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ABSTRACT
Predicting the mechanical response of materials subjected to transient heat processes is crucial in
various engineering applications. This paper introduces a novel peridynamic (PD) coupled field
model formulated within the framework of Non-Ordinary State-Based Peridynamics (NOSBPD). This
model offers the capability to simulate the coupled thermo-mechanical behavior of materials by
incorporating both thermal transport and mechanical deformation analyses. To verify the model’s
accuracy, a benchmark problem involving a steel plate undergoing transient thermal expansion is
investigated. This model presents a valuable tool for various engineering applications involving
coupled thermo-mechanical processes.
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1. Introduction

1.1. Motivation for the study

The coupling of thermal and mechanical fields is crucial in
understanding the behavior of materials under various oper-
ational conditions, especially those involving extreme tempera-
tures and mechanical loads. Thermomechanical coupling is
particularly significant in applications such as aerospace, nuclear
reactors, and electronic devices, where materials are subjected to
high thermal gradients and mechanical stresses. Traditional con-
tinuum mechanics approaches often face limitations in accur-
ately predicting fracture and damage in these scenarios due to
their inability to naturally handle discontinuities and evolving
cracks. Peridynamic (PD) theory, with its nonlocal formulation,
offers a robust alternative by using integro-differential equations
to model the behavior of materials, making it particularly suc-
cessful at handling discontinuities.

In this study, we focus on advancing the state-of-the-art in
coupled field modeling by developing a thermomechanical cor-
respondence model within the framework of non-ordinary state-
based peridynamics (NOSB-PD) and coupling it with an existing
peridynamic thermal model. This work aims to address critical
gaps in the current literature by formulating a framework that
allows the integration of constitutive models from classical con-
tinuum mechanics (CCM) into the PD framework. This integra-
tion aims to accurately model thermal and mechanical
responses, including the complex interaction effects between
these fields.

The industrial applications of this study are vast and signifi-
cant. In the aerospace industry, materials are often exposed to
extreme temperatures and mechanical loads, leading to thermo-
mechanical deformation and the potential for crack initiation
and propagation. Accurately predicting these behaviors is crucial
for the safety and reliability of aerospace components. In nuclear
reactors, materials are subjected to high thermal gradients and
radiation, which can cause thermal stresses and lead to crack
formation. Understanding these processes is essential for main-
taining the structural integrity of reactor components. Similarly,
in the electronics industry, devices experience high thermal loads
during operation, which can cause thermomechanical stresses
and result in the formation of cracks in solder joints and other
critical components. By applying our advanced thermomechani-
cal correspondence model within the NOSB-PD framework, we
can provide more accurate predictions of these behaviors,
thereby improving the design and durability of industrial com-
ponents subjected to harsh operating conditions.

1.2. Review of literature

A critical review of existing studies reveals several significant
contributions in the field of thermomechanical modeling
using PD. A coupled thermo-mechanical BBPD model was
proposed in [1] to simulate thermal cracking in rocks. This
framework integrates both heat conduction and mechanical
deformation, providing a comprehensive approach to under-
standing how thermal stresses can lead to crack initiation
and propagation in geological materials. The formulation
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considers the thermal expansion effects and the transfer of
heat within the rock, allowing for the accurate prediction of
crack paths influenced by temperature gradients.

In [2], a NOSBPD formulation for thermoplastic fracture was
developed, utilizing the Johnson-Cook constitutive model. This
approach is particularly effective for simulating the behavior of
materials under high strain rates and elevated temperatures. The
Johnson-Cook model captures the effects of strain hardening,
strain rate sensitivity, and thermal softening, making it suitable
for materials experiencing dynamic loading conditions. An adap-
tive thermo-mechanical PD model for fracture analysis in cer-
amics was introduced in [3]. This OSBPD model employs
adaptive grid refinement to enhance the resolution in critical
areas where crack initiation and propagation are expected. The
adaptive refinement technique improves computational efficiency
by focusing computational resources on regions with high stress
concentrations, thereby increasing the accuracy of the fracture
predictions without significantly increasing the overall computa-
tional cost.

An axisymmetric OSBPD model for thermal cracking of
linear elastic solids was presented in [4]. This model incor-
porates the effects of thermal expansion and bond failure
criteria for analyzing thermal cracking in materials with
rotational symmetry. The axisymmetric formulation simpli-
fies the computational model while still capturing the essen-
tial physics of thermal cracking. This approach is beneficial
for studying materials such as cylindrical rods or spherical
shells, where the symmetry can be exploited to reduce com-
putational effort while maintaining accuracy in the predic-
tion of thermal stress induced.

A fully coupled PD thermomechanics model was derived
in [5] to address transient scenarios involving complex ther-
mal and mechanical interactions within the BBPD frame-
work. In [6], a coupled thermo-mechanical BBPD
framework was proposed to simulate thermomechanical
fracture in inhomogeneous ice. This model considers the
temperature sensitivity and the microstructural inhomogene-
ities of the ice, which are critical factors in accurately pre-
dicting fracture behavior. The study in [7] investigated the
fracture mechanical behavior of granite containing a single
fissure after thermal cycling treatment using a fully coupled
OSBPD method. This approach integrates both thermal and
mechanical fields to simulate the stress–strain response and
crack evolution in granite subjected to repeated thermal
loading. The OSBPD framework effectively captures the
interaction between thermal cycling and mechanical fracture,
providing insights into the durability and failure mecha-
nisms of granite under such conditions.

