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Abstract: Long-range interactions between dark vectorial temporal cavity solitons are induced
by the formation of patterns via spontaneous symmetry breaking of orthogonally polarized fields
in ring resonators. Turing patterns of alternating polarizations form between adjacent solitons,
pushing them apart so that a random distribution of solitons along the cavity length spontaneously
reaches equal equilibrium distances, the soliton crystal, without any mode crossing or external
modulation. Enhancement of the frequency comb is achieved through the spontaneous formation
of regularly spaced soliton crystals, ‘self-crystallization’, with greater power and spacing of the
spectral lines for increasing soliton numbers. Partial self-crystallization is also achievable in
long cavities, allowing one to build crystal sections with controllable numbers of cavity solitons
separated by intervals of pattern solutions of, again, controllable length.
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1. Introduction

The generation of optical frequency combs [1] is an active area of research due to the wide
range of practical applications that span across various fields including telecommunication [2,3],
spectroscopy [4,5] and quantum technologies [6]. Temporal cavity solitons (TCS) [7] can be key
elements for broadband optical frequency combs [8]. TCS are a special class of cavity solitons
that originate in dissipative optical resonators under the action of external driving, diffraction
[9,10] and/or group velocity dispersion. Ring resonator geometries are now regularly used for
the generation of optical frequency combs via TCS [1].

We consider a high finesse ring resonator composed of a Kerr medium, see Fig. 1, in the normal
dispersion regime. A linearly polarized driving laser is coupled into the cavity, such that the
intracavity fields may be resolved into components of orthogonal polarizations. In considering
polarization components, vectorial TCSs display features in addition to those seen for a cavity
with a single field, due to the possibility of spontaneous symmetry breaking (SSB) between
polarization components [11]. The SSB of light within Kerr resonators has been demonstrated
theoretically and experimentally where the intracavity field is composed of orthogonal polarized
components [12–20], counterpropagaing components [21–29], a combination of the two [30–32],
and most recently, between two, or more, coupled resonators [33–36]. We investigate the
polarization properties of vectorial dark cavity solitons (VDS) in the normal dispersion regime
and its effects on the formation of frequency combs. In particular, we present a useful ‘self-
crystallization’ phenomenon in which an initially random distribution of VDSs spontaneously
form a regular soliton crystal (RSC). Cavity soliton crystals were originally invented in [10] by
using phase gradients to position them into regularly spaced structures. In the case of dispersion,
the generation of RSCs has been previously demonstrated through perturbations introduced near
avoided mode crossings [37–40], or an external modulation [41] of the field. Here, instead, we
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present a new self-organization mechanism of long range interactions between adjacent VDSs
via a SSB of Turing patterns capable to controllably generate RSC states.

Fig. 1. A ring resonator composed of a Kerr nonlinear medium. Linearly polarised light is
coupled in and out of the resonator via a waveguide. An example intracavity power profile of
a vectorial soliton is shown, presenting a Turing pattern of broken symmetry between fields
of opposite circular polarization, visible as out-of-phase oscillations in the background of
the dark soliton pulse.

2. Model equations

We describe the propagation and coupling of the two orthogonal polarization modes in a ring
resonator via coupled Lugiato-Lefever equations (LLE) [12,13,26,42–45]:

∂tE±=S − (1 + iθ)E±+i(|E± |
2 + 2|E∓ |

2)E±−i∂2
τE±, (1)

where E±(τ, t) are the slowly varying amplitudes of the two orthogonal polarization components
of the field, S is the amplitude of the input field, considered to be real and positive, and θ is the
input pump detuning to the near nearest cavity resonance. t is the ‘slow time’ temporal variable
describing the evolution over many round trips of the cavity, while τ is the ‘fast time’ longitudinal
variable describing the evolution over a single round trip of the cavity in the normal dispersion
case with 0 ≤ τ ≤ τR, where τR is the resonator round trip. Equations (1) are invariant under the
exchange of the + and − indices, the fundamental symmetry of the system. Stationary solutions
satisfying E+ = E− are symmetric and E+ ≠ E− are symmetry broken.

Coupled LLE Eqs. (1) have been demonstrated to be extremely effective in describing the
interaction of orthogonal polarization modes in fibre ring [12–14] and Fabry-Pérot [15] resonators.
Although integrated optical resonators may have very different TE and TM modes, dual combs
of polarized light have been realised in doped-silica-glass [46] and silicon nitride [47,48]
microresonators, and successfully described via coupled LLE in [49,50]. Hence our analysis
applies to a wide class of fibre and integrated ring resonators.

