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Hydrodynamic hovering of swimming bacteria above surfaces
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Flagellated bacteria are hydrodynamically attracted to rigid walls, yet past work shows a “hovering” state
where they swim stably at a finite height above surfaces. We use numerics and theory to reveal the physical origin
of hovering. Simulations first show that hovering requires an elongated cell body and results from a tilt away from
the wall. Theoretical models then identify two essential asymmetries: the response of width-asymmetric cells to
active flows created by length-asymmetric cells. A minimal model reconciles near- and far-field hydrodynamics,
capturing all key features of hovering.

DOI: 10.1103/PhysRevResearch.6.L032070

Bacteria, highly abundant on Earth, have evolved to thrive
in a variety of complex physical environments [1]. Motile
bacteria [2] can self-propel in fluids using specialized rotary
motors [3]. Each motor’s rotation is transmitted to a short
flexible segment—an elastic hook—which, in turn, rotates a
helical flagellum, enabling propulsion [4]. This locomotion is
crucial to the survival of the cells as they search for favorable
chemical environments to grow and reproduce [5].

Many species of motile bacteria can grow on surfaces in
the form of biofilms [6,7] and thus a lot of work has focused
on understanding the biophysics of swimming cells near sur-
faces. To leading order, a swimming bacterium exerts a force
dipole on the surrounding viscous fluid [4,8], a fundamental
physical model which has been used to rationalize a variety
of observations, including the collective motion of interacting
bacteria [9,10] and trapping or scattering of individual cells
around obstacles [11,12]. Near surfaces, a swimming force
dipole is attracted to the nearest wall purely hydrodynamically
[13,14] and an interplay between near-field hydrodynamics
and steric effects produces rich dynamics [8].

Smooth-swimming bacteria with elongated cell bodies,
such as E. coli, change their swimming trajectories from
straight to circular near surfaces [15] due to torques exerted on
the cells via hydrodynamic interactions with the wall [16,17].
The stable configuration depends dramatically on the cell
body shape; for example, spherical bacteria, such as T. majus,
reorient perpendicular to the wall and stop swimming [18].
Numerous studies have employed theoretical and computa-
tional models to investigate the dynamics of bacteria near
flat boundaries [19–25]. Building on early experimental work
[15], the submicron length scales between swimming bacteria
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and nearby surfaces have only been recently resolved experi-
mentally [26–28].

Elongated cells swimming along surfaces may attain a
stable “hovering” state, self-propelling at a fixed distance
from the wall, as predicted in two previous studies [20,22].
Subsequently, this hovering state was revealed in experiments
that measured the distance between the bacterial cell body and
the substrate when the bacterium is initially oriented parallel
to it [28]. These striking results contradict the simple dipolar
hydrodynamic model—in which cells are always attracted
to the nearest wall—and yet appear to occur purely due to
hydrodynamic interactions. What is the physical mechanism
responsible for hovering?

In this paper, we elucidate the mechanism that allows cells
to self-propel at finite distances above surfaces. Using numer-
ical simulations, we demonstrate that hovering results from a
slight tilt of the bacterium away from the wall, resulting in a
balance between propulsion away from the wall and hydro-
dynamic wall attraction. To uncover the physical mechanisms
responsible for this tilt, we further develop two increasingly
simplified theoretical models, which provide a physical ex-
planation for hovering in terms of two essential geometrical
asymmetries between the cell body and the flagella: hovering
is due to the response of width-asymmetric cells to active
flows created by length-asymmetric cells. A minimal model
finally reconciles near- and far-field hydrodynamics.

The fluid dynamics of bacteria is governed by the Stokes
equations which we solve numerically using boundary ele-
ments [24,29,30]. The bacterium has a spheroidal cell body
of length 2a and width 2b with dimensions for E. coli as
measured experimentally [31] [Fig. 1(a) and the Supplemental
Material (SM) [32]]. The flagella form a left-handed heli-
cal bundle that rotates counterclockwise viewed from behind
during smooth swimming [25], modeled as a single rotating
helix aligned with the cell’s long axis [22,24,25]. The distance
between the cell-body center and rigid wall is denoted by d
and the tilt angle of the flagellum relative to the wall by θ .