Thermally induced fracture analysis of polycrystalline
materials was explored in [8], focusing on the effects of
grain size, grain boundary strength, and material compos-
ition. This study employed BBPD to investigate how thermal
stresses lead to crack initiation and propagation within poly-
crystalline structures. By considering different grain sizes
and boundary strengths, the model provides insights into
how microstructural features influence the fracture behavior
of polycrystalline materials under thermal loading. In [9], a

thermomechanical PD model for ductile fracture at high
temperatures was proposed, incorporating a plastic bond
constitutive model. This model addresses the behavior of
ductile materials, which undergo significant plastic deform-
ation before fracture, by integrating thermal effects with
plasticity. The BBPD framework is used to simulate the
high-temperature conditions that lead to ductile fracture,
providing valuable insights into material performance and
failure under extreme conditions.

The phase change the peridynamic model for welding
analysis presented in [10] developed a non-linear transient
PD model that incorporates phase transformation and vari-
ous heat source models. This BBPD approach is designed to
simulate the complex thermal processes involved in welding,
including the melting and solidification of materials. By
modeling the heat input from different sources and the
resulting phase changes, the model accurately predicts the
temperature distribution and mechanical responses during
welding. Thermomechanics of damage in brittle solids was
addressed in [11], presenting a fully coupled thermomechan-
ical PD model that integrates thermal and mechanical fields.
This NOSBPD model captures the damage evolution in brit-
tle materials subjected to thermal and mechanical loads.

An OSBPD model for fully coupled thermoelastic prob-
lems was developed in [12], incorporating thermal expan-
sion and bond failure criteria. The objective to simulate the
coupled thermal and elastic responses of materials, providing
a detailed analysis of how thermal loads induce elastic
deformation and potentially lead to failure. In [13], a bond-
based fully coupled thermomechanical PD framework was
used to analyze fracture toughening mechanisms of stop
holes in brittle materials. This study focuses on the role of
stop holes in enhancing the fracture toughness of brittle
materials under thermomechanical loads. The BBPD model
captures the stress distribution around stop holes and pre-
dicts how they influence crack initiation and propagation,
providing insights into the design of more resilient materi-
als. PD was extended in [14] to predict damage initiation
and propagation in electronic packages. This BBPD model
integrates thermal and mechanical fields to simulate the
complex loading conditions experienced by electronic
components.

1.3. Contribution of the present study

Despite these advancements, significant gaps in the literature
remain unaddressed. Many existing studies have predomin-
antly focused on bond-based formulations, which, while use-
ful, are limited in their ability to capture complex material
behaviors when compared to state-based models.
Specifically, the integration of constitutive models from
CCM into the PD framework remains underexplored, par-
ticularly concerning thermomechanical response. This gap is
evident in the literature survey, which highlights the need
for a more robust approach.

This study aims to fill these gaps by proposing a novel
thermomechanical correspondence framework within the
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NOSBPD theory and coupling it with a PD thermal model
[15]. The proposed framework takes a novel path by utiliz-
ing the generalized Hooke’s law for linear thermoelectricity
as the constitutive model, marking a departure from the
thermoplasticity model employed in [2] and the specific
constitutive model used in [11]. By leveraging a well-estab-
lished constitutive model such as linear thermoelasticity, the
framework benefits from the extensive validation and reli-
ability that Hooke’s law offers.

Furthermore, this study introduces the implicit formula-
tion of the NOSBPD thermomechanical model for the first
time. This implicit formulation is derived and implemented
to simulate the thermoelastic response of materials, offering
a computationally efficient framework. By addressing these
gaps, the proposed framework aims to enhance the predict-
ive capabilities of PD models in capturing the complex
interactions between thermal and mechanical fields, thereby
providing a more comprehensive tool for analyzing the ther-
momechanical behavior of materials.

2. Peridynamic mechanical model

PD [16] distinguishes itself from classical continuum
mechanics through its departure from the traditional utiliza-
tion of differential operators in the governing equations of
motion. Instead, PD introduces integral operators, signifying
a paradigmatic departure in the methodology of material
modeling. This distinctive characteristic has profound impli-
cations, granting PD with several key advantages that ena-
bles it to transcend the constraints inherent in differential
operators and classical continuum theories.

Firstly, the nonlocal nature inherent to the integral for-
mulation renders PD intrinsically crack-compatible.
Discontinuities no longer pose a challenge but are instead
treated as the natural outcomes of the interactions between
material points across crack surfaces. This crack-tolerance
allows PD to seamlessly model fracture initiation and propa-
gation [17–19] without resorting to ad-hoc crack growth
algorithms, which is a stark contrast to classical methods.

The second key advantage that PD offers lies in its non-
local formalism which is introduced through the concept of
a horizon. This horizon defines the spatial extent over which
interactions between material points occur. Unlike classical
models, where interactions are confined to neighboring
points, PD allows interactions to extend beyond localized
regions.

However, it is important to note that the nonlocal nature
of PD introduces a computational cost that is generally
higher compared to frameworks based on local theories,
such as the finite element method (FEM). This increased
computational demand is due to the need to consider inter-
actions over a broader spatial domain. Despite this setback,
the advantages offered by PD, particularly its natural hand-
ling of discontinuities and robust fracture modeling capabil-
ities, often compensate for the higher computational
expense. Thus, PD represents a powerful tool in the field of
material modeling, providing unique solutions to problems
that are challenging for classical methods.

The horizon plays a pivotal role in capturing displace-
ment localization [20], wherein materials exhibit concen-
trated deformation or strain softening behavior as
deformation increases. This behavior is inherently difficult
to model accurately using classical continuum mechanics
without resorting to ad hoc regularization techniques [21].

