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Introduction
Methods of network control are shifting from centralised to distributed to avoid 
communication overheads, their associated latencies, and single point failures (Ding 
et  al. 2018; Sakavalas and Tseng 2019). Distributed control strategies must cope with 
issues of security and resilience to faults, and deliberate attacks against ever growing 
networks (both in number of nodes and connections). Although such issues are also 
present in centralised systems, distributed networks prove to be particularly vulnerable 
as they lack a central authority to authenticate nodes as well as monitor and detect 
misbehaviours or failures (Michiardi and Molva 2002). Decentralised control methods 
are thus characterised by the realistic systems to which they are applied: systems with 
unknown numbers of disruptors and unknown network topologies. Typical networks 
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include the likes of Internet of Things, mobile robotic systems, smart power grids, and 
wireless sensor networks.

The foundation of distributed control is consensus, whereby nodes within a system 
reach a common shared state (Olfati-Saber et  al. 2007). This is often achieved using 
linear consensus iterations, where at each time step network nodes update their state 
values based on a weighed combination of their neighbours’ values (Pasqualetti 
et  al. 2011; Jadbabaie et  al. 2003). The choice of combination is what decides on a 
consensus’ disruption tolerance. Disruption tolerance is commonly defined as the 
ability to cope with, and/or recover from disruptions within the network (Al-Kuwaiti 
et al. 2006). These malfunctions can be faults or deliberate attacks (LeBlanc et al. 2013), 
which are manifested in this paper under the same form: undetectable disruptions. 
The simplest approach to selecting which neighbouring nodes to combine is mean-
based computation; where the average of all neighbours’ values is used for the state 
update. However, these types of methods are not resilient as nodes can be swayed by 
the presence of disruptors (LeBlanc et  al. 2013). They must therefore be adapted to 
ensure fault-resilience; usually by filtering incoming neighbour state values and/or 
by augmenting the system in some way such as introducing virtual connectivities to 
collect more values on which to base the update (Phan and Kim 2020), or implementing 
observers to create adaptive controllers (Lv et  al. 2019; Trejo et  al. 2020). One such 
typical approach is the Mean-Subsequence-Reduced (MSR)-type method (Kieckhafer 
and Azadmanesh 1994), and its extensions (e.g. Weighted-MSR (LeBlanc et al. 2013; Su 
and Vaidya 2017), Omission-MSR (Azadmanesh and Kieckhafer 2000). MSR methods 
ensure their fault-tolerance by removing a set number of the largest and smallest values 
received by nodes at each consensus step, enabling agents to reach an agreement despite 
disruptive values. The removed numbers correspond to the maximum possible number 
of faults that the system can cope with (Zhang et al. 2012). By requiring knowledge of 
this design value, MSR method are observed to respond poorly to situations where this 
information is unavailable as well as lacking robustness to additional failures.

To provide a dynamic and robust solution to the consensus problem, requiring neither 
information regarding the topology nor indication of the number of disruptive agents 
in the system, this paper presents a fully decentralised, adaptive consensus algorithm 
handling the specifications of realistic, static networks using a framework adapted 
from the dynamics of social systems. Specifically, a sociophysics approach is adopted. 
Sociophysics models the behaviour of human crowds and the social interactions therein 
(Castellano et al. 2009; Weisbuch et al. 2002). That is, people in everyday life influence 
one another and adapt towards, or away from, the expressed opinions of the people they 
have interacted with.

A model of interest, notably regarding the spreading of minority opinion (Xie et  al. 
2011), is that proposed by Deffuant et al. (2006). Deffuant’s Bounded confidence (BC) 
is a stochastic model of the evolution of continuous-valued opinions within a given 
range (Mathias et al. 2016), usually set between -1 and 1 (Deffuant et al. 2002); moderate 
opinions close to 0 and extreme ones approaching either − 1 or 1. The framework can 
be understood as: two agents coming into contact must hold sufficiently close opinions 
in order to mutually influence one another. When encountering agents of radically 
different opinions, that is, when the difference of opinions is too large, there are no 
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changes with respect to the opinions held prior to the communication. The threshold for 
the difference is known as the agent’s tolerance, d . Denoting the opinion of agent i at a 
given time t as oi[t] , the interactions of agent i with agent j can be described as

In Deffuant social dynamics, an agent will typically only interact with one other agent 
at a time, with their conversation partner j being drawn at random from the pool of 
other agents. If a scenario is considered where agents have multiple fixed connections 
to different neighbours then it holds that the opinion of an agent i will be influenced by 
multiple other agents such that oi[t + 1] will be the result of multiple interactions with j 
as a part of the set of agents connected to i.

When implementing a fixed universal tolerance, the final distribution of opinions can 
be categorised as; consensus, when a single opinion dominates; polarisation, when two 
opinions emerge; and, fragmentation, when several opinion clusters can be observed 
(Phan and Kim 2020). The transition from one phase to the next depends on the 
universal tolerance threshold.

A secondary dimension to improve the model’s realism was introduced by Sobkowicz 
(2015). By deriving an explicit correlation between extreme opinions and low tolerance, 
the tendency for extremists to be inflexible is explained. It also illustrates the propensity 
of moderate agents to be more open minded and thus easily swayed towards extremism 
(Sobkowicz 2015; Guarino et al. 2020; Araque and Iglesias 2020). This can be exploited 
by bad actors to lead to dissention, polarisation, and fragmentation of opinions (Guarino 
et al. 2020; Berghel 2018; Pierri et al. 2020). This behaviour is addressed by morphing 
the universal tolerance, d , into individual agent’s tolerance. These tolerances are then 
updated as a function of the agent’s own opinion with respect to other opinions as 
di = f (|oi|).