3. Homogeneous stationary solutions and Turing instabilities

We first provide a description of the SSB of the homogeneous stationary solutions (HSS) of
Eqs. (1). The HSS of Eqs. (1) correspond to the two coupled equations

S2 = H2
± − 2(θ − 2H∓)H2

± + ((θ − 2H∓)
2 + 1)H±, (2)

where H± = |E0,± |
2 is the power of the HSS E0,±. In Fig. 2(a) we plot solutions of Eq. (2) for

S = 1.01, τR = 150. For this value of S there are only symmetric HSS (H+ = H−) which are
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Fig. 2. Solutions of Eqs. (1) for S = 1.01, τR = 150. (a) Stable (solid black curves) and
unstable (broken black curves) symmetric homogeneous solutions, and stable (solid blue
curves) and unstable (broken blue curves) symmetric single dark soliton solutions plotted as
their average power. The maximum and minimum power of stable symmetry broken Turing
pattern are also shown, in red. (b) Turing pattern of alternating polarization for θ = 2.94 and
(c) the corresponding frequency comb. (d) Power profile of symmetric dark soliton solutions
for θ = 2.8 and (e) the corresponding frequency comb. (f) Power profile of symmetry broken
dark soliton solutions for θ = 2.94 and (g) the corresponding frequency comb. The black
curve in (f) outlines the envelope of the Turing pattern ∝ exp (−

√︁
Ω(kc)τ) as it approaches

the vectorial dark soliton.

plotted as the black curve. In the parameter region of our interest there are no symmetry broken
HSS solutions. The symmetric HSS form a tilted Lorentzian curve, where stable solutions are
plotted with solid lines and and unstable solutions as broken lines. We note that Eqs. (1) have
undergone extensive investigation in the absence of fast time effects [12,25,26,51].
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Of key importance here is a Turing instability due to a SSB bifurcation of the high power
bistable symmetric HSS typical of regimes of normal dispersion, resulting in the formation of a
Turing pattern stationary state formed of alternating orthogonal polarizations. This supercritical
bifurcation occurs when increasing the detuning and is plotted as a red curve depicting the
maximum and minimum powers of the Turing pattern in Fig. 2(a). This instability is due to the
field interaction through the cross-Kerr modulation and so it is not present on the high power
HSS of a single LLE [52,53]. The Turing instability is found by considering perturbations on the
HSS of the form E± = E0,± + ϵ±eikτ+Ωt where k is the wavenumber of the perturbation and Ω is
the slow time eigenvalue. The growth rate of this perturbation is then

Ω(k) = −1 ±

√︃
−A1B1 − A2B2 ± Q

2
, (3)

Q =
√︁
(A1B1 − A2B2)2 + 4A1A2C2, (4)

where A1,2 = θ − k2 − H± − 2H∓, B1,2 = θ − k2 − 3H± − 2H∓, C2 = 8H+H−. These eigenvalues
have a similar form to the linear stability analysis of Refs. [25,26] where dispersion is neglected
(k = 0). From these eigenvalues we may approximate the Turing wavenumber from the critical
wavenumber with largest growth, Ω(kc). For the example Turing pattern shown in Fig. 2(b) we
find a good agreement between the predicted kc ≈ 0.96 and measured k ≈ 1.01 wavenumber,
although the value of θ is well above the Turing instability threshold.

4. Vectorial dark temporal cavity solitons

In the normal dispersion regime, Eqs. (1) exhibits VDSs [52]. These solutions are composed of
localized switching fronts which connect the high and low power stable HSSs. Oppositely oriented
pairs of switching fronts can ‘lock’ due to the interaction of local fast time oscillations close to
the lower power plateau and become stationary VDS. This mechanism of soliton formation was
first proposed for spatial solitons composed of diffractive switching fronts [54–56], but has been
demonstrated longitudinally in the ring resonator with a single field component theoretically [52]
and experimentally [57], as well as in Fabry-Pérot configurations [58].

First considering symmetric solitons, we note that at symmetry E+ = E− = E, Eqs. (1) reduce
to

∂τE = S − (1 + iθ)E + 3i|E |2E − i∂2
τE. (5)

This means that under a re-normalization of fields E → E/
√

3, S → S/
√

3 the stationary VDS
of our system are analogous to those of the LLE. A branch of symmetric solutions of Eqs. (1)
containing a single VDS is shown in Fig. 2(a) as the blue curve (plotted as the average power
over a round trip to separate it from the HSS). At this parameter value (S = 1.01) symmetric
VDSs are stable for values of detuning below the Turing instability, shown in Figs. 2(d)–2(e). As
the detuning is increased, the VDS symmetric solution undergoes a SSB of the homogeneous
background from which the soliton hangs. This SSB results in the formation of a Turing pattern
of alternating polarization components and is phenomenologically identical to the SSB of the
HSS in the absence of the VDS.