The peridynamic equation of motion for a point x within
a body B, interacting with other points x0 within B, is for-
mulated through the following balance of linear momentum
expression:

q xð Þ€u x, tð Þ ¼
ð
Hx

fm x, x0, tð ÞdVx0 þ b x, tð Þ (1)

Equation (1) captures the governing dynamics of the sys-
tem, incorporating familiar components like material dens-
ity q and acceleration represented by the second-order
displacement derivative €u: The nonlocal influence is intro-
duced through the response function fm x, x0, tð Þ, which is a
pairwise force density function that is transmitted through
the notion of a bond. This bond represents the interaction
between two material points x and x0, separated by a finite
distance x0 − x ¼ n, termed the bond length in the
undeformed configuration. The subscript m on the
response function indicate that it pertains to mechanical
model. The interaction region for each point x is defined
by the region laying within limiting distance d, often called
the horizon of x: The interaction region is typically taken
to a be a sphere of radius d: The set, Hx of points located
within the domain of interaction of x is called the family
of x:

As B deforms such that points x and x0 occupy new posi-
tions y and y0 in the deformed configuration as shown in
Figure 1, the relative displacement and relative position vec-
tor of x and x0 are respectively given as:

Figure 1. Deformation of material point.
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g ¼ u0 − u, y0 − y ¼ nþ g (2)

Two broad class of PD models emerge from the definition of
the force density function f x, x0, tð Þ in (1). The first peridynamic
model, known as the bond-based model [16], characterizes
f x, x0, tð Þ as only dependent on the bond x0 − x, independent
of the deformation of any other bond within the family of the
primary point x: This definition simplifies the peridynamic
model, making it computationally efficient. However, it imposes
constraints on the types of materials that can be modeled, limit-
ing them to those with Poisson’s ratio of 1/3 and 1/4 for prob-
lems in the 2- and 3-dimensions, respectively.

To overcome these limitations, a state-based peridynamic
framework was introduced [22], offering more generalized
capabilities for material modeling. In the state-based frame-
work, the force density f x, x0, tð Þ is not solely a function of
the bond x0 − x but encompasses all bonds within Hx: This
enhanced capability arises from the introduction of mathem-
atical objects called states, enabling the reformulation of the
peridynamic equation of motion (1) as follows:

q xð Þ€u x, tð Þ ¼
ð
Hx

T
�
x, t½ � x0 − xh i − T

�
x0, t½ � x − x0h i� �

dVx0 þ b x, tð Þ

(3)

In (3), T
�
x, t½ � and T

�
x0, t½ � represent the vector force states

acting at points x and x0, respectively, at time t: The action
of T

�
on the bonds x0 − x and x − x0 results in the generation

of the vector-valued force density functions t x, x0, tð Þ and
t x0, x, tð Þ acting on x and x0, respectively. The bond which is
acted upon a state is placed in an angle bracket.

Within the state-based framework (Eq. 3), two distinct
material models emerge based on the definition of the force
state T

�
: If T

�
is defined such that the force density vector t

aligns with the bond n, T
�
is categorized as an ordinary state,

leading to the formation of the ordinary state-based peridy-
namic (OSBPD) model. Alternatively, if T

�
does not align with

the bond, it is deemed a non-ordinary state, giving rise to the
Non-Ordinary State-Based Peridynamic (NOSBPD) model.

Within the NOSBPD framework, a crucial subclass
known as the peridynamic correspondence model takes a
fundamental role in significantly expanding the applicability
of peridynamic theory. The correspondence model within
the NOSBPD not only broadens the scope of modeling capa-
bilities, inherent in the NOSBPD, but also introduces an
essential feature – the integration of constitutive models
from CCM framework into the peridynamic framework.

This key feature enables the correspondence model to
leverage the rich legacy of CCM, with decades of research in
calibration, verification and validation, and the advantages
offered by peridynamics. The ability to incorporate well-
established constitutive models from classical continuum
mechanics into the peridynamic correspondence model
enhances its versatility and reliability. By leveraging the
state-of-the-art methodologies of CCM, the correspondence
model benefits from a wealth of knowledge and testing that
ensures robustness and accuracy in representing material. In

the correspondence model, the net force state at a material
point x is expressed as

T
�

nh i ¼ x
�

nj jð ÞPBn (4)

where x is a scalar-valued weight function, P ¼ P̂ Fð Þ repre-
sents the first Piola-Kirchhoff stress tensor, obtained through
the material model P̂ derived from CCM, expressed as a func-
tion of the deformation gradient F: The relationship between
the First Piola-Kirchhoff stress P and the Cauchy stress tensor
r is established through the following expression:

P ¼ JrF−T , J ¼ det Fð Þ (5)

Under small perturbation hypothesis, we have F ffi I, J ffi
1 and thus P ¼ r in (5) and therefore (4) can be written as

T
�
x, t½ � nh i ¼ x nj jð ÞrBn (6)

where B in (4) and (6) is the inverse of a tensor-valued
function called shape tensor K which is defined as.

K ¼
ð
Hx

x
�

nh in �ndVn (7)

Instability in the displacement field often manifests in the
correspondence model due to the inability of the nonlocal
deformation gradient (7) to detect certain unphysical
deformation modes. These unphysical deformation modes,
also called zero-energy modes, need to be suppressed.
Several techniques have been proposed to suppress the
resultant instability. For reasons of ease of implementation,
this study adopts the approach proposed in [23].