The mechanism of belief diffusion is not solely observed in opinion dynamics, it 
also represents the foundations of consensus algorithms in network wherein agents 
communicate with their (usually one-hop) neighbours to update their own state 
variables. The source of conflict in both model and algorithm can be understood to 
stem from similarly disruptive attitudes. As observed by the rise in political extremism 
propelled by small but vocal minorities, in social environments agents with extreme 
opinions compel other non-extreme agents (moderates) into becoming extremists 
themselves (Castellano et al. 2009; Xie et al. 2011). This is also the case for engineered 
networks, where the presence of even small minorities of disruptive, selfish, or malicious 
agents can come to prevent consensus (Michiardi and Molva 2002).

This paper exploits, and inverts, the mechanisms of opinion diffusion to design a 
consensus algorithm resistant to faulty/disruptive actors (extremists). The algorithm, 
termed the Opinion Dynamics-inspired DIsruption- tolerant Consensus, ODDI-C 
(pronounced o·duh·see), enables a resilient consensus to be reached despite a lack 
of awareness of network topology and number of disruptive agents. This approach 
is chosen based on the similarity between how agents in bounded confidence social 
models and nodes in linear consensus scenarios update their opinions/values. On 
the basis of these similar mechanisms of opinion/state value update, features of 
social systems resulting in consensus are analysed, extracted, and implemented 

(1)oi[t + 1] = oi[t]+ η
(

oj[t]− oi[t]
)

if
∣

∣oj[t]− oi[t]
∣

∣ < d
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in the context of a consensus algorithm. In practice, this is achieved through the 
exploitation of a dynamic tolerance linked to extremism, whereby agents filter out 
extreme non-standard opinions driving them away from consensus. This make the 
approach particularly suitable to real-world applications where there is limited, to no, 
external information and where synchronisation is critical.

Opinion dynamics‑inspired disruption‑tolerant consensus algorithm
The ODDI-C Algorithm adapts the concept of tolerance from social systems, using 
an analogous approach to the Deffuant Model for its update and filtering. That is, an 
agent’s tolerance increases when it finds itself more extreme, and all values beyond an 
agent’s tolerance are filtered out and not considered during the update. Moreover, the 
ODDI-C Algorithm deals with the median-based z-scores rather than raw opinions. 
The median-based z-score quantifies how close an opinion is to the local median 
of the distribution. The replacement of the raw opinion with the z-score serves two 
purposes. The first is to allow for any range of input to be considered, thus expanding 
the typical Deffuant model’s range of − 1 to 1. Secondly, and more importantly, the 
use of the z-score serves as inbuilt tolerance indicator.

The consensus of compliant agents can be ensured by having them only consider 
opinions which are closer to the median than they are. The z-score facilitates this 
by acting as a dynamic tolerance for the agent doing the filtering, enabling it to only 
consider opinions whose z-score are smaller than its own. That is, agents standing close 
to the median of the distribution will prove particularly stubborn while agents who are 
outlier themselves will be much more willing to account for other agents’ opinions. This 
is an inversion of typical social systems, for whom extremism is linked to low tolerances. 
This approach also provides an elegant solution to the problem of filtering out extreme 
values while allowing for a level of adaptability dependent on the agent’s own opinion.

Note herein the use of the median rather than the mean when dealing with z-scores 
due to its statistical robustness to outliers. The median is more stable than the mean 
when dealing with heavy tailed or asymmetric distributions, and as such, it is a more 
appropriate tool for outlier filtering (Leys et al. 2013). Adapted from Raynal (2002), 
three consensus properties act as algorithm design requirements.

•	 Termination: All compliant agents must decide on a value.
•	 Validity: The agreed upon value is not influenced or dictated by disruptive agents.
•	 Agreement: No two compliant agents decide on different values, to within an 

agreed tolerance.

Note that Termination does not require Agreement, in which case polarisation or 
fragmentation are obtained.

The ODDI-C Algorithm is primed for systems dealing with faults/attacks of 
unknown identities and behaviours Considering this unknown, the validity property 
is impossible to ensure (Civit et al. 2023). The property is thus weakened, following 
(Civit et  al. 2023), to be applicable for such scenarios, which use linear consensus 
mechanics with unknown disruptors.
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•	 Weak Validity: If all nodes are compliant and propose the same value, all nodes will 
agree on this value.

Algorithm rules

The algorithm assumes a network constructed as follows: Let G = (V , ε,A) be a 
digraph with a finite number of nodes (agents) V = 1, 2, ...,N  , a set of directed edges 
ε ⊆ V × V  , and an adjacency matrix A = aij ∈ R(N× N). Each directed edge 

(

j, i
)

∈ ε 
represents a directional link between the node pair 

(

j, i
)

, such that communication 
between the nodes is enabled. In the model described here, it is assumed that the 
nodes communicate synchronously at each given opportunity such that the edges 
model the flow of information between the two nodes. A node can therefore be 
influenced by multiple neighbours at the same time step. The set of nodes influencing 
node i , it’s in-neighbours, is defined V in

i = j ∈ V :
(

j, i
)

∈ ε while the nodes influenced 
by i , its out-neighbours, are in the set V out

i = j ∈ V :
(

i, j
)

∈ ε . The components of the 
adjacency matrix aij = 1 if j ∈ Vi , that is, if node i can receive information from node 
j , otherwise aij = 0 . It should also be noted that each node has access to its own value 
at each time step, thus making it consider its inclusive neighbourhood.