The frequency comb of a symmetry broken VDS is shown in Fig. 2(g). It maintains a similar
spectral envelope to that of the single symmetric VDS (Fig. 2(e)) but it develops sidebands due to
the periodic modulations at the tails. The sideband peaks are reminiscent of those generated by
dispersive waves due to higher order dispersion [59]. Here they are achieved with second order
dispersion and the contribution of the Turing pattern modulation. The power and separation of
these peaks correspond to the spectral lines of the frequency comb of the Turing pattern, Fig. 2(c).

An important property of symmetry broken VDSs is that the amplitude of the Turing pattern
envelope decays as [exp (−

√︁
Ω(kc)τ)], withΩ(kc) given by Eq. (3), from the place where the VDS
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tails are close to the unstable symmetric HSS to a saturation value of the modulated intensity.
The black line in Fig. 2(f) shows this exponential decay matching the Turing pattern minima at
the tails of the VDS. We have verified that such agreement persists over a wide range of detunings
and input pumps where symmetry broken VDS are found.

5. Self-crystallization of temporal cavity solitons

We now consider solutions containing multiple VDSs along the cavity length simultaneously.
After the SSB bifurcation, such solutions form Turing patterns in the intervals between VDSs. As
the Turing patterns grow, adjacent VDS are ‘pushed’ apart until an equilibrium of the pattern’s
amplitude is reached on both sides of the VDS, as shown in Fig. 3. The formation of the symmetry
broken Turing pattern is hence found to introduce long range repulsive interaction between
adjacent VDSs. Note that the symmetric VDSs do not exhibit these long range interactions and
the VDSs remain stationary at arbitrary separation distances.

In Fig. 3(a) we start with three symmetric VDSs randomly distributed along the round trip for
S = 1.02, θ = 2.94 and τR = 150. For these parameter values, the homogeneous background is
unstable to the formation of Turing pattern of alternating polarizations. The maximum amplitude
reached by the Turing patterns in the intervals separating the VDSs depends on the separation of
adjacent VDSs. As the pattern amplitude grows, the VDS are ‘pushed’ along the resonator until
an equilibrium configuration of the pattern is reached on either side of each VDS. The slow time
evolution of the three VDSs is shown in Fig. 3(c) through direct numerical integration of Eqs. (1).
Here it can be seen that the VDSs move such as to spread out along the cavity coordinate. This
evolution ends in the stationary state shown in Fig. 3(d) composed of VDSs located equidistantly
on the round trip of the cavity and separated by Turing patterns equal amplitude, thus forming a
perfect soliton crystal.

The formation of such a RSC induced by SSB evolves spontaneously from the initial condition
of three randomly positioned dark solitons. The organization process corresponds to self-
crystallization from a random distribution of VDSs. The RSCs of our system are robust to a
change in the number of VDS as the repulsive interaction will redistribute VDS to equidistant
locations, as long as the new RSC spacing is shorter than twice the characteristic Turing patterns
saturation length ∆τ, defined as the fast time distance where the pattern amplitude reaches its
maximum value.

As can be seen in Fig. 3(e), the RSC produces a frequency comb with a smooth spectral
envelope and a spectral range three times larger than the frequency comb of the initial condition
shown in Fig. 3(b). In general, a RSC composed of N VDSs produces a frequency comb
equivalent to a single VDS in a cavity with round trip τR/N. The RSCs emulate smaller cavity
sizes, such that with increasing soliton number, a frequency comb with enhanced power and
greater spacing of the spectral lines is obtained. Due to these features, the spontaneous formation
of RSC has many potential applications, such as satellite communications [60], photonic radar
[61] and radio-frequency filters [62,63]. Being a self-organized structure, the RSC of our system
offer different ways to generate and control RSCs than those demonstrated in Refs. [37,41]. As
mentioned earlier, regular peaks in the spectral envelope are due to the Turing pattern wavenumber
that is required for self-crystallization. Such peaks can be removed at will after self-crystallization
by changing the control parameters across the SSB bifurcation, thus leaving a symmetric RSC
with no pattern states between the VDS as shown for example in Fig. 3(f) and (g).

