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A B S T R A C T

Spiking Neural Networks (SNN) are characterised by their unique temporal dynamics, but the properties and
advantages of such computations are still not well understood. In order to provide answers, in this work
we demonstrate how Spiking neurons can enable temporal feature extraction in feed-forward neural networks
without the need for recurrent synapses, and how recurrent SNNs can achieve comparable results to LSTM with
a smaller number of parameters. This shows how their bio-inspired computing principles can be successfully
exploited beyond energy efficiency gains and evidences their differences with respect to conventional artificial
neural networks. These results are obtained through a new task, DVS-Gesture-Chain (DVS-GC), which allows,
for the first time, to evaluate the perception of temporal dependencies in a real event-based action recognition
dataset. Our study proves how the widely used DVS Gesture benchmark can be solved by networks without
temporal feature extraction when its events are accumulated in frames, unlike the new DVS-GC which demands
an understanding of the order in which events happen. Furthermore, this setup allowed us to reveal the role
of the leakage rate in spiking neurons for temporal processing tasks and demonstrated the benefits of "hard
reset" mechanisms. Additionally, we also show how time-dependent weights and normalisation can lead to
understanding order by means of temporal attention.

Code for the DVS-GC task is available.
1. Introduction

Research in neuromorphic computing aims at advancing artificial
intelligence (AI) by extracting the computing principles behind biolog-
ical neural networks. To this end, a large body of work has focused
on developing Spiking neural networks (SNN), a closer approximation
to real brains [1]. From an application point of view, SNN’s sparse
and asynchronous computations have been demonstrated to provide
great gains in energy efficiency when implemented in neuromorphic
hardware [2], thus becoming their major selling point. Still, their
differences with respect to conventional ANNs go beyond, as their
event-driven temporal dynamics provide an alternative paradigm for
temporal processing. The potential advantages of this paradigm have
often been overlooked; therefore, a study demonstrating its exploitable
properties demands attention.

To provide such demonstration, in this work we will make use of the
task of event-based action recognition. This is motivated by the fact that
SNNs are naturally suited for the processing of event-based data. These
networks are able to integrate input over time and their neurons are
activated in an event-based manner, hence their application to event-
based data has been a topic of interest [3–5]. Additionally, given the
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recent surge in popularity of event-based cameras, research on event-
based action recognition is a major priority, making neuromorphic
video [6,7] the perfect target.

Despite the ample variety of conventional frame-based action recog-
nition datasets, the options for event-based action recognition are
very limited [3,8], forcing many researchers to resort to artificially
generated datasets, which either convert frame sequences to events [9,
10] or generate them from simulations [11,12]. Alternatively, those
works employing real data from an event camera [13–16] have mainly
resorted to IBM’s DVS Gesture Dataset [3].

In this work, we prove how solving the action recognition task in the
DVS Gesture dataset does not require a network implementing temporal
feature extraction. Accumulating events into frames and processing
them with an image classifier yields >95% accuracy.

To bypass the limitation of DVS Gesture, we propose DVS-Gesture-
Chain (DVS-GC), a new task that can only be solved by those systems
capable of perceiving the ordering of events in time.

Perception of order is a fundamental part of many temporal tasks.
Specifically, in action recognition the time dependencies defined by
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relative order are of critical importance. Often, actions have a sequen-
tial nature, where they are composed of a smaller set of sub-actions,
and perceiving their ordering is essential to identify the overall ac-
tion. Further to that, the context of an action and its relationships of
causality are also based on the perception of order between actions.
Consequently, evaluating this capacity is crucial when designing action
recognition systems.

In order to evaluate the aforementioned capacity, DVS-GC leverages
the DVS-Gesture data and combines its gestures into chains of gestures,
making the chain the actual action class to recognise.

Using this new task, we show how Spiking Neurons enable spatio-
temporal feature extraction without the need for recurrent synapses,
demonstrating a form of temporal computation which is different from
the one in conventional ANNs and providing an alternative approach
to time processing. We analyse the differences in this new computing
paradigm with respect to conventional Recurrent Neural Networks
(RNN), and further develop the current understanding of it by demon-
strating the effects of membrane potential leak and reset mechanism.
Specifically, we show how the reset by subtraction approach [17] can
cause slow adaptation to incoming inputs, translating to what we call a
‘‘repetition error’’. Then we prove how this can be alleviated by voltage
leak or by using a reset to zero strategy, leading to improved action
recognition accuracy.

Finally, we also explore the role of temporal attention when perceiv-
ing order through time-dependent weights and normalisation, which
implement a type of attention that is hard-coded in time.

2. Related work

2.1. Temporal processing

When processing temporal sequences of stimuli, a property of cogni-
tive systems that is considered essential for the task is working memory,
which holds information from previous events and allows to relate
it to those perceived later [18,19]. In the field of neural network
engineering, working memory has historically been implemented by
recurrent connections, and their memory capabilities have been further
enhanced by the use of advanced memory cells such as LSTM [20] and
LMU [21]. More recently, temporal processing tasks [22–24] have also
been solved by the increasingly popular Transformer architectures [25].
When using these networks, temporal events are not presented in a
succession as they happen; instead, multiple time-steps are accumu-
lated (or the whole sequence in many cases) and then processed offline
by the system. These approaches can be considered to implement
working memory outside of the neural network by accumulating stimuli
over time and then feeding them to the network together as a single
input. Transformers have achieved state of the art accuracy in the
majority of temporal tasks, but are limited by their computational and
memory complexity, which scale as 𝑂(𝐿2) with the sequence length
𝐿 or 𝑂(𝐿 𝑙𝑜𝑔𝐿) in efficient versions such as [26]. Hence, research in
recurrent architectures is still of interest in order to create lighter
systems with dynamic memory management.