The synchronous ODDI-C Algorithm implemented by compliant agents is pre-
sented in Fig. 1.

The algorithm’s filtering process works as follows, starting with Neighbour State 
Value Collection (see Fig. 1). At each time step t ∈ N  , each compliant node i sends 
its state variable ψi[t] to all of the nodes in its out-neighbourhood j ∈ V out out and in 
turn receives the state variables ψj[t] from its in-neighbours j ∈ V in (compliant and 
disruptive, if they exist). These values are known as �i[t],

From these received values, the Filter Parameter Creation can begin. These 
parameters are the median �̃�i

i [t] and the Median Absolute Deviation MAD�i
i [t] (a 

more robust alternative to the standard deviation) of the concatenated array �i[t] and 
are determined from

(2)�i[t] =

{

ψj[t] : j ∈ V in
i

}

Fig. 1  ODDI-C Algorithm Flow Diagram. The algorithm is repeated for each compliant node at each time 
step until the termination criterion (or criteria) is (are) met
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When dealing with normal distributions, the MAD can be scaled using a factor of 
1.4826 (Leys et  al. 2013; Rousseeuw and Croux 1993). The use of the MAD and its 
normalised scaling,

relies on the assumption of a normal, mostly symmetric distribution of node values. 
For other distributions, other estimators or scalings may be used as they may be more 
appropriate (Rousseeuw and Croux 1993). Distribution here refers to the dominant 
distribution of node values, meaning that unless the number of disruptive agents 
dominates the network, the distribution will be that of the compliant agents. When 
simulating this consensus problem, the distribution of the node’s initial values is used 
to assess which scaling to use. This in turn allows for the median-based z-scores of the 
received values to be calculated. These values are kept as absolutes as the sign is of no 
importance for the filtering. The z-scores of the received values is determined as,

using the median ( �̃�i
i [t] ) and scaled MAD ( MAD�i

i [t] ) of the distribution. The filter 
value,

is then created based on the z-score of the agent (and its opinion ψi[t]).
Before the filter can be used, it must be optimised. This is accomplished through the 

implementation of dynamic upper limit. The method used is a Hampel filter, a method 
typically applied to limit the classification of nodes as outlier/not-outlier. Nodes 
are classified as outliers if they are larger/smaller than 3 scaled Median Absolute 
Deviations ( NMAD ) (or other MAD scalings if the normal distribution assumption 
were disapplied) (Leys et  al. 2013). Considering our use of z-score as discriminant 
(rather than the raw state value), the Hampel filter is adapted as,

Once the filter value is set for each agent, they can then proceed to the Dynamic 
Filtering, assessing which values will be used to contribute to the update. Values are 

(3)�̃
�i
i [t] = median(�i[t])

(4)MAD�i
i [t] = median

(∣

∣

∣
�i[t]− �̃

�i
i [t]

∣

∣

∣

)

(5)NMAD�i
i [t] = 1.4826 ·MAD�i

i [t],

(6)z - scorei(�i[t])[t] =





�

�

�
�i[t]− �̃

�i
i [t]

�

�

�

NMAD�i
i [t]



,

(7)filteri[t] =





�

�

�
ψi[t]− �̃

�i
i [t]

�

�

�

NMAD�i
i [t]



 = z - scoreii,

(8)filtermax[t] = 3

(9)filteri[t] = min

{

z - scoreii, filtermax[t]
}
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filtered out if their z-scores are higher than the dynamic filter value. Selected values 
( Fi[t] ) can be understood as

meaning that the only values the node will accept will be closer to the median (centre of 
the distribution) than its own value.

Following the filtering, agents will follow the Update Rule to update their state 
values, ( ψi[t + 1] ), based on the average difference between the selected values 
( fj[t] ∈ Fi[t], j = 1, ..., |Fi| ) and its own past value, ( ψi[t] ). The extent of the update will be 
tuned by the learning rate of the consensus, η . Small learning rates require more update 
steps and may result in the process seeing a reduced convergence rate, or getting frozen. 
On the other hand, too large a learning rate may result in the nodes failing to converge. 
This parameter, which is typically set between [0, 1], can be tuned for improved 
performance (Murphy 2012). Here, it is set to be 0.5 as a middle ground to avoid over- or 
underdamping the system. The resulting new state value is expressed as

The algorithm is repeated for each compliant node and for each time step until the 
Termination Assessment is met. This assessment’s criterion can be a maximum time, 
where the simulation stops once maximum time is exceeded ( t > tmax ), or a value-based 
decision, where the simulation stops once convergence is within acceptable threshold.

Convergence metric

To visualize the evolution of compliant nodes’ opinions over time, a simple metric 
assessing convergence is implemented. Convergence is the process by which the 
agreement and termination properties are met. The Convergence Metric ( CM ) is 
calculated at each time step as the Total Difference ( TD ) between compliant agents 
(where C is the set of compliant agents excluding disruptive nodes), normalised with 
respect to the initial difference between all nodes ( TD[0]),

where, ψk are compliant agents’ opinions ψk ∈ �k for k ∈ C and ψm are agents’ opinions 
ψm ∈ �m for m ∈ C such that between the two loops k and m , all compliant agent 
opinions are compared, and their absolute difference tabulated. The relative metric 
decreases when nodes converge, agreeing on a shared state, and increases when nodes 
diverge. Note that the metric can never be negative as the TD is calculated from the 
absolute difference between the nodes.