To demonstrate generality and robustness of the self-crystallization mechanism described
above, we show in Fig. 4 the asymptotic results of simulations of Eqs. (1) for S = 1.05, θ = 3.0
instead of S = 1.02, θ = 2.91, and for one to six random VDSs in the initial condition obtained
below the Turing threshold. These six configurations coexist and can be smoothly tuned by
changes in the detuning θ. A further advantage of our method with respect to other techniques
of generating RCSs, is that when adding or removing one of the VDSs through an external



Research Article Vol. 32, No. 21 / 7 Oct 2024 / Optics Express 37696

Fig. 3. (a) Initial condition of three symmetric vectorial dark solitons and corresponding
comb spectrum (b). (c) Slow time evolution of the initial condition in (a) for S = 1.02,
θ = 2.91 demonstrating the growth of SSB Turing patterns, which propel the VDSs through
the cavity. (d) Final RSC stationary state and corresponding comb spectrum (e). (f) Slow
time evolution after reducing the cavity detuning to θ = 2.81, below the threshold for Turing
patterns. (g) Final regular VDS crystal with a uniform background and corresponding comb
spectrum (h).
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Fig. 4. A single (a) and five crystal states (c), (e), (g), (i), (k) for S = 1.05, θ = 3.0. The
initial conditions are randomly distributed VDSs leading to partial soliton crystals with two
and three VDSs in (c) and (e), and to soliton crystals of four, five, and six VDSs in (g), (i)
and (k), respectively. Panels (b), (d), (f), (h), (j) and (l) show the frequency comb spectra
associated with each of the asymptotic VDS states.

perturbation, a crystal with an extra VDS or one less VDS smoothly nucleates via the long range
interactions mediated by the Turing patterns.

On the right hand side of Fig. 4, we display the spectra corresponding to these asymptotic
configurations. While periodic self-organised VDSs crystals are shown in (g), (i) and (k) for
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four, five, and six VDSs, Figs. 4(c) and (e) show that self-crystallization may only happen in a
section of the full cavity length as explained in the next section. We note that partial and/or full
self-crystallization has been found within the parameter ranges of (1.01<S<1.06), (2.86<θ<3)
and (150<τR<300) with up to six VDSs coexisting with Turing patterns. This corresponds to
tens of thousands of simulations and demonstrates the robustness, the wide range of occurrence
and reproduction of our mechanism of self-crystallization of temporal cavity solitons. Note
that self-crystallization is also observed when changing the cross-coupling and the dispersion
coefficients here kept fixed to the values of 2 and 1, respectively.

6. Partial self-crystallization of temporal cavity solitons

Even in the case of a small number of VDSs in a long cavity, such as in Figs. 4(c) and (e)
and in Fig. 5, VDSs are found to move apart until a saturation of the Turing pattern amplitude
is reached in the intervals between them. In Fig. 5, five VDSs have undergone SSB, spread
apart until the VDSs have become stationary and produced a local RSC via self-crystallization
for S = 1.04, θ = 3, (a)-(c) and for S = 1.06, θ = 3, (b)-(d). The maximum range of the
repulsive interaction between VDSs can be investigated using the growth rate, Eq. (3), of the
critical wavenumber kc of the Turing pattern away from the VDS. We are able to estimate the a
maximum interaction distance 2∆τ ≈ −2 ln(0.01|Emax |

2)/
√︁
Ω(kc), where we have assumed the

VDS interaction disappears when the Turing amplitude reaches 1% from the maximum amplitude
|Emax |

2. This predicts a maximum lattice spacing of 2∆τ ≈ 37 for S = 1.04, θ = 3 and 2∆τ ≈ 31
for S = 1.06, θ = 3 compared to the measured values of 40 and 31 from Fig. 5, respectively.
The interaction distance of VDSs can then be controlled by changing the control parameters
to alter the growth rate of the Turing patterns. A pair of VDSs will no longer interact should

Fig. 5. Formation (a)-(b) and final partial soliton crystals (c)-(d) composed of five VDSs
for S = 1.04, θ = 3 (a)-(c) and S = 1.06, θ = 3 (b)-(d). The VDS can move no closer than
2∆τ due to the repulsive interactions induced by the Turing pattern. 2∆τ ≈ 40 for (c) and
2∆τ ≈ 31 for (d). The black curve in (c) follows the Turing pattern envelope starting from
full saturation towards the VDS.
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Fig. 6. (a)-(b) Power profiles of RSC unit cells for S = 1.02, θ = 2.91, τR = 50N. Two
additional unit cells can be obtained by exchanging the fields E+ ↔ E− in both (a) and (b).
The unit cells are related by a phase shift in the peaks of the Turing patterns of π/2.

their separation be greater than 2∆τ where the mediating Turing patterns reach saturation. By
selecting a suitable cavity length and soliton number such that N>τR/2∆τ we observe the full
self-crystallization phenomenon as is shown in Fig. 3 and in Figs. 4(g), (i), (k).