Regarding SNNs, the state of the art in temporal tasks is based
on RNN architectures. The authors in [27] proposed Recurrent SNNs
(RSNNs) of Leaky integrate-and-fire (LIF) neurons with neuronal adap-
tation, a process that reduces the excitability of neurons based on pre-
ceding firing activity. Their resulting network is tested in the Sequential
MNIST (S-MNIST) and TIMIT tasks. Subsequent work applied LSTM
cells to SNN networks, achieving higher performance in S-MNIST [28].

Still, for the processing of visual event-based datasets such as
DHP19 or DVS-Gesture, the state of the art is set by feed-forward
SNNs with no recurrency [29–31]. The remaining question is then
whether these feed-forward SNNs implement working memory or, on
the contrary, the aforementioned tasks do not require a network with
temporal feature extraction. The experiments presented in this work
will prove how both statements are true.
2 
2.2. Event-based datasets

The event-based sensor market is still in its infancy and its still
limited commercial adoption has not allowed to collect large volumes
of event-based data. Currently, many of the datasets used in computer
vision are artificially created from frame-based data or simulations. N-
MNIST, N-Caltech101 [32] and DVS-CIFAR10 [33] are three popular
datasets created through screen recordings of the original frame-based
data with a neuromorphic camera. Alternatively, frame-based datasets
have also been converted into events directly through software [9,10,
34]. Finally, [12,35] provide simulators for the generation of synthetic
event data.

Still, the most desirable option for the development of event-based
systems is to use data from a real-world acquisition. In the present day,
most of the available natively neuromorphic datasets are still simple
compared to traditional frame-based ones. For classification tasks we
can find: N-CARS [36] a binary classification dataset, ASL-DVS [37]
a 24 class sign language classification task, DailyActionDVS [38] a
12 class action recognition task and DVS-Gesture [3] the widely used
11 class action recognition dataset. Other available datasets are the
DHP19 [39] pose estimation dataset, the Gen1 [40] and 1 Mpx [41]
object detection datasets, and DSEC [42] for optical flow estimation.

A study on the relevance of neuromorphic datasets for SNN evalua-
tion was presented in [43]. In this work, it was proven that collapsing
all events into a single frame and performing recognition with an image
classifier did not affect classification performance in N-MNIST or N-
Caltech101, but did decrease it in DVS-Gestures. Our results will show
how, when the event integration is done in multiple frames instead
of just one, DVS-Gestures can also be solved by a non-temporal image
classifier, evidencing its lack of temporal complexity.

Regarding non-classification datasets, the available options are ill-
suited for rigorous evaluation of temporal processing. Despite temporal
information being exploitable to gain improvements in accuracy, object
detection or pose estimation tasks can still be solved by accumulating
events in time-windows and performing inference in one frame. In the
same way, optical flow estimation can be performed using two frames
of accumulated events.

3. Methodology

3.1. DVS gesture chain

The objective is to define an action recognition task in event-
based sequences that requires the perception of temporal dependencies,
i.e., relationships where the meaning of an action is contingent to those
that happened previously. To create such temporal dependencies, DVS-
GC leverages the DVS-Gesture dataset and combines 𝑁 of its gestures
𝐺 = {𝑔1, 𝑔2,… , 𝑔𝑁} into chains of gestures 𝐺𝑐 = {(𝑔𝑖, 𝑔𝑗 ,… , 𝑔𝑘) ∣
𝑔𝑖, 𝑔𝑗 ,… , 𝑔𝑘 ∈ 𝐺}, where each 𝑔 is a gesture from 𝐺. Then each of
these chains is considered as its own class, meaning that (in an example
with 2 gesture long chains) a chain composed of gesture 𝐴 and then 𝐵
will be labelled as class 𝐴𝐵, and a chain composed of gesture 𝐵 and
then 𝐴 will be labelled as class 𝐵𝐴. Therefore, to correctly identify a
class, it is essential not only to recognise the individual gestures but
also to understand the sequence in which they occur, making DVS-GC
an action recognition task that demands perception of temporal order.

3.1.1. Event data processing
When using neural networks to process streams of asynchronous

events, it is common practice to discretise the time dimension by
accumulating events in frames using a constant time window [13,29,
44,45]. This allows to process the sequence with an arbitrary number of
discrete time-steps and to train using methods such as Backpropagation
Through Time (BPTT).
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Fig. 1. Example gesture chain with variable 𝐹𝑔 duration (𝛼1 = 0.2 and 𝛼2 = 1). The coloured underscores represent, for each gesture in the chain, the temporal window in which
they could appear given the values of 𝛼1 and 𝛼2. This allows to understand why the gesture transition is not predictable and most time-steps have no guarantees of belonging to
a certain position in the chain.
Representing the event sequence as a function 𝑒𝑡,𝑥,𝑦,𝑝, which has
value 1 when the position (𝑡𝑖, 𝑥𝑖, 𝑦𝑖, 𝑝𝑖) is active, and 0 otherwise, its
discretised frame representation 𝐹𝑗,𝑥,𝑦,𝑝 can be calculated as:

𝐹𝑗,𝑥,𝑦,𝑝 =
𝑊 𝑗
∑

𝑡=𝑊 (𝑗−1)
𝑒𝑡,𝑥,𝑦,𝑝 (1)

where 𝑗 is the frame index (or time-step), 𝑊 the time window, 𝑡
represents time, 𝑥 and 𝑦 are the spatial coordinates and 𝑝 the polarity.

Naturally, the cost of this discretisation is that it makes it impossible
to distinguish the precise timing or the relative order of occurrence of
events within a frame.

We use this strategy for all our experiments, both with DVS-Gestures
and DVS-GC. Then, at each time-step 𝑗 a new frame 𝐹𝑗 will be fed to
the network.

When this quantisation is applied to the input of an SNN, the result
is an approximation of the one we would obtain in an asynchronous
implementation with infinite time resolution, as the effect is simply
a reduction of time resolution, where groups of events are collapsed
into the same time-stamp. In this scenario, the SNN’s voltage leak can
be represented as the percentage of voltage lost from one time-step to
the next, meaning that this leak coefficient will be conditioned by the
number of simulation time-steps.