(10)Fi[t] =
{

�i[t] | z - scorei(�i[t])[t] < filteri[t]
}

(11)ψi[t + 1] = ψi[t]+ η ·
1

|Fi|

|Fi|
∑

j=1

(

ψi[t]− fj[t]
)

(12)CM[t] =
TD[t]

TD[0]

(13)TD[t] =

C
∑

k=1

C
∑

m=1

(|ψk [t]− ψm[t]|)
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The convergence metric is a relative value dependent on the initial difference 
between nodes’ values ( TD[0] ). As a result, the exact difference observed between the 
nodes can be difficult to understand on its own, even when contextualised by the plot 
of nodes’ opinion trajectories. The same value of convergence metric can be the same 
for two different simulation, but will correspond to two different absolute differences 
dependent on the initial difference of each of the simulation. To allow for simulations 
to be compared and to avoid rounding errors as the difference between nodes becomes 
too small (or even zero), an error threshold ( err ) is applied. This threshold is used to 
create a minimum floor value ( Floor ) for the convergence metric. Results smaller than 
this floor are levelled to the floor value. This error threshold corresponds to a small 
absolute difference between the nodes, which is then translated to a relative floor 
dependent on the initial difference. This adaptation of the convergence metric prevents 
the development of small rounding errors while giving context to the results.

the error threshold ( err ) is set at a value of 10−7.

Results
Four numerical experiments are used to investigate the algorithm’s performance. 
Experiment 1 considers a single network with disruptors, where the performance of 
the ODDI-C Algorithm is compared against a scenario with a classical mean-based 
algorithm (no filtering) implemented. This allows for the confirmation of the Weak 
Validity property and for the behaviour of compliant nodes following ODDI-C to be 
examined in the face of specific patterns of disruptive behaviours. Experiment 2 assesses 
the performance impact of changing network connectivity in the face of a constant 
number of disruptions using a series of small Monte Carlo simulation (50 runs) per 
connectivity level. This test enables for ODDI-C’s performance to be measured for 
various connectivity levels, assessing the connectivity’s impact on the Termination and 
Agreement properties. ODDI-C’s output is compared against the MSR-Algorithm’s 
(LeBlanc et al. 2013) for the same networks, its behaviour being a point of reference in 
the field of disruption tolerant consensus (details of its implementation are provided in 
Section: MSR Implementation).

Experiment 3 uses a sequence of small Monte Carlo simulations to evaluate ODDI-
C’s performance degradation (deterioration of compliance with the Termination and 
Agreement properties) when dealing with increasing numbers of disruptions for 
networks with fixed connectivity. This test is used to investigate the Termination and 
Agreement properties of the algorithm, particularly regarding ( |D| ), the number of 
disruptors, which overwhelm attempts at consensus building. Similar, to Experiment 2, 
each simulation is duplicated using MSR as comparison. Experiments 2 and 3 are both 
performed on 20-node networks to allow for a sufficient number of message exchanges 
and nodes to showcase the algorithm’s scaling while remaining of a comprehensible and 
manageable size.

(14)Floor =
err

TD [0]

(15)if CM < Floor then CM = Floor
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The premise of ODDI-C Algorithm is an undetectable fault or attack scenario 
attempting to disrupt the system’s ability to achieve Termination and Agreement 
(Ferrari and Teixeira 2021).. Disruptive agents are understood as being “deceptive”, 
with non-disruptive agents remaining unaware of their presence in the system. 
Disruptive agents do not follow the ODDI-C Algorithm, instead adopting unknown 
behaviours and/or values and broadcasting them (Shang 2021). Three types of 
disruptions are used across the three Experiments: a sine wave (T1, described in 
Eq. 16), a linearly increasing function (T2, described in Eq. 17), and a noise pattern 
(T3, described in Eq. 18). The functions describing them are

where �[0] is the average of all nodes (including ones that will become disruptive) at 
time 0, sy is the vertical y-axis shift of the sine wave disruption, sx is the horizontal x-axis 
shift of the sine wave disruption, A is the amplitude factor of the sine wave disruption, 
r is the range of node values at time 0, ω is the angular frequency of the sine wave 
disruption, m is the gradient of the linear function, and rand is a uniformly distributed 
random number in the interval [0, 1] . Initial node values of are drawn from normal 
distributions with mean µ and standard deviation σ (this distribution allows for the 
scaling of the MAD to NMAD to hold, as per Eq. 5), and described as

In all test cases, disruptive agents become active from time step 2 onward. These 
nodes keep the same identity throughout the run. The nodes do not recover and are 
considered to remain disruptive for the extent of each run. The convergence metric is 
determined and used to compare ODDI-C and MSR’s behaviour in multi-run scenarios. 
The termination criterion for all Experiments is a maximum number of timesteps such 
that tmax = 40 , with the simulation stopping once this maximum time is reached.