RSCs are composed of a unit cell which is perfectly repeating over the cavity round trip. For
example the RSCs of Fig. 3(d) and Figs. 4(g) and (k) are composed of the unit cell shown in
Fig. 6(a) repeated several times over the round trip. The RCS of Fig. 4(i) is composed of a
sequence of unit cells of the type shown in Fig. 6(b). These two unit cells possess the fast time
symmetries E±(−τ) = E∓(τ) and E±(−τ) = E±(τ) respectively, and two additional unit cells
obtained by exchanging the fields E+ ↔ E− in Fig. 6. As such, there are four possible RSCs,
each related by an integer multiple phase shift of π/2 in the peaks of the Turing pattern. We find
that all four RSCs are stable and can be reached depending on the initial condition. The system
selection of one or the other type of cell strongly depends on the number of VDSs in the crystal
and the ratio between the pattern wavelength and the cavity length.

If we return to Fig. 3 we see that the evolution of the three VDSs is composed of two regimes.
For slow time t<3 × 105, the VDSs move apart due to the formation of the Turing patterns. At
slow time t ≈ 3× 105, the three VDSs approach an equal spacing in the cavity, but here the Turing
pattern displays a non integer π/2 phase shift with respect to the stationary unit cells presented
in Fig. 6. We now see transient dynamics in which the equidistant VDSs lattice and Turing
pattern drift in fast time at different rates. This drift continues until one of the four stationary
configurations is reached. We note the possibility of forming ‘defective’ crystals composed of
alternating combinations of these four unit cells. Since the interest of this paper is about the
novel method to generating soliton crystals which can be obtained with flat solutions separating
the VDSs once one changes the detuning θ back below the Turing threshold (see Fig. 3(f) and
(g)), we leave these and other matters related to pattern cells to future publications.

7. Conclusions

In conclusion, the formation of a RSC is achieved from a random distribution of VDSs via
pattern formation with two field components of orthogonal polarization. SSB results in the
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formation of Turing patterns of alternating polarization at the tails of the VDSs. Long range
interactions between VDSs are induced and mediated by Turing patterns, which increase the
separation between adjacent VDSs until an equidistant equilibrium distance is reached and a
regularly spaced soliton crystal is formed. Although long range interactions can also be induced
by local soliton oscillations [64] and field counter-propagation [51,65], our Turing pattern method
offers new degrees of control, simple implementation, possible generalization to other systems
with two or more interacting components, smooth transitions to crystals of larger or smaller
numbers of cavity solitons and even tuning of the spatial interaction length resulting in localised
crystallization. Moreover, in the regime of a Turing instability, RSCs originate spontaneously
(self-crystallization) without the need of any perturbation [37–41] and represents a new, readily
implementable, method for RSC formation relevant for applications [60–63]. RSCs produce a
frequency comb displaying a smooth spectral profile and increased line spacing when compared
to a random distribution of cavity solitons. As such, a RSC may be used to emulate smaller
cavity sizes while avoiding the experimental limitations of small diameter ring resonators.

The same mechanism based on coexisting cavity solitons and Turing patterns can also lead
to partial self-crystallization in long cavities such as those of fibre loops, allowing one to build
crystal sections with controllable numbers of cavity solitons separated by intervals of pattern
solutions (or flat solutions if one moves the detuning θ back below the Turing threshold) of, again,
controllable length. The frequency combs obtained at the output of these configurations cannot
be obtained from single small ring resonators of lengths comparable to twice the solitons distance
2∆τ since these are always periodic. Quasicrystals, crystals with impurities and superpositions
(periodic or random) of crystals of different lengths can be realised in an optical system to simulate
and investigate solid state structures of difficult realization, i.e. photonic simulations. These
come with the extra benefits of dual-mode operation and correlations. The self-crystallization
mechanism described in this work is universal in systems displaying temporal cavity soltions
and Turing instabilities and has already been generalized to Fabry-Pérot configurations with two
orthogonal polarizations [30] We have also observed self-crystallization of VDSs in configurations
of ring-resonators operating away from symmetric configurations that better describe integrated
microresonators as those mentioned in [46–50].
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