This method prevents zero-energy mode instability by
adding an artificial force density vector T

�

s x, t½ � x0 − xh i to the

interaction between x and x0 such that (6) becomes:

T
�
x, t½ � nh i ¼ x nj jð ÞrBnþ T

�

s x, t½ � x0 − xh i (8)

where

T
�

s x, t½ � x0 − xh i ¼ −rsBnþ 1
2
x
�

nj jh iC z
�
nh i (9)

In (9), C nð Þ ¼ c n� nð Þ= nj j3 is a tensor-valued symmetric
micromodulus function where c ¼ 18k=pd4, and rs

rs ¼ 1
2

ð
Hx

x
�

gj jh iC gh i z
�
gh i �gdVg (10)

Under the assumption of a linear elastic material response within
the correspondence model, we can employ the generalized
Hooke’s law as a constitutive model, establishing a relationship
between the stress tensor in (6) and the strain tensor. The general-
ized Hooke’s law, based on the small perturbation hypothesis, for
the coupled thermoelastic problem is expressed as:

r x, tð Þ ¼ C : e x, tð Þ − bDH
rij ¼ Cijklekl − bijDH i, j, k, l 2 1, 2, 3f g

�
(11)

where C is the fourth-order elastic constitutive tensor, b is a
second-order constitutive thermal tensor and DH ¼ H −H0

is the change in temperature as represented by the difference
between the absolute temperature h at time t and the tem-
perature at a reference state H0: If the material is considered
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isotropic, then C and b are isotropic fourth order and
second order tensors which are respectively given as:

C¼3jI1þ2lI2 where I1¼1
3
dijdkl, and I2¼1

2
dikdjlþdildjk−

2
3
dijdkl

� �

b¼b1 bij¼bdij

8>><
>>:

(12)

where j and l are the bulk and shear moduli, respectively,
and b is a scalar thermal constant parameter that is given by

bij¼aiCijkldij (13)

where ai is the thermal expansion coefficient in the i-th dir-
ection. The infinitesimal strain tensor e in (11) is given by

e xð Þ¼1
2
FþFTð Þ− I (14)

and F is the nonlocal deformation gradient given by the
approximate expression:

F xð Þ¼
ð
Hx

x
�

nh i y x0,tð Þ−y x,tð Þ� �
�ndx

0
	 


K−1 (15)

2.1. Numerical implementation of the correspondence
model

To numerically solve the governing field equation (Eq. 3), the
problem domain undergoes discretization into a set of nodes.
Subsequently, frameworks such as the Finite Element Method
(FEM) [24, 25], meshfree methods [26, 27], and collocation
methods [28, 29], are employed to approximate the solution.
In this contribution, the meshfree method [27] is adopted due
to its straightforward implementation algorithm and relatively
low computational cost. Employing this approximation method
leads to the discrete form of (3), expressed as:

qp€up ¼
XN
q¼1

T
�
xp, t½ � xq − xph i − T

�
xq, t½ � xp − xqh i

h i
Vq þ bp (16)

where N denotes the number of nodes in the family of xp:
Two approaches exist to obtain the solution of the discretized

PD equation of state (Eq. 16). The first is via an explicit time
integration and the second is through implicit solution. The
implicit solution strategy is utilized in this study. Different impli-
cit strategies [30, 31] have been proposed for the solution of (16).
We adopt the implicit strategy proposed in [31]. In this method-
ology, the discrete form of (8) is given by

T
�
xp, t½ � xq − xph i ¼ x

�
hnpqiQpq CBpNpUp½ �

− x
�
hnpqi

c
2
TpqRpPpUp

þ x
�
hni c

2
Bpnpq
� �

d�2d
VpqLpNpUpð Þ2d�1

þ x
�
hnpqi

c
2

npq �npq

npq

��� ���3 uq − upð Þ

−
c
2
MpqLpNpUp − x

�
hnibpQpq�

(17)

so that the equilibrium equation of state (16) becomes

qp€up ¼
Xni

j¼1
x
�
hnpqiQpq CBpNpUp½ � − x

�
hnpqi

c
2
TpqRpPpUp

	

þx
�
hni c

2
Bpnpq
� �

d�2d
VpqLpNpUpð Þ2d�1

þx
�
hnpqi

c
2

npq �npq

npq

��� ���3 uq − upð Þ −
c
2
MpqLpNpUp

−x
�
hnpqibpQpq� − x

�
hnqpiQqp CBqNqUq½ �

þx
�
hnqpi

c
2
TpqRqPqUq

−x
�
hnqpi

c
2

Bqnqp
� �

d�2d
VqpLqNqUqð Þ2d�1

−x
�
hnqpi

c
2

nqp �nqp

nqp

��� ���3 up − uqð Þ þ
c
2
MqpLqNqUq

þx
�
hnqpibqQqp�

i
þ b xpð Þ

(18)

In the case of quasi-static problem, (18) specializes toXni

j¼1
x
�
hnpqiQpq CBpNpUp½ � − x

�
hnpqi

c
2
TpqRpPpUp

	

þx
�
hni c

2
Bpnpq
� �

d�2d
VpqLpNpUpð Þ2d�1

þx
�
hnpqi

c
2

npq �npq

npq

��� ���3 uq − upð Þ −
c
2
MpqLpNpUp

−x
�
hnpqibpQpq� − x

�
hnqpiQqp CBqNqUq½ �

þx
�
hnqpi

c
2
TpqRqPqUq

−x
�
hnqpi

c
2

Bqnqp
� �

d�2d
VqpLqNqUqð Þ2d�1

−x
�
hnqpi

c
2

nqp �nqp

nqp

��� ���3 up − uqð Þ þ
c
2
MqpLqNqUq

þx
�
hnqpibqQqp�

i
þ bðxpÞ¼ 0

(19)

The terms in Eq. (17) for two dimensions are specified
[32] as follows: Q is a 2� 3 matrix that captures the Bn in
(6) and is given [31] as

Q ¼ Q1 0 Q2

0 Q2 Q1

	 

(20)

where Q1 ¼ B11n1 þ B12n2, Q1 ¼ B12n1 þ B22n2: D is a matrix
representation of the elasticity tensor. K is a 3� 4 matrix that
is composed of components of B, and is given by:

K ¼
B11 0 B12 0
0 B12 0 B22

B12 B11 B22 B12

2
4

3
5 (21)

N is a 4� 2 nþ 1ð Þ matrix which is given as:

N ¼
N 1ð Þ 0 � � � xn1Vq 0 � � �
0 N 1ð Þ � � � 0 xn1Vq � � �

N 2ð Þ 0 � � � xn2Vq 0 � � �
0 N 2ð Þ � � � 0 xn1Vq � � �

2
66664

3
77775 (22)
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where N 1ð Þ ¼ −
Pn

q¼1 x npq

��� ���� �
npq1Vq, N 2ð Þ ¼ −

Pn
q¼1

x npq

��� ���� �
npq2Vq: U is a vector of components of nodal dis-

placements of points belonging to the family of point xp: T
is given by

T ¼ n1 n2 B12 0
0 0 n1 n2

	 

(23)

R is given by:

R ¼
B11 B12 0
B12 B22 0
0 B11 B12

0 B12 B22

2
664

3
775 (24)

P is given as:

P ¼
P 1ð Þ P 2ð Þ � � � xn31= nj j3Vq xn21n2= nj j3Vq � � �
P 2ð Þ P 3ð Þ � � � xn21n2= nj j3Vq xn1n

2
2= nj j3Vq � � �

P 3ð Þ P 4ð Þ � � � xn1n
2
2= nj j3Vq xn32= nj j3Vq � � �

2
664

3
775

(25)

where

P 1ð Þ ¼ −
Xn
q¼1

x nj jh in31
nj j3 Vq, P 2ð Þ ¼ −

Xn
q¼1

x nj jh in21n2
nj j3 Vq,

P 3ð Þ ¼ −
Xn
q¼1

x nj jh in1n22
nj j3 Vq, P 4ð Þ ¼ −

Xn
q¼1

x nj jh in32
nj j3 Vq,

L, V, M are respectively given by:

L ¼

B11 0 B12 0

0 B12 0 B22

B12 0 B22 0

0 B11 0 B12

2
66664

3
77775 (26)

M ¼ n31= nj j3 n1n
2
2= nj j3 n21n2= nj j3 n21n2= nj j3

n21n2= nj j3 n32= nj j3 n1n
2
2= nj j3 n1n

2
2= nj j3

" #
(28)

And the product Bn is given by:

Bn¼ B11n1þB12n2 B21n1þB22n2 0 0
0 0 B11n1þB12n2 B21n1þB22n2

	 

(29)

The term x
�
hni c

2
n �n

nj j3 u0 − uð Þ for example is evaluated as:

x
�
hni c

2
n �n

nj j3 u0 − uð Þ ¼ c
2

n21
nj j3 u0 − uð Þ1 þ n1n2

nj j3 u0 − uð Þ2

n1n2
nj j3 u0 − uð Þ1 þ n21

nj j3 u0 − uð Þ2

2
66664

3
77775

(30)

And finally, the constitutive thermal tensor b at point p
is given in (13).

3. Peridynamic heat transport model

Incorporating the thermal component into our coupled
framework necessitates the integration of a peridynamic heat
conduction formulation. Analogous to the mechanical
model, heat transfer within this framework is facilitated
through non-local interactions among material points, con-
strained within a specified heat diffusion horizon.

Extensive research endeavors have been dedicated to the
development and application of the PD framework for mod-
eling heat transport phenomena, as evidenced by numerous
studies [15, 33–40]. In this study, we adopt the PD heat
transport model presented in [15]. The governing field equa-
tion for heat conduction in this formulation is expressed as:

qCv
_H x, tð Þ ¼

ð
Hx

fh x, x0,H,H0, tð ÞdVx0 þ hs x, tð Þ 8x 2 X

(31)

where fh x, x0,H,H0, tð Þ is the thermal response function and
represent a heat flow density, hs is the heat source due to
volumetric heat generation [15], and H is the temperature

V ¼

Xn
q¼1

x nj jh in41= nj j3Vq

Xn
q¼1

x nj jh in21n22= nj j3Vq

Xn
q¼1

x nj jh in31n2= nj j3Vq

Xn
q¼1

x nj jh in31n2= nj j3Vq

Xn
q¼1

x nj jh in31n2= nj j3Vq

Xn
q¼1

x nj jh in1n32= nj j3Vq

Xn
q¼1

x nj jh in21n22= nj j3Vq

Xn
q¼1

x nj jh in21n22= nj j3Vq

Xn
q¼1

x nj jh in31n2= nj j3Vq

Xn
q¼1

x nj jh in1n32= nj j3Vq

Xn
q¼1

x nj jh in21n22= nj j3Vq

Xn
q¼1

x nj jh in21n22= nj j3Vq

Xn
q¼1

x nj jh in21n22= nj j3Vq

Xn
q¼1

x nj jh in42= nj j3Vq

Xn
q¼1

x nj jh in1n32= nj j3Vq

Xn
q¼1

x nj jh in1n32= nj j3Vq

2
6666666666666664

3
7777777777777775

(27)
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at x: The thermal response function can be written in terms
of a PD micro-conductivity j as:

fh ¼ j
s x, x0, tð Þ

nj j (32)

Depending on the dimension of the problem, the PD
micro-conductivity j is shown to be related to the thermal
conductivity k of the material through the following rela-
tions:

j ¼ 2k

Ad2
One-dimension

j ¼ 6k

phd3
Two-dimension

j ¼ 6k

pd4
Three-dimension

(33)

4. Numerical results

In this section, two numerical experiments will be conducted
to demonstrate the capabilities of the proposed NOSBPD
thermomechanical framework to accurately predict the
response of materials subjected to mechanical and thermal
loads.