For Experiment 1, the network robustness is provided. This metric is provided 
to enable comparisons of the proposed algorithm performance to other consensus 
algorithms, which test their algorithms on graphs described by their robustness. 
Networks are changed randomly for Experiments 2 and 3, as such their robustness are 
not provided considering their lack of relevance. As defined by LeBlanc (LeBlanc et al. 
2013), network robustness formalises the notion of redundancy of direct information 
exchange between the various subsets in the network. It is a term which captures the 
idea that there are enough nodes in every pair of non-disjoint sets within the network 
that have at least a given number of neighbours outside of their respective sets. That is, 
that each node receives enough information so that it will not be swayed by disruptive 
agents attempting to “contaminate” the subset to which the node belongs. The reader is 
directed towards (LeBlanc et al. 2013) for details regarding this robustness calculation.

(16)T1 :
(

�[0]+ sy
)

+ (A · r) · sin (ωt + sx)

(17)T2 : �[0]+m · t

(18)T3 : �[0]+ rand · 0.9 · r

(19)�[0] ∼ N

(

µ, σ 2
)
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MSR implementation

MSR relies on knowledge of the number of disruptions, |D| , in the system, with at most 
|D| × 2 being filtered out. At each time step, each node i receives its in-neighbours’ 
values, �i[t] , forms a sorted list, and proceeds to the filtering. If there are less than 
|D| values larger than the node’s own value ( |D| > |�i[t] > ψi[t]| ), then node i only 
removes the values strictly larger than its own ( |�i[t] > ψi[t]| ), otherwise it removes 
precisely the number of disruptive values known to be present in the system ( |D| ). 
Likewise, if there are less than |D| values strictly smaller than the node’s own value 
( |D| > |�i[t] < ψi[t]| ), only this number will be removed. Otherwise, precisely |D| 
smaller than the node’s values will be removed. The remaining values Fi[t] are used in 
linear consensus update as described in Eq. 11. MSR’s implementation in Experiments 
2 and 3 follows (LeBlanc et al. 2013).

MSR was selected for comparative analysis with ODDI-C due to its ubiquitous 
nature in the field of resilient consensus for multi-agent systems (Ishii et  al. 2022). 
Multiple MSR methods were tested and assessed, with the general version of MSR 
being preferred over other, more specific, MSR methods due to its generality, 
applicability, and overall better performance.

The general MSR method disregards a varying number of nodes, with up to |D| 
values being filtered out. Simulations were performed using alternative MSR filters 
consistently disregarding a fixed number of |D| nodes (Protocol 1 for the M1 Model 
(Wang et al. 2021)). However, results proved to be poorer than the general MSR and 
were thus disregarded.

The Trusted-Region Subsequence Reduction (TRSR) (Zhai et  al. 2020; Abbas 
et al. 2017), another modification of MSR, was also investigated. With this method, 
the selection of the parameter |D| is avoided by designing a trusted region for each 
node. This region is created by designating a small subset of compliant agent as 
trusted agents, whose behaviour is certified to be non-disruptive. Compliant agents 
know which information is sent by trusted agents and filter out all values they 
receive which are outwith the minimum and maximum bounds set by the trusted 
agents. Simulations performed with TRSR (using two trusted nodes per compliant 
node) outperformed both MSR and ODDI-C when dealing with large disruptive to 
compliant node ratios, being able to effectively ignore large numbers of disruptive 
nodes. However, in cases with few disruptive nodes and/or high connectivity, TRSR 
over filtered incoming values and proved to have a much slower rate of convergence 
than either MSR or ODDI-C (especially for low number of disruptive agents for which 
TSR over filtered incoming data). Furthermore, some tests could not be performed 
with TRSR due to it requiring at least two trusted connections per each compliant 
node. For example, simulations with low network connectivity where the intersection 
of the sets of compliant nodes and connected nodes was often too small to allow the 
selection of two trusted nodes, leading to simulation failures. Additionally, while this 
technique has shown itself to outperform the general MSR, the need for the system to 
rely on known trusted nodes reduces its applicability in a fully decentralised scenario 
such as the one envisioned for ODDI-C. In that respect, TRSR is more akin to a 
leader–follower resilient consensus where the security of certain agents (and their 
datalinks) can be ensured.
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ODDI-C is a general, purpose- and network-agnostic consensus protocol designed 
to provide resilience against non-specific disruptions (failures, malfunctions, and 
malicious nodes). Such a scenario precludes protocols requiring additional information 
regarding the network/node/link properties (Coretti et al. 2022; Renganathan et al. 2017; 
Senejohnny et al. 2019; Saldana et al. 2017; Yuan et al. 2022) or which imply a loss of 
generality of the nodes’ disruptiveness by requiring for a difference to be made between 
malfunctions and malicious behaviour (Wang et al. 2021; Yuan et al. 2022; Garay 1994). 
As a result, more specialised MSR-type and epidemics methods were found to be 
inapplicable and were discarded from the comparison.

Experiment 1: single run

Two multi agent networks are assessed, one with N = 7 nodes, the other with N = 15 
nodes. In the first case, the disruptive agents are D = 1, 7 , in the 15-node case they 
are D = 4, 12 . The 7-node network is (3,3)-robust while the 15-node is (5,1)-robust (in 
addition to being (4,2)- and (3,2)-robust). All agents (compliant and disruptive) have 
initial values drawn from a normal distribution. The 7-node case have initial conditions 
between 10 and 100 (distribution described in Eq. 19, parameters µ = 50.5 , σ = 24.75 ) 
and deals with two disruptive sine waves (T1, as described in Eq. 16), one with a large 
period and amplitude, and another with a small period and amplitude. The 15-node case 
has initial conditions set between 1 and 15 (distribution described in Eq. 19, parameters 
µ = 8 ., σ = 7 ) and its disruptive behaviours are a linearly increasing function (T2, as 
described in Eq. 17) and a noise function (T3, as described in Eq. 18). The parameters 
describing the disruptive behaviours in Experiment 1 are shown in Table  1 for the 
7-node and 15-node cases.