We first use dynamic simulations advancing the bac-
terium’s discretized surface numerically in time to reproduce
hovering. The stable height above which a bacterium with an
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FIG. 1. Simulations reveal stable hovering of swimming bacteria
with elongated cell bodies. (a) Schematic of a bacterium with an
elongated cell body swimming near a rigid surface: cell body of
length 2a and width 2b; helical flagellum of pitch P, axial length
LP, radius R, and cross-sectional radius κ . The distance between
the cell body center and the surface is d and the flagellar axis is
oriented at an angle θ to the surface. (b) Experimental results for
bacteria swimming above a rigid wall, where s is the path length
of the trajectory in the (y, z) plane (used with permission of Royal
Society of Chemistry, from Ref. [28]). (c),(d) Distance, d , and tilt
angle, θ , plotted as a function of time in our dynamic simulations;
long-time stable values are deq = 0.884 µm and θeq = 0.0286 rad
(see the SM [32] for movies). (e),(f) Contour plots of the wall-normal
(Ux) and angular velocity (�y) as functions of d and θ , obtained
by phase averaging the fast flagellar rotation. The stable hovering
configuration (deq = 0.929 µm and θeq = 0.0283) is obtained by the
intersection of the nullclines, Ux = 0 (red line) and �y = 0 (white
line).

elongated cell body swims, measured in a recent experimental
work [28] [Fig. 1(b)], agrees with our simulations [Fig. 1(c)].
Crucially, our results reveal that the swimming bacterium
eventually reaches an equilibrium with a small tilt angle θ > 0
away from the wall [Fig. 1(d)]. These angles (�1.7◦), al-
though likely too small to be captured experimentally, turn
out to play a key role in hovering.

We next exploit the instantaneous nature of Stokes flows
and the separation of time scales between slow cell dynamics
and fast flagellar rotation [31] to sweep through the pa-
rameter space. For a given cell-to-wall distance (d) and tilt
angle (θ ), we perform several simulations varying the flagellar
phase angle from 0 to 2π and deduce the phase-averaged
wall-normal velocity [Ux = ḋ; contour plot in Fig. 1(e)] and
phase-averaged angular velocity parallel to the surface [�y =
θ̇ ; see Fig. 1(f)].

(a)

(b) (c)

FIG. 2. Theoretical model of a slender active bacterium repro-
duces hovering. (a) Bacterium modeled as an asymmetric active
rod of nonuniform radius. (b), (c) Contour plots of Ux (b) and �y

(c) plotted against θ and d (dimensional quantities), as obtained by
numerical integration of Eq. (3); nullclines Ux = 0 (red line) and
�y = 0 (white line).

Hovering corresponds to a dynamic equilibrium, i.e., an
intersection of both nullclines in Figs. 1(e) and 1(f): Ux = 0
(red line) and �y = 0 (white line). We see that only one
equilibrium point exists and that it is stable: an increase in
d leads to a downward velocity decreasing d and vice versa
[Fig. 1(e)]. Similarly, the cell angular velocity changes sign
with d in such a way that the tilt angle is brought back to its
initial direction after any perturbation [Fig. 1(f)]. There are
no other equilibria outside the region illustrated in Figs. 1(e)
and 1(f). If the initial tilt is too high and the cell is pointing
away from the wall, it will escape, and if pointing towards the
surface, it will crash into it. Notably, in contrast to elongated
cells, a bacterium with a spherical body cannot hover; instead,
it gets attracted all the way to the wall, consistent with previ-
ous studies [25] (see SM [32]).

The upward tilt of the cell observed in our simulations
suggests that hovering arises from a balance of hydrodynamic
attraction resulting from force-dipole images [14] and an ap-
parent repulsion caused by the component of propulsion away
from the wall. Hovering is therefore the consequence of tilt.
To understand its origin, we now develop two increasingly
simplified theories. Motivated by the essential role played
by the elongated cell body, we first derive a semianalytical
slender body theory model of the entire bacterium; this repro-
duces hovering and allows us to explain the main ingredients
required for it to occur. The model is further reduced to a
two-Stokeslet-rod model, revealing the minimal physical in-
gredients necessary for hovering.