4.1. Plate subjected to temperature boundary condition

In this example, a benchmark problem involving a plate
undergoing transient thermal process and subsequent ther-
mal expansion is studied. The plate, with dimension l ¼
1 m and w ¼ 0:5m as shown in Figure 2, is subjected to the
following thermal initial and boundary conditions:

T x, yð Þ, 0� � ¼ 0�C −l=2 � x � l=2 −w=2 � y � w=2

T x, yð Þ, tð Þ ¼ 900�C x ¼ −l=2 −w=2 � y � w=2

(34)

The properties of the plate material are as follows: elastic
modulus of 200GPa, Poisson’s ratio of 1/3 and a coefficient
of thermal expansion of 23� 10-6. The horizon of the mater-
ial is taken as 3Dx, where Dx ¼ Dy is the space between
material points in the discretized domain along its length and
width. The plate is discretized into 201 material points along
its length and 101 material points along its width.

First, a transient heat conduction analysis is performed
using the peridynamic thermal conduction model over a
simulation time of 3000s. This step determines the evolution
of temperature distribution within the plate. Subsequently,
this temperature distribution is used as input for a coupled
thermomechanical simulation using Eq. (19). An additional
prescribed homogeneous displacement boundary condition
is applied at the right edge of the plate. The coupled PD
thermomechanical model, incorporating both thermal and
mechanical effects, then solves for the resulting displace-
ments within the plate.

The evolution of the temperature distribution obtained
from the simulation of the PD thermal transport model is
depicted in Figures 3 and 4. Figure 3 illustrates the evolution
of the temperature distribution over the entire plate at simu-
lation times corresponding to 100 s, 1500 s, and 3000 s.

To compare the evolution of the temperature field
obtained using the PD thermal transport model, the tempera-
ture along a grid located at −d=10 � y � d=10 and −l=2 �
x � l=2 at time 100 s, 1500 s, and 3000 s are presented in
Figure 4. This result is compared with result of simulation
from ANSYS mechanical APDL, a commercial finite element
software. From Figure 4, it is evident that the predictions
from the PD transport model align well with those from
ANSYS, indicating good agreement between the two.

The evolution of temperature gradient obtained from
simulation of the PD thermal transport model serve as input
for the subsequent simulation of the displacement field aris-
ing from thermal expansion. To this end, the capability of the
proposed NOSBPD coupled field mode to account for
thermo-mechanical interaction is leveraged. The evolution of
the displacement field across the plate at simulation times of
100 s, 1500 s, and 3000 s is presented in Figures 5–7, respect-
ively. These figures offer insights into the progressive deform-
ation of the plate due to the transient thermal process.

Figure 2. Problem setup for thermal conduction simulation.

Figure 3. Evolution of temperature distribution at (a) t¼ 100 s, (b) t¼ 1500 s, and (c) t¼ 300 s.

13524 Y. K. GALADIMA ET AL.



To validate the accuracy of the PD coupled field model, a
comparative analysis is conducted. The same problem is
simulated using ANSYS. The resulting displacement field
evolution for the plate at corresponding simulation times
(100 s, 1500 s, and 3000 s) is presented alongside the PD
model results in Figures 5–7. This allows for a direct visual
comparison of the predicted deformations.

To facilitate a more precise comparison, the displacement
profiles along grids parallel to the x and y axes, showing dis-
placement components in the x and y directions obtained
from simulations using the PD coupled field model and
ANSYS, are presented in Figure 8.

The results obtained from simulating the proposed PD
coupled field model show good agreement with the finite
element simulation conducted using ANSYS, as presented in
Figures 5–8. An examination of these results reveals a con-
sistent trend in the evolution of the displacement field
across both models. This agreement is observed at all three
depicted simulation times of 100 s, 1500 s, and 3000 s, sug-
gesting that the PD model effectively addresses the thermo-
mechanical coupling within the material.

By demonstrating consistency with the results obtained from
the established finite element simulations using ANSYS, our
findings affirm the effectiveness of the proposed PD coupled
field model in accurately representing the mechanical response
of the system. This agreement between the simulated outcomes
further validates the applicability of the PD coupled field model
in engineering analyses involving thermomechanical processes.

4.2. Response of a plate with a slit subjected to
elevated temperature

In this example, we simulate the response of a plate with a
central slit, composed of a material with the followingFigure 4. Temperature profile for material points located at −d=10 � y � d=10:

Figure 5. Components of displacement over the entire plate at 100 s (a) in x-direction obtained using NOSBPD, (b) in x-direction obtained using ANSYS, (c) in y-dir-
ection obtained using NOSBPD, and (d) in y-direction obtained using ANSYS.
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Figure 6. Components of displacement over the entire plate at 1500 s (a) in x-direction obtained using NOSBPD, (b) in x-direction obtained using ANSYS, (c) in y-
direction obtained using NOSBPD, and (d) in y-direction obtained using ANSYS.

Figure 7. Components of displacement over the entire plate at 3000 s (a) in x-direction obtained using NOSBPD, (b) in x-direction obtained using ANSYS, (c) in y-
direction obtained using NOSBPD, and (d) in y-direction obtained using ANSYS.

13526 Y. K. GALADIMA ET AL.



mechanical properties: an elastic modulus of 35.8GPa, a
Poisson’s ratio of 0.333, and a coefficient of thermal expan-
sion of 23� 10−6. The primary objective of this numerical
experiment is to demonstrate the capability of the proposed
implicit thermomechanical framework in accurately model-
ing materials that feature discontinuities, such as cracks or
slits, under thermal loading.