The results of the simulation of the 7-node network are shown in Fig. 2; note the con-
vergence metric’s floor value of 1.49 · 10−9 . The disruptive behaviours and the nodes’ ini-
tial conditions are the same for both the ODDI-C and the Mean-based Algorithm cases. 
As seen in Fig.  2 (a), with ODDI-C implemented, consensus is rapidly and effectively 
reached—unlike the case with the mean-based algorithm (c). This is expressed more 
clearly looking at the convergence metric, Fig. 2 (d), which decreases for ODDI-C’s run 
as compliant nodes come together and the difference between their state value reduces. 
This is not true for the mean-based algorithm simulation for which the convergence 
metric fluctuates along with the disruptive nodes’ values.

The results of the simulation of the 15-node network are shown in Fig. 3. Here again, 
the difference between ODDI-C and the Mean-based Protocol runs are clear—with 
ODDI-C maximum convergence (floor value of the convergence metric) is reached in 
around 15 steps, while with the mean-based protocol, the state values of the compliant 
nodes wobble and proper consensus is not reached.

Table 1  Experiment 1 disruptive node parameters

A sx sy ω m

D1EXP1:7(T1) 0.4523 1.5011 0.42 1.8711 –

D2EXP1:7(T1) 0.4512 3.2642 − 1.3117 0.2761 –

D1EXP1:15(T2) – – – – − 0.1707
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Experiment 2: fixed number of disruptors, increasing network connectivity

A twenty-node network with a fixed number of disruptive nodes, |D| = 5 , is 
considered. The ODDI-C protocol’s performance is assessed when increasing the 
network connectivity (in-degree) in steps of two: V in = [3, 5, . . . , 15]. To account for 
the random nature of all consensus protocols, and of possible behaviours, Monte 
Carlo simulations of 50 runs per in-degree are performed. The results of the runs, 
meaning their convergence metrics, are averaged to showcase the trends of the 
simulations with error bars provided to show maximum and minimum values of 
each batch’s convergence metrics. These are also used for the ODDI-C Algorithm’s 
comparison with the MSR.

To allow for comparison, the behaviour of the disruptions is kept constant across 
runs and Monte Carlo batches ( 50× 8 = 400 simulations). The opinion trajectories are 
calculated for the first simulation, stored, and then re-used for subsequent simulations. 
Note however that while the behaviours are fixed, the identities of the nodes exhibiting 
this disruptive behaviour are not, being selected at random from the pool of all node for 
each run. The disruptors are three sine waves (T1, described in Eq. 16), a linear function 
(T2, described in Eq. 17), and a noise function (T3, described in Eq. 18). The parameters 
describing the disruptive behaviours are shown in Table 2.

Fig. 2  Comparison of the ODDI-C and the Simple Mean-based Algorithm performances for the 7- Node 
(3,3)-robust Network with 2 Disruptive Agents. The two disruptive agents both exhibit a sine wave (T1, as 
described in Eq. 16), each with a different amplitude and period. Tiles (a and c) show the nodes’ Opinion 
Trajectories for the ODDI-C (a) and the Mean-based algorithms (c), tile (b) shows the network diagram 
(compliant agents shown in purple) and tile (d) compares the scenarios’ Convergence Metric (calculated as 
the normalised difference between compliant nodes, see Eq. 12)
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For each run, a new uniformly random graph is constructed. Taking as input the 
batch’s in-degree, each node’s in-neighbours are selected uniformly at random, without 
replacement, from the vector of all other nodes in the system. This simple random selec-
tion of in-degrees allows for a maximum variation between the tested digraph networks 
and their resulting adjacency matrix.

The ODDI-C Algorithm’s outperforms the MSR (a pattern repeated for other disrup-
tive behaviours) as observed across Fig. 4. For each connectivity, ODDI-C reaches con-
sensus with equal or better performance than MSR. When simulating high in-degrees, 
ODDI-C reaches consensus with equal or fewer time steps than MSR despite having 
no knowledge of the number of disruptive agents within the system. Lower in-degree 

Fig. 3  Comparison of the ODDI-C and the Simple Mean-based Protocol performances for the 15-Node 
(3,2)-robust Network with 2 Disruptive Agents. The two disruptive agents exhibit are a noise pattern (T3, as 
described in Eq. 18) and a linear behaviour (T2, as described in Eq. 17) respectively. Tiles (a and c) show the 
nodes’ Opinion Trajectories for the ODDI-C (a) and the Mean-based protocols (c) respectively, tile (b) shows 
the network diagram (compliant agents shown in purple) and tile (d) compares the scenarios’ Convergence 
Metric (calculated as the normalised difference between compliant nodes, see Eq. 12)

Table 2  Experiment 2 disruptive node parameters

A sx sy ω m

D1EXP2(T1) 0.1137 1.2050 − 3.9058 3.1381 –

D2EXP2(T1) 0.5181 0.9961 − 1.5561 0.2217 –

D3EXP2(T2) – – – – 0.5738

D4EXP2(T1) 0.39528 4.5602 − 0.0241 0.2203 –
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exhibit similar behaviour, due to the high ratio of disruptor nodes to connectivity, the 
MSR filters out most if not all values received by nodes. As a result, compliant nodes 
cannot reach any form of consensus (see tile (b) of Fig. 4). This is not the case of ODDI-
C, which even with low in-degrees manages to bring nodes to some form of low-level 
consensus in the network.