On the contrary, non-temporal ANNs cannot accumulate informa-
tion from different time-steps, therefore collating events into frames
is the only way in which they can combine information from events
happening at different instants. This is further discussed in the results
section.

3.1.2. Creation of the action classes
The creation of classes in DVS-GC is parameterised by the length

of the gesture chain 𝐿 and the number of gestures 𝑁 used in the
chain. Then the number of classes generated 𝐶 will be equal to all
possible combinations (Eq. (2)). Alternatively, we also provide a class
generation method which does not allow to repeat the same gesture in
consecutive positions of the chain, reducing the possible permutations
of the chain (Eq. (3)). Using different values of 𝑁 , 𝐿 and the methodol-
ogy with and without repetition, we created different datasets that we
use to evaluate our networks (results shown in Section 4).

𝐶 = 𝑁𝐿 (2)

𝐶 = 𝑁(𝑁 − 1)𝐿−1 (3)
3 
3.1.3. Chaining of events
Given the stream of 4-dimensional events (x, y, time, polarity)

provided by the DVS-Gesture dataset, as done in most state of the art
systems [13,29,44,45], we transform them into frames by accumulating
events in a time window. The initial number of generated frames 𝐹
per sequence is user defined and will be constant for all instances in
the dataset. The resulting frames have two channels, one for positive
polarity and one for negative.

Given that the gesture instances are obtained from a set of users
under different lighting conditions, the gesture chains are created
combining the gestures from the same user under the same lighting con-
dition. This avoids sudden changes in illumination or the appearance of
the user, which could help the system identify the transition between a
gesture and the next. It is also worth noting that the subjects are split in
the Training and Testing sets following the original DVS-Gesture split,
therefore, users appearing in the test set do not appear in the training
set.

When building the gesture chains, having a constant number of
frames for each gesture can also allow the machine to know when the
transition will happen. To solve this, the duration in frames of each
gesture 𝐹𝑔 is made variable. Let 𝐹 be the initial number of frames that
the gesture sequences have, and 𝐹𝑡𝑜𝑡𝑎𝑙 the target number of frames for
the final gesture chains, which is user defined. Then, as seen in Eq. (4),
the duration of each gesture 𝐹𝑔 will be a fraction of 𝐹 (parameterised
by the coefficients 𝛼1 and 𝛼2) which satisfies that the total sum equal
to 𝐹𝑡𝑜𝑡𝑎𝑙.

𝐹𝑔 ∈ [𝛼1𝐹 , 𝛼2𝐹 ] ∣
𝐿
∑

𝑔=1
𝐹𝑔 = 𝐹𝑡𝑜𝑡𝑎𝑙 (4)

Then, the value for 𝐹𝑔 is chosen randomly from the set we just
defined, and the resampling from 𝐹 to 𝐹𝑔 is carried out by taking
the first 𝐹𝑔 frames of the original sequence (Fig. 1 demonstrates this
variability visually). In our experiments, we define two datasets with
𝛼1 = 0.5, 𝛼2 = 0.7 and one with 𝛼1 = 0.2, 𝛼2 = 1. Both work well when
using the sequences in DVS-Gesture because each gesture is repeated
several times per recording, and therefore it is recognisable even after
discarding a substantial part of the sequence.

Finally, when targeting a specific 𝐹𝑡𝑜𝑡𝑎𝑙, the number of initial frames
𝐹 that will allow the values of 𝐹𝑔 to have a uniform distribution
between 𝛼1𝐹 and 𝛼2𝐹 is given by Eq. (5):

𝐹 =
𝐹𝑡𝑜𝑡𝑎𝑙
𝐿

2
𝛼1 + 𝛼2

(5)

3.2. Neural network architectures

For our experiments, we make use of the state of the art SNN system
presented in [45], the S-ResNet, which uses a LIF neuron model and



A. Vicente-Sola et al.

𝑥
s
i
d
a

𝐵 w

l
g

d
e

4

A

Neurocomputing 611 (2025) 128657 
reset by subtraction. The output layer is defined as a layer without
leakage and without spiking activation, and its membrane potential
after the last time-step provides the final class scores (complete spec-
ification in Appendix A). Apart from that, the S-ResNet uses BNTT as
noramlization strategy.

As seen in Eq. (6), for a time-dependent input of 𝑑 dimensions
𝑡 = (𝑥1,𝑡...𝑥𝑑,𝑡), the method defines an individual BN module per time-
tep. This not only normalises each feature 𝑘 (or convolutional channel
n the case of CNNs) independently, as regular BN would do, but also
efines independent statistics (mean 𝜇𝑘,𝑡 and standard deviation 𝜎𝑘,𝑡)
nd learnable weights (𝛾𝑘,𝑡 and 𝛽𝑘,𝑡) per time-step 𝑡.

𝑁𝑇𝑇 (𝑥𝑘,𝑡) = 𝛾𝑘,𝑡
𝑥𝑘,𝑡 − 𝜇𝑘,𝑡
(𝜎𝑘,𝑡)2 + 𝜖

+ 𝛽𝑘,𝑡 (6)

In order to compare to non-spiking ANNs, we also define a non-
spiking version of the same architecture. We substitute the neuron
model by the Rectified Linear Unit (ReLU) activation function, and
instead of BNTT we use regular BN. With these changes, the network
becomes a conventional feed-forward ResNet. These networks process
the input instantaneously, without temporal dynamics, which means
that, for a sequence classification task such as action recognition, they
can give an output per time-step but not a global one for the whole
sequence. We solve this by adding the same output layer used by the
SNN, which can be seen as a voting system that accumulates the outputs
for all time-steps by summing them together. We refer to this network
as ANN-BN.