The plate is a rectangular slab with a length (L) and
width (W) of 1m. A central slit with dimensions of length
(2a) of 0.4m and height of 0.005m is introduced to repre-
sent a discontinuity within the plate. To facilitate the
numerical simulations, the plate is discretized into a grid of
301 material points along both its length and width, while a
single layer of material points is used through its thickness,
thus assuming a plane stress condition.

The bottom edge of the plate is fixed, restricting both
horizontal and vertical displacements. A uniform displace-
ment is prescribed along the top edge of the plate, with an
applied displacement of 0.005m. Additionally, the plate is
subjected to an elevated temperature of 10 �C.

The objective of this case is to demonstrate the robust-
ness of the NOSBPD formulation in handling discontinuities
in a thermomechanical problem by capturing the complex
stress behavior induced by the presence of a slit and the
temperature-induced softening of the material.

The results of the simulation are presented in Figures 9–12.
Figure 9 shows the displacement profiles along two horizontal
and two vertical paths. These paths were selected to examine
the variations in displacement both near and away from the
central slit, providing insight into how the presence of the slit
influences the plate’s overall deformation. In Figure 10, the dis-
placement fields ux and uy in the plate are shown. These show
the horizontal and vertical displacements throughout the plate,
facilitating for a clear visualization of how the applied displace-
ment at the top edge affects the material points near the slit
and across the entire plate.

Figure 11 shows the stress fields rxx and ryy, which repre-
sent the normal stresses in the horizontal and vertical direc-
tions, respectively. These stress distributions allow us to
observe the stress concentrations that develop around the slit,
particularly near the crack tips, where the stress magnitudes
are expected to be significantly higher. Lastly, Figure 12

presents the stress profile along a vertical path that passes by
the crack tip. This path is critical for examining the stress
intensity near the discontinuity, providing a more detailed
view of how the stresses increase in the vicinity of the slit
(Figure 13).

The analysis of the displacement and stress fields pre-
dicted by the Non-Ordinary State-Based Peridynamics
(NOSBPD) reveals some insights into its performance and
accuracy, when compared with FEM predictions. The
NOSBPD method demonstrates good agreement with FEM
in both displacement and stress fields.

The prediction of the displacement field by NOSBPD
aligns closely with FEM as shown in Figures 9 and 10, sug-
gesting that NOSBPD can capture deformation behaviors in
materials subjected to external forces.

Figure 8. Displacement profile for material points located at −d=10 � y � d=10 and −l=2 � x � l=2:

Figure 9. A plate with a slit at the Ccenter.
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Figure 10. Displacement profiles: (a) ux along a horizontal path at y¼ 0 (b) uy along a vertical path at x¼ 0 (c) ux along a horizontal path at y¼ 0.4975 (d) uy along
a vertical path at x¼ 0.4975.

Figure 11. Contour plot of displacement fields (a) ux prediction from NOSBPD (a) uy prediction from NOSBPD (c) ux prediction from FEM (d) uy prediction from FEM.
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The stress field prediction, particularly around the
crack tip, is crucial for assessing the method’s capability
to model fracture mechanics accurately. The results pre-
sented in Figure 12 show that the stress components rxx
and ryy follow a trend that mirrors what is expected in a
classical fracture mechanics scenario, with increasing val-
ues near the crack tip, indicating stress concentration, and
then a rapid reduction as we move away from the
crack tip.

The ability of the NOSBPD to produce results that agrees
with FEM predictions suggests that it is a powerful tool for
analyzing stress fields in problems with discontinuities, such
as cracks, offering a reliable alternative or complement to

traditional methods like FEM, particularly for applications
where non-local interactions cannot be neglected or when
dealing with dynamic crack scenarios

4.3. Response of a plate with a circular hole

In this numerical experiment, we simulate the mechanical
response of a steel plate with a central circular hole under
varying thermal and mechanical loading conditions. The
objective of this simulation is to investigate the effect of ele-
vated temperatures on the force–displacement relationship
of the plate. The plate is square, with dimensions of
L¼W¼ 1 m. A circular hole with a radius of 0.2m is

Figure 12. Contour plot of stress fields (a) rxx prediction from NOSBPD (a) ryy prediction from NOSBPD (c) rxx prediction from FEM (d) ryy prediction from FEM.

Figure 13. Stress profile along a vertical path at x¼ 0.020.
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located at the center of the plate. The mechanical properties
of the steel plate are as follows: an elastic modulus of
210GPa, Poisson’s ratio of 0.3, and a coefficient of thermal

expansion of 12� 10−6 /�C. Plane stress conditions are
assumed throughout the simulation.

For the purpose of the numerical simulation, the plate is
discretized into a grid of 301 material points along both the
length and width directions, while the thickness direction is
represented by a single material point. The plate is fixed
along its bottom edge, and a prescribed displacement is
applied incrementally along the top edge, as depicted in
Figure 14. The applied displacement ranges from 6� 10−7 m
to 6� 10−5 m over the course of the simulation.

To study the effect of temperature on the mechanical
response, the plate is subjected to elevated temperatures of
10 �C, 20 �C, 50 �C, 80 �C, and 100 �C. The thermal expan-
sion of the material is incorporated into the model to
observe the temperature-dependent effects on the force–dis-
placement behavior.

The results of the numerical simulation are presented in
Figures 15–19. These results show the displacement and
stress fields, as well as the temperature-dependent force–dis-
placement relationships for the steel plate.

Figure 15 shows the displacement profile along four dif-
ferent paths on the plate. Two horizontal paths are taken at
the coordinates [−0.5�x� 0.5, y¼ 0] and [−0.5�x� 0.5,
y¼ 0.4975], while two vertical paths are taken at [x¼ 0,
−0.5�y� 0.5] and [x¼ 0.4975, −0.5�y� 0.5]. The displace-
ment results obtained from the NOSBPD simulation are
compared with corresponding results from FEM simulation
along these paths.