Experiment 3: fixed network connectivity, increasing number of disruptors

A twenty node network with a fixed connectivity (in-degree of 6 for all agents), with 
an increasing number of unknown disruptors, |D| , starting with no disruptors and 
increasing in steps of 1 until reaching a maximum of 8 is considered: (|D| = [0, 1, . . . , 8]). 
Monte Carlo simulations of 50 runs are again performed for each batch of disruptors. 
The results of the runs, meaning their convergence metrics, are averaged to showcase the 
trends of the simulations, with error bars showing maximum and minimum convergence 
metric values being shown at constant intervals. These are also used in the comparison 
with the MSR.

As with Experiment 2, to enable comparison between the ODDI-C and MSR 
algorithms, the behaviour of the disruptions is kept constant across runs, and Monte 
Carlo batches. For the first run of the second simulation batch (number of Disruptive 
agents ( |D| = 1)), the opinion trajectory of the disruptive node is calculated before 
being stored. This opinion at each time step is then re-used for the other 49 runs of 
the batch ( |D| = 1 ) as well as being used by later batches with more disruptive agents. 
Taking the case of |D| = 7 , the behaviour of D = 1 is the same as for |D| = 2, 3, . . . , 8 . 
This continuity enables for a fairer comparison of not only runs, but also MSR against 
ODDI-C Algorithm. Note, again as with Experiment 2, that the node identity of the 
disruptors is non-constant, being selected at random from the pool of all node for each 
run. This Experiment’s disruptions are four sine waves (T1, described in Eq. 16), a linear 
function (T2, described in Eq. 17), and three noise functions (T3, described in Eq. 18). 
The parameters of these disruptions are shown in Table 3.

The results of Experiment 3 are shown in Fig.  5. The convergence metrics are plot-
ted for all investigated disruptor numbers, with error bars. As before, ODDI-C sees a 
performance equal or better than that of the MSR in all cases. For cases with few (0–3) 
disruptive agents, the convergence patterns are the similar for both ODDI-C and MSR. 
MSR reaches maximum consensus in around 25 s while ODDI-C reaches consensus in 

Fig. 4  Comparison of the (a) ODDI-C and (b) MSR Algorithms’ convergence metrics
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almost 30 s. This trend reverses for higher numbers of disruptors. In these cases, ODDI-
C’s caution is rewarded as the disruption is observed to have less impact than on MSR’s 
convergence.

Discussion
Numerical analysis of performance confirms that the ODDI-C Algorithm satisfies 
its design requirements, meaning the Termination, Agreement, and Weak Validity 
properties, whilst outperforming MSR when looking at simulation convergence metrics. 
Experiment 1, through its simulation of the 7-node and 15-node networks (Fig. 2a and 
Fig. 3a respectively), validates the ODDI-C algorithm’s Weak Validity property, meaning 
that if all nodes are compliant and propose the same value, all nodes will agree on this 
value. This is further corroborated by Experiment 3’s 0-Disruptor test which sees rapid 
consensus among all nodes. Experiments 2 and 3 validate ODDI-C’s Termination and 
Agreement Properties with all compliant agents deciding on the same value (within 
tolerance).

Two key requirements of MSR-type methods are knowledge of the network topology 
and of the number of disruptors in the systems. These requirements constraint MSR’s 
applicability to systems where such knowledge is available and fixed, meaning that 
the network properties or number of disruptors will not change. In contrast to these 
rigid implementation requirements, ODDI-C offers the clear benefit of adaptability 
in addition to a better performance than MSR-type methods, as demonstrated across 
all three experiments. In Experiment 1, ODDI-C’s adaptability to various types 
of disruptive behaviours is shown with the algorithm minimising the influence of 
disruptors. Compared to the mean-based algorithm case, ODDI-C is observed to 
effectively dampen disruptive instabilities while ensuring convergence of compliant 

Table 3  Experiment 3 disruptive node parameters

A sx sy ω m

D1EXP3(T1) 0.3666 1.6825 0.2100 1.2452 –

D2EXP3(T1) 0.08841 4.3958 1.1349 1.12364 –

D4EXP3(T1) 0.4889 0.4714 − 0.0241 4.4269 –

D7EXP3(T1) 0.6072 3.0984 − 2.0524 2.4376 –

D8EXP3(T2) – – – – − 0.3156

Fig. 5  Comparing the convergence metrics of the ODDI-C (a) and MSR (b) algorithms
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nodes. Similarly, Experiments 2 and 3 display ODDI-C’s adaptability and its advantages 
compared to MSR, other than the already significant ability to operate without 
knowledge of the number of disruptive nodes in the network. In both experiments, 
MSR’s trends show a near-constant convergence of compliant nodes until convergence 
plateaus are reached (see both Fig.  4b and Fig.  5b). This behaviour is expected from 
MSR’s fixed filtering method. If the number of disruptors is known, filtering out twice 
that number of the most extreme values received will result in a steady convergence, 
unaffected by disruptive patterns. This is not the case for ODDI-C. The algorithm filters 
a non-constant number of values, each time adapting to the values received. As a result, 
filtering and convergence vary for each node across time steps and runs, as noted by 
ODDI-C’s less constant rate of convergence in both experiments.