Additionally, in order to study the effect of the learnable weights
in BNTT, we create a modified version of the non-temporal ANN that
we call ANN-TW (ANN with Temporal Weight). This version adds a
learnable weight 𝑤𝑙,𝑡 ∈ R1 per time-step 𝑡 at each layer 𝑙, which is used
to scale the activation map after the convolution (Conv) and BN layers
as: 𝑦𝑙,𝑡 = 𝐵𝑁(𝐶𝑜𝑛𝑣(𝑥𝑙,𝑡))⋅𝑤𝑙,𝑡. As an alternative, we also define a version
where each channel learns a different temporal weight. We refer to this
network as ANN-TWC.

Finally, for the RNN vs SNN comparisons in Section 4.2.3, we define
a different architecture with the objective of disentangling temporal
processing from spatial processing. A non-spiking ResNet14 acts as
spatial feature extractor, then (1 or 2) fully connected ‘‘temporal layers’’
of 128 features are appended before the final classification layer, to act
as temporal feature extractor. As temporal layers we test feed-forward
SNN layers, recurrent SNN layers (RSNN), vanilla RNN and LSTM.

4. Results

In this section, we first prove how a network without the capability
for temporal feature extraction (ANN-BN) can solve the classification
task in DVS-Gesture, but fails to do so in the new DVS-GC, which
demands a perception of temporal order. We then demonstrate how,
in contrast, an SNN of the same architecture learns to perceive the
temporal dependencies in DVS-GC. From there, we evaluate the effects
of the membrane potential reset strategy, voltage leak, time-dependent
weights, and time-dependent normalisation. Finally, we compare SNNs
to conventional RNNs.

4.1. DVS-Gesture evaluation

Many previous works reporting accuracy performances in DVS-
Gestures have taken the approach of training with the whole training
set, evaluating test set performance through training epochs, and then
reporting the highest test accuracy as the final test accuracy. We
consider this approach to be reporting validation accuracy rather than
test. Therefore, in our setup, we only evaluate the test set after the
training is complete, without using its value to tune the training.

Table 1 shows how both SNN and ANN achieve high accuracy in
the DVS-Gestures task. As previously stated, the ANN final prediction is
just a sum of the individual predictions made at each time-step. Each of
 o

4 
Table 1
Test performance on DVS-Gesture. SNN* was initialised with pre-trained weights as
proposed in [45]. Training and testing were run for 3 times, accuracies presented as
mean ± std.

Network Normalisation DVS-Gesture accuracy

SNN BN 70.31 ± 3.27%
SNN BNTT 89.82 ± 1.50%
SNN* BNTT 94.84 ± 1.06%
ANN BN 97.35 ± 0.45%
ANN BNTT 96.95 ± 0.61%

Table 2
Parameters per dataset. In the naming convention, -p stands for predictable time

indows while -u stands for unpredictable time windows.
Name N L 𝛼1 𝛼2 Repetition # classes

81-p 3 4 0.5 0.7 Yes (Eq. (2)) 81
96-p 3 6 0.5 0.7 No (Eq. (3)) 96
96-u 3 6 0.2 1 No (Eq. (3)) 96

these is made using the information from a frame which integrates the
events received within a time window; in the case of our experiments,
the time window is 1

50 of the total event sequence.
The ANN has no way of combining information from different

frames and has no notion of the timing in which they occurred, hence,
it does not perceive the timing or relative order of the events. Still,
we cannot say that the features it uses are strictly non-temporal. When
accumulating these events into frames, only the ones which are close
in time will be integrated into the same frame, meaning that the spatial
features the network will calculate are still dependent on event timing.
This makes the appropriate wording a sensible matter: the ANN does
not implement working memory neither does it implement temporal
feature extraction, still, the spatial features it extracts in this scenario
are dependent on event timing, therefore, given that a temporal feature
is any attribute of the data that is explicitly related to time, these
features can be considered a type of temporal feature. This explains
why a network without temporal feature extraction can solve the DVS-
Gestures task, and how solving this task does not require to perceive
the temporal ordering of events, but only to integrate events which are
close in time so that spatial features become apparent. Then, a system
designed for the classification of static images can perform the task.

For completeness, we also report the accuracy obtained by the SNN
with conventional BN (SNN-BN) and the accuracy of the ANN with
BNTT (ANN-BNTT). It can be seen how the ANN does not benefit
from the time-dependent computations of BNTT and obtains a very
similar result. On the contrary, the SNN performance decreases when
using regular BN, demonstrating how, for a system where activity
statistics change through time such as SNN, timing-aware normalisation
is beneficial.

4.2. DVS-Gesture-Chain evaluation

Using the methodology described in the previous Section 3.1, we
created three DVS-GC datasets, which are summarised in Table 2.
Datasets 81-p and 96-p define a smaller variability for the duration 𝐹𝑔
of each individual gesture (𝛼1 = 0.5, 𝛼2 = 0.7), while 96-u defines a
arger one, making it much harder to predict the transition between
estures in time (Fig. 1 demonstrates this variability visually).

For all three, we create a validation set with 20% of the training
ata and evaluate it at every epoch. The test performance is then
valuated using the weights with the highest validation accuracy.

.2.1. ANN vs. SNN and time-dependent weights
We begin by evaluating the networks on the 81-p and 96-p datasets.

s seen in Table 3, now that the task requires distinguishing the
rdering of the events, the non-temporal ANN (ANN-BN) fails to solve
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Table 3
Test performance on DVS-GC. Training and testing were run for 3 times, accuracies
presented as mean ± std.