Figure 14. Plate with hole.

Figure 15. Displacement profile along horizontal and vertical paths.
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Figure 16(a and b) shows the contour plots of the dis-
placement field in the x and y directions, respectively, as
obtained from the NOSBPD simulation. For comparison,
Figure 16 (c and d) provides the corresponding displace-
ment contours from the FEM simulation. These plots visu-
ally demonstrate the deformation patterns of the plate under
the applied displacement load and temperature conditions,
highlighting the similarity in the deformation profiles
between the two methods.

Figure 17 presents the stress profile along the path
defined by [−0.5�x� 0.5, y¼ 0] and [−0.5�x� 0.5,

y¼ 0.4975], comparing the results obtained from the
NOSBPD simulation with those from the FEM simulation.
In Figure 18, contour plots of the stress field are presented
for both the NOSBPD and FEM simulations. These plots
provide a comprehensive view of the stress distribution
across the entire plate. All data presented in Figures 15–18
were taken for an applied displacement of u0¼6� 10−5 m
and a temperature of 80 �C.

Finally, Figure 19 shows the force-temperature curves for
the plate at three different applied displacements:
u0¼6� 10−7 m, u0¼3.03� 10−5 m, and u0¼6� 10−5 m.

Figure 16. Displacement field at U0 ¼ 6.0E-5 m and T¼ 80 �C.

Figure 17. Stress profile along a horizontal path.
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These curves illustrate the variation in the reaction force as
a function of temperature for each constant displacement.

The results of the simulations obtained using the
NOSBPD framework show a strong agreement with those
from the FEM simulations across all metrics evaluated, high-
lighting the accuracy and robustness of the NOSBPD
approach in simulating thermomechanical behavior.

The displacement profiles along the horizontal and verti-
cal paths, as shown in Figure 15, reveal that the NOSBPD
model captures the displacement distribution accurately
when compared with FEM results. This consistency is fur-
ther reinforced by the contour plots of the displacement
field in both the x and y directions as shown in Figure 16,
where the NOSBPD and FEM simulations exhibit very simi-
lar deformation patterns in the plate in response to both
mechanical loading and thermal expansion.

The stress profiles presented in Figure 17 also demon-
strate good agreement between the NOSBPD and FEM
models. This is further corroborated by the stress contour
plots in Figure 18, where the stress distribution across the
plate is consistent between both methods, validating the
ability of the NOSBPD model to simulate complex stress
fields, including those around geometric discontinuities.

The force-temperature curves in Figure 19 show an
expected trend in the force–displacement relationship: for a
specified temperature, the reaction force increases as the
applied displacement increases. This behavior is expected

due to the tensile forces generated as the plate is stretched.
At each temperature, the increase in displacement load leads
to a corresponding increase in reaction force, consistent
with the material’s resistance to deformation under the
applied mechanical load. This trend is observed in both the
NOSBPD and FEM simulations, which demonstrate a strong
agreement across all displacement steps.

Figure 18. Contour plot of stress field.

Figure 19. Force displacement relations as a function of temperature.
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The results also demonstrate the effect of temperature on
the force–displacement behavior. As the temperature
increases from 0 �C to 100 �C, the magnitude of the negative
reaction force decreases. This is due to the thermal expan-
sion of the plate, which induces internal compressive stresses
at the fixed edge that act in opposition to the tensile forces
generated by the applied displacement. As the temperature
increases, these compressive forces increase, reducing the
overall magnitude of the negative reaction force at the fixed
boundary. This is evident in the upward shift of the force–
displacement curve at higher temperatures, where the net
reaction force becomes less negative for the same displace-
ment. The NOSBPD model captures this temperature-
dependent behavior effectively, as demonstrated by the com-
parison with FEM results.

A comparative analysis between the results of reaction
forces computed by NOSBPD and FEM for various displace-
ment loads and temperature conditions is presented in
Table 1. The result show good agreement between predic-
tions from NOSBPD and FEM simulations. The force–dis-
placement curves for both methods follow similar trends,
with the percentage error between the two approaches
remaining within 1–5%.

5. Conclusion

In this work, we proposed a coupled framework that inte-
grates the PD heat transport model with an implicit
NOSBPD thermomechanical model. This framework was
applied to three benchmark problems to evaluate its accur-
acy and effectiveness in simulating thermomechanical behav-
ior in materials.

The first benchmark problem involved a plate subjected
to a thermal boundary condition. The PD thermal model
successfully simulated the evolution of the temperature field
within the plate, and this temperature field was subsequently
used as input for the thermomechanical simulation. The dis-
placement field obtained from the thermomechanical simu-
lation showed excellent agreement with results from a FEM
simulation of the same problem, validating the accuracy of
the proposed coupled framework.

In the second benchmark problem, a plate with a slit was
subjected to a prescribed displacement boundary condition.
The response of the plate at elevated temperature was simu-
lated. This result highlights the ability of the framework to
predict the thermomechanical response of materials, espe-
cially in scenarios with geometric discontinuities.

In the third benchmark problem, a plate with a circular
hole was subjected to an increasing prescribed displacement
boundary condition at elevated temperatures. The tempera-
ture-dependent response was successfully simulated, further
demonstrating the framework’s capacity to handle complex
geometries while capturing the influence of elevated temper-
atures on material deformation.

In conclusion, the proposed coupled PD heat transport
and NOSBPD thermomechanical framework has been shown
to accurately simulate thermomechanical behavior, offering
a reliable tool for modeling complex responses in materials.
In future work, we hope to apply this framework to study
thermomechanical responses in the presence of dynamic
crack propagation.
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