to this
field and bring, on top of the advantages that derive from
the Neuromorphic technological substrate, advantages
in the precision of the predictions. Thanks to the
use of the LAVA framework, our implementation can
also be easily deployed on NM chips and be evaluated
on real hardware, to achieve full SWaP gain from
NM technologies. Future work will investigate the
extension of our system to multi-variate time series
forecasting and the comparison of our solutions with
other state-of-the-art approaches in conventional deep
learning.
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