Network Normalisation Dataset Accuracy

ANN BN 81-p 16.91 ± 0.50%
ANN BNTT 81-p 99.52 ± 0.31%
ANN BN + TW 81-p 89.44 ± 5.74%
ANN BN + TWC 81-p 91.08 ± 8.10%
SNN BN 81-p 86.00 ± 2.38%
SNN BNTT 81-p 95.83 ± 0.62%

ANN BN 96-p 12.96 ± 0.74%
ANN BNTT 96-p 99.52 ± 0.55%
SNN BN 96-p 80.62 ± 2.76%
SNN BNTT 96-p 96.32 ± 0.02%

ANN BNTT 96-u 74.66 ± 0.64%
SNN BNTT 96-u 91.16 ± 1.30%

it. Moreover, its accuracy value implicitly reveals the computations per-
formed by the network: taking the 81 class data set as an example, one
can see how the ANN accuracy (16.91%±0.5) is higher than random
chance (1.23%). This is because the network is capable of detecting
the gestures present in the sequence and the number of times they
appear, but is unable to perceive their ordering. With such conditions,
and assuming a perfect accuracy in gesture detection, the probability of
correctly classifying a sequence for the 81 class dataset is 𝑝𝑑 = 16.05%
(proof in Appendix B).

On the other hand, the results show how the SNN still achieves high
accuracy on these same datasets, implying that its temporal dynamics
allow to perceive order in time. In order to analyse which components
of the network enable this capacity, we also test the performance of the
SNN with conventional BN (SNN-BN) and the accuracy of the ANN with
BNTT (ANN-BNTT). The accuracies obtained by both systems indicate
that they are successfully learning to perceive order, meaning that both,
spiking neurons and BNTT can enable a neural network to recognise
temporal sequences on their own. Additionally, it is also worth noticing
how, for the 81-p and 96-p datasets, the ANN with BNTT is more
accurate than the SNN.

In BNTT, the perception of order is gained by learning
time-dependent values that are used to scale the activation maps of
the network, providing temporal attention. In order to decorrelate
this capacity from the normalisation strategy, we create two modified
versions of the non-temporal ANN with regular BN which implement
learnable temporal weights, ANN-TW and ANN-TWC (introduced in
Section 3.2).

The performance of ANN-TW (Table 3) proves how a single time-
dependent weight per layer is enough to recognise the temporal se-
quences in 81-p, and how the learned value does not need to be
different between channels for temporal perception purposes. Still, the
ANN-TWC obtains a slightly higher accuracy. Apart from that, the
performances of both networks are lower than those of the systems
using time-dependent normalisation statistics, proving how these are
not essential but indeed beneficial. A BNTT ablation study is available
in Appendix C.

Finally, we evaluate the performances of the networks with the
96-u configuration, where the variability of the duration 𝐹𝑔 of each
individual gesture is higher. The results (last two rows of Table 3)
demonstrate how this set-up greatly decreases the performance of the
ANN-BNTT, meaning that temporal attention is not enough for the task.
In contrast, SNN-BNTT exhibits a smaller decrease and still solves the
task with high accuracy, proving how the capacity of SNNs for spatio-
temporal feature extraction goes beyond that of temporal attention. The
complete analysis justifying these results is provided in Section 5.

4.2.2. Leak and reset mechanism
When using regular BN, the SNN does not have temporal weights,

making voltage leak the only time-aware component in the network.

This motivates us to explore its relevance to solving the task.

5 
Table 4
Test accuracy and R-error of the SNN-BN under different setups. IF neurons do not
leak. Zero stands for reset to zero and Sub for subtraction. LIF neurons use a leakage
factor of 0.87 except for LIF-Sub in 96-u, which uses 0.80. Training and testing were
run for 3 times, accuracies presented as mean ± std.

Neuron Reset Dataset Accuracy R-error

LIF Sub 81-p 86 ± 2.38% 33.54 ± 5.20%
IF Sub 81-p 48.27 ± 1.38% 70.41 ± 2.44%
LIF Zero 81-p 82.31 ± 2.14% 35.30 ± 8.09%
IF Zero 81-p 92.59 ± 2.67% 31.01 ± 2.15%

LIF Sub 96-u 68.74 ± 1.45% n/a
LIF Zero 96-u 63.58 ± 3.09% n/a
IF Zero 96-u 71.40 ± 4.55% n/a

Table 4 compares the results of the same network trained with LIF
neurons and IF neurons (no leak). Because the performance comparison
between LIF and IF can be affected by the chosen leak coefficient, we
searched for its optimal value through hyper-parameter search. We find
the best results with 0.87 for the 81 class dataset and 0.80 for the 96
class one.

The original network, which uses reset by subtraction, suffers a
major performance drop when not equipped with leak. We found that
the reason behind this is the excess of voltage in neurons reset by
subtraction, which can trigger delayed spikes that slow down adap-
tation to newer inputs. We quantify this effect by means of what
we call ‘‘repetition error’’ (R-error). The R-error is measured as the
percentage of wrong classifications where at least one of the miss-
classified gestures in the chain has been predicted to be the same
as the preceding one. As there are three different gestures to choose
from at each position in the chain, the standard R-error is 33.3%.
Values higher than this one will indicate a tendency towards repeating
previous predictions. Notice that the 96-class dataset does not allow
repetition in its classes and therefore cannot present R-error, still, not
clearing old voltage also decreases the performance in it.

These results demonstrate how voltage leak prevents old infor-
mation from corrupting current calculations and solves the voltage
stagnation problem caused by the reset by subtraction. In addition to
that, we evaluated how a reset to zero strategy can also prevent this
same issue (Table 4), as it does not retain any voltage after spiking,
hence not generating delayed spikes.

Interestingly, reset to zero consistently achieves the best perfor-
mance when paired with IF neurons, while implementing leak de-
creases its accuracy. Not implementing voltage leak will mean that
neurons close to reaching the spiking threshold will remain in that
state, even after the stimulus that was triggering them is long finished.
This will make them prone to spiking prematurely in later processing,
arguably causing noisier computations. On the other hand, leakage
represents the progressive loss of the short-term memory of the net-
work, which also has the potential to disrupt computations. The fact
that leak is not beneficial for the task at hand might indicate that the
former issue is not prevalent. One possible explanation can be that,
when a new gesture is presented, initial noise in the spiking pattern
is still superseded by later detections due to data redundancy through
time (the gesture can be continuously detected throughout a window
of time).