We thus first model the bacterium as a slender cylindrical
active rod with an asymmetric shape: a thick passive cell body
joined to a thin active flagellum [see sketch in Fig. 2(a)].
Denoting by s the arc length along the cell normalized by
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the half-length l of the whole bacterium, the cross-sectional
radius κ (s) varies smoothly between κ (s) = κ− in the
flagellum section s ∈ [−1, σ − λ] and κ (s) = κ+ in the cell
body section s ∈ [σ + λ, 1], where 2λ � 1 is the transition
region centered at s = σ . We define two orientation vectors,
t̂ = sin θ x̂ + cos θ ẑ and n̂ = cos θ x̂ − sin θ ẑ. A slip velocity
uslip(s) = −V Hλ(σ − s)t̂ is prescribed, where Hλ is a regular-
ized step function so that uslip changes smoothly from −V in
s < σ − λ (directed away from the cell body along the flagel-
lum) to 0 in s > σ + λ (cell body). The bacterium is inclined
at an angle θ to the wall and its midpoint is at a distance
d from the wall. It translates with an instantaneous velocity
U = Uxx̂ + Uzẑ and rotates about s = 0 with an angular veloc-
ity �yŷ. The surface velocity of the bacterium is given by the
kinematic condition ur=κ (s)(s) = U + �ysn̂ − V Hλ(σ − s)t̂ .

Henceforth, we scale velocities by V , lengths by l , and
forces by μV l (where μ is the dynamic viscosity) and work
in dimensionless variables. The bacterial hydrodynamics is
described by slender body theory (SBT) [33–35]; this is an
integral relation between u(s) and the distribution f (s) of
point forces (Stokeslets) per unit length along the bacterium’s
centerline:

u(s) = 1

8π

∫ 1

−1
f (s) · [G(s; s′) + Gw(s; s′)] ds′. (1)

The rigid no-slip surface at x = 0 is accounted for by hydro-
dynamic images [36–38]. The tensors G and Gw represent the
flows due to a Stokeslet and its rigid wall image, respectively
(see SM [32]). For a given V and κ (s), we determine U and
�y using Eq. (1), such that the cell always remains force free
[
∫ 1
−1 f (s) ds = 0] and torque free [

∫ 1
−1 st̂ × f (s) ds = 0]. The

dominant contribution to u(s) in Eq. (1) is local and comes
from the Stokeslets near s on the centerline [38]. Evaluation
of the integrals using the “divide and conquer” method [39]
in the limit of small κ motivates the choice of an asymptotic
variable ε(s) := {ln[2/κ (s)]}−1. Equation (1) simplifies to

u(s) = [4πε(s)]−1
[
t̂ t̂ + 1

2 n̂n̂
] · f (s) + v(s), (2)

where the nonlocal contribution v = O( f ) = O(ε). Imposing
the force- and torque-free, and kinematic conditions, Eq. (1)
yields⎛
⎜⎝

ε̄0 0 Cε̄1

0 ε̄0 −Sε̄1

Cε̄1 −Sε̄1 ε̄2

⎞
⎟⎠

⎛
⎜⎝

Ux

Uz

�y

⎞
⎟⎠ =

⎛
⎜⎜⎝

Sε̄H + ∫ 1
−1 εvx ds

Cε̄H + ∫ 1
−1 εvz ds∫ 1

−1[Cεvx − Sεvz]s ds

⎞
⎟⎟⎠,

(3)

where ε̄H := ∫ 1
−1 ε(s)Hλ(σ − s) ds and ε̄n := ∫ 1

−1 ε(s)sn ds are
quantities which depend solely on the bacterial geometry, v =
vxx̂ + vzẑ, and (C, S) = (cos θ, sin θ ). The solutions to Eq. (3)
are

U = ε̄H/ε̄0t̂ + O(ε), �y = O(ε), (4)

i.e., the bacterium simply propels forward without rotation
with a speed ε̄H/ε̄0 at leading order. We then use Eq. (2)
to determine the leading-order force distribution as f (s) =
2πε(s)[ε̄H/ε̄0 − Hλ(σ − s)]t̂ + O(ε2). At order ε, Eqs. (1)
and (2), together with f , allow us to determine v and therefore
U and �y.

The wall-normal translational (Ux) and angular velocity
(�y) predicted by this semianalytical model are shown in
Figs. 2(b) and 2(c), respectively, with λ = 0. Here and in what
follows we take κ− = 0.0028; this is the flagellar diameter
0.024 µm divided by the bacterium’s length 2l = 8.68 µm as
in the boundary element simulations. Defining ρ = κ+/κ−,
we focus on (σ, ρ) = (0.2, 30), which exhibits hovering. To
plot results as dimensional quantities, we set the slip velocity
to V = 60 µm/s, which yields a swimming speed of 25 µm/s
in an unbounded fluid [31]. Remarkably, this model accurately
reproduces the shapes of the nullclines and equilibrium point
in the phase map obtained from numerical simulations in
Fig. 1. The SBT approach contains therefore all the necessary
physics to explain hovering.