In experiment 2, the adaptability is illustrated when assessing both MSR’s and ODDI-
C’s behaviours at high in-degrees. For MSR, increasing connectivity significantly 
improves the gradient of convergence, in a steady and consistent manner (see Fig. 4b). 
MSR’s performance nonetheless remains limited by the amount of filtering being per-
formed. Experiment 2 deals with 5 fixed disruptors, and thus up to 10 values will be 
filtered out (the 5 highest and lowest values received). In most cases, fewer values will be 
removed as only values strictly more extreme than the node’s own values are removed. 
Despite this precaution, a vast number of non-malicious nodes will be filtered out, slow-
ing consensus. This is not the case for ODDI-C whose filtering is dynamic and for which 
increasing connectivity drastically improves performance (see Fig.  4a). This improve-
ment in convergence is the result of nodes being provided with more data points/sam-
ples from which to create their data distributions and from which to calculate z-scores 
for filtering (see Section: Algorithm Rules for details of the protocol’s filtering). Increas-
ing connectivity refines the filter, resulting in a faster convergence. While ODDI-C dis-
plays high convergence trends, especially when boosted by high in-degrees, it is worth 
acknowledging a by-product of this adaptability: when exhibiting non-extreme values, 
disruptive nodes may not be caught by the dynamic filtering and may thus impact the 
final convergence value. This by-product is observed when looking at ODDI-C’s trends 
for relatively high in-degrees ( V in = 7 ) for which oscillations or “wobbles” are observed 
starting from time step 25. This behaviour, which stems from disrupting sine wave oscil-
lations, emerges only in the ODDI-C simulations. Note, MSR’s faces the same disrup-
tors but is also less converged. This variation is the results of distributed consensus’ 
dynamism, specifically, the fact that compliant nodes are always accounting for other 
nodes’ values when creating their filters. Thus, in cases where disruptor nodes’ values 
come close to connected nodes’ medians, their disrupting values will influence compli-
ant node’s update, making them waver. This characteristic, the wobbling of compliant 
nodes’ convergence, nonetheless remains small (see the log-scale used for the conver-
gence metric).

ODDI-C’s adaptability is similarly observed in Experiment 3’s performance difference 
between MSR and ODDI-C. Specifically, for low numbers of disruptors. When dealing 
with no or low numbers of disruptions, the MSR acts like a classical mean-based 
consensus, removing none (or very few) of its neighbours. ODDI-C meanwhile, still 
filters in-coming values. As such, nodes will be accepting a reduced number of state 
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values compared to the MSR, slowing down convergence (see Fig.  5). Despite this 
slight drawback, ODDI-C will still reach convergence; this vigilance is proven to be an 
advantage whenever disruptions are involved in any scenario. Against low numbers of 
disruptions, the algorithm’s dynamism avoids over-filtering. Unlike the MSR, ODDI-C 
is therefore able to reach very high levels of convergence without plateauing when 
presented with disruptions (similar to the patterns observed in Fig. 4).

Finally, ODDI-C’s adaptability is what allows it to provide a level of convergence when 
dealing with high ratios of disruptors to connectivity (batches with low connectivity 
in Fig. 4 and high number of disruptors in Fig. 5). The higher this ratio, the poorer the 
convergence, although this remains better than MSR’s complete lack of consensus. On 
MSR’s part, this is the result of filtering out all values. For ODDI-C, this stems from the 
calculation of a median-based z-score. That is, the fewer in-neighbours a node has, the 
less data points will it have to form a distribution of received values. Z-scores calculated 
will be coarser and less accurate, with the node’s own z-score (which acts as filter 
discriminant) being more easily influenced by extreme nodes. High ratios of disruptor 
to connectivity are also much more likely to see one node being overwhelmed by 
disruptive nodes, and in turn acting disruptive to its own out-neighbours. Nevertheless, 
it is interesting to note that high levels of performance can still be reached for specific 
networks (see error bars) even in cases of low connectivities.

In summary, ODDI-C outperforms MSR thanks to its adaptability, despite lacking 
knowledge of the topology or number of disruptive agents. With its dynamic filtering 
approach, ODDI-C effectively filters disruptions for a range of disruptor number to 
connectivity ratios, demonstrating high levels of disruption-resilience. ODDI-C makes 
the most of increased connectivity and information when its nodes receive it, more so 
than MSR, as well as continuing to function in runs facing high disruptor ratios which 
overwhelm MSR. ODDI-C’s social dynamics derived resilience is noted across all 
three experiments, confirming the algorithm as disruption-tolerant and validating its 
consensus properties across a range of scenarios.

Conclusion
The mechanics of social opinion dynamics can be used to engineer efficient disruption-
tolerant consensus algorithms in fixed multi-agent networks requiring no knowledge of 
either network topology or the number of disruptive agents. By adapting the mechanics 
of tolerance-based opinion diffusion, the Opinion Dynamics-inspired Disruption- 
tolerant Consensus (ODDI-C) algorithm effectively dampens the instabilities generated 
by disruptor agents shown to more severely affect mean-based algorithm scenarios. 
By curbing the impact of disruptors, the ODDI-C algorithm enables high levels 
of convergence to be reached and confirms itself to be disruption-tolerance. The 
algorithm presented outperforms general and adapted MSR Methods, reaching a better 
convergence values for the same connectivity in addition to being more robust to the 
influence of disruptor nodes. The ODDI-C algorithm enables for better consensus in 
spite of the presence of disruptive agents and with less knowledge than that required by 
MSR.
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