4.2.3. RNN vs. SNN
After demonstrating how SNNs can perform temporal computations

without the need for recurrent connections, we further validate our
results by comparing their performance with that of RNNs. For this,
as introduced in Section 3.2, we define a different architecture based
on a non-spiking ResNet14, which acts as spatial feature extractor,
and append (1 or 2) fully connected ‘‘temporal layers’’ before the final
classification layer, to act as temporal feature extractor. We test feed-
forward SNN layers, recurrent SNN layers (RSNN), vanilla RNN and

LSTM as temporal layers.
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Fig. 2. Value of the time weight in TW-ANN. Dotted lines highlight the gesture transition zone. The last two layers of the graph correspond to the layers in the residual connection
downsampling. Trained in the 81-p DVS-GC.
Table 5
Test accuracy in DVS-GC 81-p and 96-u. SNNs use IF neurons and reset to zero. Training
and testing were run for 3 times, accuracies presented as mean ± std. ‘‘# TL’’ stands
for number of temporal layers.‘‘# params’’ presents the number of parameters used in
the temporal layers as a factor of the parameters of a 128-dimensional dense layer.

Temporal layers # TL # params Dataset Accuracy

SNN 1 ×1 96-u 61.53 ± 3.27%
SNN 2 ×2 96-u 67.09 ± 1.57%
RSNN 1 ×2 96-u 64.62 ± 0.69%
RSNN 2 ×4 96-u 77.80 ± 1.92%
RNN 1 ×2 96-u 44.08a%
RNN 2 ×4 96-u 65.58a%
LSTM 1 ×8 96-u 87.31 ± 2.79%
LSTM 2 ×16 96-u 88.80 ± 3.47%

SNN 2 ×2 81-p 84.60 ± 3.08%
RSNN 2 ×4 81-p 86.47 ± 1.44%
RNN 2 ×4 81-p 72.32 ± 16.91%
LSTM 2 ×16 81-p 89.83 ± 3.34%

a RNN presents the maximum accuracy instead of the mean, as numerous trials failed
to learn.

Table 5 shows how, for 96-u, SNNs outperform vanilla RNNs while
LSTMs outperform SNNs. The RSNN demonstrates a substantial im-
provement with respect to the SNN when using two layers, getting
closer to the LSTM performance. On the other hand, in the dataset
with predictable time windows, 81-p, all networks perform at a similar
level, implying that all networks manage to exploit its predictable time
windows, arguably, demonstrating time-dependent feature extraction.

The performance differences between SNN, RSNN, RNN, and LSTM
are well justified by their computing principles, which we analyse in
Section 5.2.1.

5. Analysis of temporal computations

After proving through empirical results how spiking neurons and
time-dependent weights enable temporal order perception, in this sec-
tion we analyse the in-depth mechanics that implement this capability.

5.1. Temporal attention analysis

Networks with time-dependent weights such as ANN-TW or those
using BNTT use temporal attention to store the time at which a visual
detection occurred. This is achieved by constraining the activation of
certain layers or channels to a time window, then the feature detected
by those neurons will be known to happen within that time-window.
6 
In order to prove how the networks are using this strategy, in Fig. 2,
we visualise the value of the temporal weight in ANN-TW when trained
in the 81-p dataset. Notice that, when designing DVS-GC, we made
the gesture chaining procedure variable in time, so that the transition
between gestures does not always happen in the same time-step. Now,
visualising the graph, it can be seen how the network learned to reduce
the weight in the uncertainty zone of the transition and defined its
detection time windows between the time-steps which are guaranteed
to belong to the nth gesture. Then, we observe how the weight restricts
the last layers to only be active in time windows corresponding to spe-
cific positions in the 4-gesture chain. This specialises different layers in
detecting gestures at certain positions in the chain, acting as a temporal
attention coefficient. This is equivalent to associating timestamps to the
detected spatial features and then combining this information in the
last layer by accumulation. This last layer is the only element in the
system implementing memory for the non-spiking networks. The same
principle was proven for BNTT in Appendix D.

Given this computational logic, it is then clear why in the 96-u
dataset the performance of these networks dropped. With 𝛼1 = 0.2 and
𝛼2 = 1 time-steps are not guaranteed to contain a specific position in
the chain (except for the first and last gestures), since the transition
zones now overlap. Therefore, in that scenario, time-dependent features
calculated using temporal attention are not a reliable descriptor.

5.2. Spiking neuron analysis

Unlike temporal attention, spiking neurons achieve high accuracy
in all three datasets. This shows how SNN can perform two types of
spatio-temporal tasks:

1. Sequence recognition with predictable action time windows in
the 81-p dataset.

2. Sequence recognition with unpredictable time windows in the
96-u dataset.

Task 1 can be solved by means of time-dependent features, as shown by
the analysis performed on temporal weights. Moreover, as this dataset
allows repetition, these kind of features are indispensable in order
to distinguish individual gestures when the same one is repeated in
succession.

Task 2, to the best of our knowledge, can only be solved by recog-
nising each gesture transition in the chain, as the timing of an action is
not enough to find its chain location and, therefore, the relative order
of appearance is the only useable information.
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Fig. 3. (A): Diagram of a layer of LIF neurons. 𝑙𝑎𝑦𝑒𝑟 are the synaptic weights, 𝑆𝐹 the spiking function, 𝑉𝑟𝑒𝑠 the voltage reset value. Grey lines show the architecture with recurrent
onnections, without them, the architecture is feed-forward. (B): LSTM diagram. 𝐶𝑡 is the cell state, ℎ𝑡 the hidden state and output, the yellow 𝑡𝑎𝑛ℎ is a layer of synaptic weights
ith Hyperbolic Tangent activation. 𝜎 stands for the gating layer with Sigmoid activation.
t
t
a
i
g

a
o
b
n
s
i
s
p
p
A
r
d
i
a
e

u
a
t
t
s
i
M
t

G
T
e
a
t
i
b
i
a
L
r
i
s

C

d
L
&

Following that logic, by performing successfully in Task 2, SNNs
emonstrate that they can detect gesture transitions in a time-invariant
anner, while in Task 1, they demonstrate the ability to localise ges-

ures in time. Such behaviour implies that spiking neurons enable time-
nvariant spatio-temporal feature extraction, as well as time-dependent
eature extraction.