To reveal the fundamental mechanism of hovering, we next
make a further approximation θ � 1, as observed in simula-
tions. Neglecting terms quadratic in ε and θ , Eq. (3) yields

(
Ux

�y

)
=

(
ε̄H
ε̄0

θ

0

)
+ 1

8π (ε̄0ε̄2 − ε̄2
1 )

(
ε̄2 −ε̄1

−ε̄1 ε̄0

)(
Fw

Tw

)
,

(5)

where Fw ≡ 8π
∫ 1
−1 εvx ds and Tw ≡ 8π

∫ 1
−1 εvxs ds are the

wall-induced force and torque, respectively. We can now de-
rive fully analytical expressions for vx, Fw, Tw, Ux, and �y (see
SM [32]). Equation (5) separates the bacterial kinematics into
propulsion (first term) and wall effects (second). We illustrate
in Fig. 3(a) the wall contribution to Ux and �y as functions of
d . The wall contribution to Ux is negative for all d [Fig. 3(a),
blue] and balanced by propulsion away from the wall (θ > 0)
in the hovering state. Stability of hovering arises from the
correct signs of �y on either side of the equilibrium height
[Fig. 3(a), red]. With either σ = 0 (flagellum and cell body
lengths are equal) or ρ = 1 (uniform cross-sectional radius)
no hovering is possible. In both these cases, �y(d ) = 0 has
no solution for any d , and hence, no equilibrium height exists.
Therefore, asymmetries in (i) the widths and (ii) the lengths
of the cell body/flagellum sections are both essential for hov-
ering.

We first investigate the role of width asymmetry, focusing
on how �y and Ux respond to prescribed Fw and Tw. The neg-
ative Fw and Tw [Fig. 3(b), left] experienced by the bacterium
have competing physical effects on the angular velocity �y.
(I) As the bacterium gets closer to the wall due to an attractive
Fw [Fig. 3(b), left], the section s > 0 containing the cell body
experiences a larger drag for the same translational velocity
than the thinner “flagellum” half s < 0. This induces a torque
rotating the bacterium away from the wall [see Fig. 3(c)]. (II)
On the other hand, the negative wall-induced torque [Fig. 3(b),
left] rotates the bacterium towards the wall. The competition
between (I) and (II) is captured by the opposite signs of the
two bottom entries of the mobility matrix in Eq. (5). Close
to the wall, Fw is sufficiently large relative to the torque (i.e.,
Fw/Tw > ε̄0/ε̄1), so (I) dominates, and the bacterium rotates
away from the wall, whereas the opposite occurs far from the
wall [see Fig. 3(b), right; green curve above black curve in
near field and vice versa away]. (Note we have reintroduced
dimensions to Fw and Tw in the plots and therefore labeled the
green curve as Fwl/Tw.)
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(f)

(e)
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FIG. 3. Ux, �y, Fw , and Tw are plotted against d as dimensional
quantities. (a) Wall contribution to wall-normal translation and an-
gular velocities, Ux (blue) and �y (red), respectively, plotted against
d for (σ, ρ ) = (0.2, 30). (b) Fw and Tw (left) and their ratio Fw/Tw

(right) plotted against d . The relative size of Fw/Tw to ε̄0/ε̄1 and
ε̄1/ε̄2 determines the signs of �y and Ux . (c) Schematic illustrating
the mechanism of hovering: the wall induced force Fw is balanced
by unequal drag forces FD in s < 0 and s > 0, resulting in a rota-
tional velocity �y away from the wall. (d) Existence and stability of
fixed points of the dynamical system ḋ = Ux, θ̇ = �y, for a range
of (σ, ρ ) values; hovering corresponds to a stable fixed point. The
geometrical parameters of E. coli lie in the hovering region. (e) Two
asymmetrically placed Stokeslets and their wall images. (f) Ux and
�y plotted against d for (σ, ρ ) = (0.2, 30) as predicted by the full
theory (blue solid line) and two-Stokeslets-rod model (red dotted
line).