.2.1. Comparing SNN to RNN
A layer of spiking neurons can be seen as a recurrent cell where the

urrent input 𝑥𝑡 passes through a layer and is summed to the previous
tate 𝑣𝑡−1. The contribution of 𝑣𝑡−1 is weighted by the leak factor, and
he final voltage 𝑣𝑡 is decreased by subtracting voltage in the event
f a spike. Therefore, they retain memory by integrating inputs over
ime until the threshold is surpassed. Then, when the information is
eleased in form of a spike, it is deleted from memory through the reset
echanism. On the contrary, in a non-spiking vanilla RNN, the neuron

tself has no memory, recurrency is implemented only at layer level
y defining a recurrent synapse from each neuron to itself and lateral
ynapses within the layer. Therefore, it is to be expected for SNN/RSNN
o have better performance than RNNs.

On the other hand, LSTM adds a cell state to their computations to
ntegrate inputs through time, like spiking neurons do, but, as seen in
ig. 3, it has three differences: first, the integration is weighted by two
ating layers, the input and forget gates, while LIF neurons compute
hich information to forget through the reset mechanism and the leak

actor. Second, in LSTM the non-linearity is applied before integration,
hile the spiking neuron applies its non-linearity (thresholding) only

o the output. Finally, in an LSTM the output is weighted by another
ating layer. This side by side comparison illustrates how spiking neu-
ons define a computing principle similar to LSTM units, but without
he use of gating layers, resulting in a lighter network. Additionally, it
llows to understand how, as seen in the experiments, an internal state
an be enough to calculate temporal features. Recurrent connections
an be beneficial, but they are not indispensable.

. Discussion

In this work, we showed how spiking neurons can be exploited
o solve temporal tasks without the need of recurrent synapses. This
roves how their temporal dynamics are not only a vehicle for com-
utational efficiency, but also a tool for the extraction of temporal
eatures. This can allow to bypass the need for recurrent connections
hen a lighter network is needed and to reuse feed-forward networks

or temporal tasks. Moreover, the parallelism drawn between LSTM and

NN allows to appreciate how SNN computation is closer to LSTM than e

7 
o vanilla RNNs. Understanding their similarities and differences allows
o make informed choices when designing temporal processing systems
nd paves the way to distilling more biologically inspired principles
nto machine learning. Additionally, it also contributes to closing the
ap between neuroscience and machine learning knowledge.

In our experiments, we evaluated the two components that allow
n SNN to clean its memory, the leak and reset mechanism. The effect
f the leak factor has been previously evaluated in static data [46],
ut understanding its relevance for temporal computations was still
ecessary. Our results contribute to develop this understanding by
howing how voltage leak prevents old information from stagnating
n the network when using reset by subtraction. Looking at the re-
et strategy, we find that zero-reset also solves the aforementioned
roblem. Reset by subtraction has been a popular option given that it
revents loss of information, and has been proved especially useful in
NN to SNN conversion approaches [47]. Still, our results indicate that
etaining such information can come at the cost of slower adaptation to
ynamic inputs. Therefore, we believe that this effect should be taken
nto account when designing SNNs for temporal processing tasks, and
ppropriately handling it will lead to improved results, as shown in our
xperiments.

Additionally, the analysis of temporal weights demonstrated a clear
se case for temporal attention, showing how time-dependent features
re learned by a network when the meaning of the events is dictated by
heir timing. In this work, the implementation of temporal weights and
ime-dependent normalisation requires learning a parameter per time-
tep, which would be a limitation for inputs of variable length. Still,
t is enough to demonstrate the aforementioned computing principle.
oreover, it serves as a tool to prove which tasks can be solved with

ime-dependent features without the need for time-invariant ones.
These insights were obtained thanks to the newly proposed DVS-

C, a task which was created by means of a novel chaining technique.
he relevance of this task is that, first, it fulfils the current need for
vent-based action recognition datasets. Apart from that, it provides
n approach that allows the creation of controlled scenarios in order
o evaluate specific capacities of a learning system. The datasets built
n this work serve as examples, where 81-p and 96-p could be solved
y timing-aware features, and 96-u could only be solved with time-
nvariant spatio-temporal features. Moreover, the chains can be made
rbitrarily long, which allows to test the limits of a system’s memory.
ooking ahead, the results provided in the proposed DVS-GC configu-
ations can serve as a baseline when evaluating new systems. Finally,
f a more challenging task is needed, the method allows to build longer
equences with more gestures.
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Appendix A. Neural network architecture

Here we present the full specifications of the implemented neural
network and the neuron model. Network diagram available in Fig. A.4
as defined in [45].

The neurons in the SNN are defined by the LIF neuron model. Let 𝑖
e a post-synaptic neuron, 𝑢𝑖,𝑡 its membrane potential, 𝑜𝑖,𝑡 its spiking
ctivation and 𝜆 the leak factor (which we set to 0.874 following
he original S-ResNet paper, unless specified otherwise). The index 𝑗
epresents the pre-synaptic neuron and the weights 𝑤 dictate the
𝑖,𝑗

8 
alue of the synapses between neurons. Then, the iterative update of
he neuron activation is calculated as follows:

𝑖,𝑡 = 𝑔

(

∑

𝑗
(𝑤𝑖,𝑗𝑜𝑗,𝑡) + 𝜆 ⋅ 𝑢𝑖,𝑡−1

)

(A.1)

here 𝑔(𝑥) is the thresholding function, which converts voltage to
pikes:

(𝑥) =

{

1, if 𝑥 ≥ 𝑈𝑡ℎ

0, if 𝑥 < 𝑈𝑡ℎ
(A.2)

fter spiking, a reset is performed by the subtraction 𝑢∗𝑖,𝑡 = 𝑢𝑖,𝑡 − 𝑈𝑡ℎ,
here 𝑢∗𝑖,𝑡 is the membrane potential after resetting. In experiments
sing zero reset, 𝑢∗𝑖,𝑡 = 0.

We use a Spikes to Spikes (S2S) implementation for the residual
onnection and the output layer is defined as a layer without leakage
𝜆 = 1) and without spiking activation (𝑈𝑡ℎ = ∞). This output

layer accumulates the network output through all time-steps and its
voltage 𝑢𝑖,𝑡 at the last time-step 𝑡 = 𝑇 provides the final class scores
(Eq. (A.3)). At training time, these are compared to the ground truth
labels by means of a cross-entropy loss and the network is trained
by Backpropagation Through Time (BPTT), using Stochastic Gradient
Descent with a momentum of 0.9.

𝑢𝑖,𝑇 =
𝑇
∑

𝑡

∑

𝑗
(𝑤𝑖,𝑗𝑜𝑗,𝑡) (A.3)

Given the non-differentiability of the thresholding function, a trian-
gle shaped surrogate gradient is used as its derivative (Eq. (A.4)). We
use 𝛼 = 0.3.
𝜕𝑜𝑡,𝑖 = 𝛼max{0, 1 − |𝑢𝑡,𝑖|} (A.4)

𝜕𝑢𝑡,𝑖
Fig. A.4. Example architecture for an S-ResNet with 𝑛 = 2 and 16 base filters. SF stands for spiking function.
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We use a depth of 38 layers and a width of 32 base filters unless
otherwise specified. Training was performed using 4 Nvidia GeForce
GTX 1080 Ti GPUs.

Appendix B. Proof for the probability of correct classification
without order perception

Assume a system with perfect gesture classification but no percep-
tion of order that is evaluated in DVS-GC. This system will know which
gestures are present in the sequence and the number of times they
appear, but will be unable to perceive their ordering.

For this system, depending on the number of detected gestures, the
candidates to be the correct output are reduced. Therefore, to calculate
its accuracy, we can calculate the probability of correctly classifying
each individual class 𝑥𝑖 in the dataset and then, assuming a constant
number of class examples, their average will be the final accuracy.

We calculate this for the 81-class DVS-GC dataset in Eq. (B.1).

𝑝(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if gesture repeated 4 times
1
4 , if gesture repeated 3 times
1
6 , if 2 gestures repeated 2 times
1
36 , otherwise

𝑃𝑑 = 1
𝐶

𝐶
∑

𝑖
𝑝(𝑥𝑖) =

= 1
81

(3 ⋅ 1 + 24 ⋅ 1
4
+ 18 ⋅ 1

6
+ 36 ⋅ 1

36
) = 0.1605 (B.1)

Appendix C. BNTT ablation study

The BNTT module has 4 time-varying parameters, namely mean,
variance, 𝛾 weight and 𝛽 weight. In order to analyse their role in
temporal understanding, we perform an ablation study where we elim-
inate the temporal dimension of some of this components by averaging
9 
Table C.6
Test accuracy of the ANN-BNTT after averaging certain components through time.
‘‘Non-averaged components’’ indicates which parts have not been averaged and
therefore are still time-dependent.

Non-averaged components Accuracy

Full BNTT 99.16%
𝛽 weight 97.63%
𝛾 weight 93.77%
Variance 72.24%
Mean 35.96%
None 17.09%

across all time-steps. This allows to isolate the temporal performance
of individual components and evaluate the accuracy degradation. Note
that the experiment is performed by first training the regular network
and then averaging the necessary parameters, with no retraining after
the ablation.

Table C.6 presents the results for each of the 4 BNTT parameters
in isolation (all the other parameters were averaged in time). It can
be seen how any of them is enough to maintain accuracy well above
16.05%, meaning that they all encode part of the temporal attention
learned by the network. Still, there is a clear difference in accuracy
between them, with 𝛾 and 𝛽 weights having the highest accuracy and
the mean having the lowest one. Of course, after averaging all of them,
the network falls back to the performances seen by the ANN with
regular BN.

Appendix D. BNTT’s temporal attention

Following on the study presented in Section 4.2.1 , we analyse the
temporal attention in BNTT. Fig. D.5. A displays the value of BNTT’s
𝛽 weight, which scales neuron activations. Unlike the ANN-TW graph,
this one does not show large changes in the coefficient value. This is
because the 𝛽 weight has a different value per channel, something that
is not visible in Fig. D.5.A, as it averages through channels. Therefore,
Fig. D.5. (A): Bias weight average value across channels in the BNTT layers of ANN-BNTT. (B): Value of the centre of mass in the time dimension (60 time-steps) of the bias
weight of the BNTT layers in ANN-BNTT. The last two layers of all graphs correspond to the layers in the residual connection downsampling. Trained in the 81-class DVS-GC.
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in order to visualise the temporal windowing of the BNTT weight, in
Fig. D.5.B we plot the centre of mass 𝑚 in the time dimension for the
weights at each channel as:

𝑚 = 1
𝑇

𝑇
∑

𝑡
(𝑥𝑡 − 𝑚𝑖𝑛(𝑥))𝑡 (D.1)

here 𝑥 is a vector that contains a weight value 𝑥𝑡 per time-step 𝑡.
With a uniform distribution of weight through the time-steps, the

entre of mass would have a value equal to 𝑇 ∕2, which in the case of
ur network would be 30. Consequently, all the values in Fig. D.5.B
hat are far from this number are indicators of the existence of a
ime window. It can be seen how the centre of mass varies among
ifferent channels, demonstrating how they specialise on detecting
eatures inside different temporal windows. This proves how BNTT
ard-codes a different temporal attention for each channel in a layer.
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