These observations explain why a width asymmetry—or
more specifically, the asymmetry in hydrodynamic resistances
induced by the width asymmetry—is essential for hovering.
The torque induced by (I) relies on the difference in hy-
drodynamic resistance resulting from the width asymmetry
and thus a width-symmetric bacterium only experiences (II)
and always rotates towards the wall. The translation-rotation
coupling in (I) is captured by the off-diagonal element, −ε̄1,
of the matrix in Eq. (5), which vanishes for a uniform width
(ρ = 1).

A similar argument applies for the effects of Fw and Tw on
the wall-normal translational velocity, Ux. A negative torque
acting on a width-asymmetric cell induces wall repulsion due
to a difference in hydrodynamic resistance, but the direct wall
attraction induced by Fw is always stronger: Fw/Tw > ε̄1/ε̄2

for all d [see top row of Eq. (5)]; this is illustrated in Fig. 3(b)
(right; green curve always above magenta line).

We now investigate the role of length asymmetry (via σ )
on hovering and focus on the image flows that give rise to
Fw and Tw. A stability analysis reveals that, for given ρ,
hovering occurs for intermediate values of σ [phase diagram

in Fig. 3(d)]. A length-symmetric bacterium (σ = 0) fails to
hover. We further illustrate how the hovering height and angle
vary with (ρ, σ ) in the SM [32].

To interpret the role of length asymmetry, we develop
a minimal two-Stokeslet-rod model, building on past work
[40]. The image flows associated with the force distribution
along the cell can be qualitatively reproduced by placing one
Stokeslet each at s± = (σ ± 1)/2, the midpoints of the cell
body and flagellum, respectively [see Fig. 3(e)]; note these
flows depend only on the length asymmetry. However, two
Stokeslets are not sufficient to reproduce hovering; the hydro-
dynamic response of a width-asymmetric cell to these flows is
also necessary. We set each of the Stokeslets’ strength equal to
the magnitude of the force applied by the flagellum (or the cell
body) onto the fluid and describe the hydrodynamics of the
asymmetric rod subject to these image flows using resistive
force theory (RFT) with resistance coefficients ξ⊥ = 2ξ‖ =
4πμε(s) [ε(s) depends on the width ρ]. The predictions from
this model qualitatively match all results computed using the
full SBT [see Fig. 3(f) for plots of Ux and �y]. Furthermore, if
we subject a length-symmetric bacterium (σ = 0) to the im-
age flows that a length-asymmetric bacterium (σ > 0) would
generate, we still observe hovering, provided the width asym-
metry is present (ρ > 1), reinforcing the different roles played
by the two asymmetries. Our two-Stokeslet-rod model thus
fully elucidates the origin of hovering as the hydrodynamic
response of a width-asymmetric cell to the flows generated by
a length-asymmetric bacterium.

In summary, we investigated the hovering of bacteria
swimming above walls. Numerical simulations revealed that
an elongated cell body is required for hovering and that it
arises from the apparent wall repulsion due to a slight tilt of
the cell away from the wall balancing the well-known hydro-
dynamic wall attraction of self-propelled cells. Intriguingly,
our simulations also predict that bacteria with nonslender
(spherical) cell bodies do not hover, the origin of which re-
mains an open question, since the models developed here
to understand hovering explicitly rely on the assumption of
slender shapes.

Our theoretical model of the bacterium as a slender rod
of nonuniform radius, with the near-wall hydrodynamics
solved asymptotically using SBT, reproduced all features
of hovering from simulations. This model showed that two
geometrical asymmetries in the bacterium are essential for
hovering: the flows (and their hydrodynamic images) due
to a length-asymmetric bacterium and the hydrodynamic re-
sponse of a width-asymmetric bacterium to these flows. We
further developed a minimal model of asymmetrically placed
Stokeslets (length asymmetry) acting on a rod consisting of
two sections with different thicknesses (width asymmetry).
The two-Stokeslet-rod model reduces to a force dipole in the
far field, but also reproduces the near-field phenomenon of
hovering.

The phase diagram in Fig. 3(d) predicts that hovering is
possible only for an intermediate range of flagellum lengths
relative to the cell body. E. coli lies within this range, rational-
izing experimental observations [28]. Given the generic nature
of the mechanism, we expect to see hovering in other bacteria
or motile microorganisms that are appropriately slender and
asymmetric.
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