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A B S T R A C T

Process systems are sensitive and vital industrial facilities. Disturbances in their performance may cause harm to 
the environment,humans,or significant economic damage. In risk assessment of chemical process industries, the 
available data, information, and knowledge are typically rare, limited, and often unrealistic. This issue poses a 
challenge to conducting a credible quantitative risk assessment and effects the robustness of the results. To 
address these challenges, this work proposes a methodology based on the Dempster-Shafer theory of evidence as 
the reasoning framework. It incorporates risk identification, analysis, and mitigation phases to ensure a thorough 
analysis of risks and the integration of proactive risk reduction strategies. The approach aims to model the worst- 
case hazard scenario and assess associated risks using various methods such as FMECA, Bow-Tie, Credal Network, 
and Dempster-Shafer theory. The proposed approach models imprecision and data ambiguity using intervals and 
associated belief mass. This extension provides a basis for addressing the fundamental problem of prior ignorance 
about the distribution of the observed data, which is prevalent in data mining applications. A new approach is 
proposed that utilizes Belief and Plausibility curves, similar to a Cumulative Distribution Function, to propagate 
uncertainty, enhance criticality discrimination, and determine cumulated belief measures. This approach is 
applied in analyzing the failure modes identified in FMECA and is further extended through the credal network 
for comprehensive risk assessment. Results show how to express irrelevant and independent judgments, and how 
to work out with inferences in credal networks. This issue is often overlooked, but if properly addressed it 
represents the key to ultimately drawing reliable conclusions and fully utilizing the system’s available data. A 
case study of the City Gate Station system was used to verify the application potential of the proposed approach.

1. Introduction

City Gate Stations (CGS) are crucial industrial facilities within the 
chemical process industries. This is due to their substantial storage of 
highly flammable and explosive materials. As potential sources of 
catastrophic accidents in urban areas, these stations have the capacity to 
significantly impact the general public (Karimi et al., 2022). Over the 
past few years, statistics have shown a significant increase in disastrous 
accidents from these stations (British Broadcasting Corporation, 2016). 
This incidents includes an explosion of a gas pipeline in Sarakhs’ CGS 
station in 2010, fire and subsequent explosion in CGS of Tehran and 
Ghazvin province and Mobin petrochemical in 2016, a gas explosion in 
CGS of Hamedan province in 2017 in Iran. In such accidents, hundreds 
of people and crew members lost their lives and surrounding residential 
buildings sustained significant damage (British Broadcasting 

Corporation, 2016).
Once an accident falls out, the relevant department is quick to 

organize emergency meetings of domain experts to discuss and clarify 
treatment schemes. This is likely to be time-consuming and subse-
quently delay the best response time of hazard accident incidence, 
resulting in more severe losses (Schulman, 2023). To achieve a safe state 
of process systems, it is necessary to assess the risks of an accident before 
their occurrence and implement appropriate strategies for reducing the 
likelihood of hazards and mitigating potential undesired effects (Nguyen 
et al., 2022; Pasman et al., 2022; Ryu et al., 2023).

In process industries, hazardous events are fortunately infrequent 
due to the use of redundancies and sophisticated safety measures, which 
results in failure data at the system level being scarce. A particularly 
difficult problem for the area of safety engineering is to properly 
formulate quantitative analytic results without ignoring vital 
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information and, on the other hand, without unjustified assumptions 
and simplifications. The industry standard techniques for risk assess-
ment include the use of HAZard and Operational Process (HAZOP), 
Layers of Protection Analysis (LOPA), Failure Mode, Effect, and Criti-
cality Analysis (FMECA), Bow-Tie analysis, fault tree analysis, event tree 
analysis, reliability graphs, reliability block diagram, GO-FLOW 
approach, and so on (Cameron and Raman, 2005; Yan and Xu, 2019). 
The usage of these techniques depends on the system as well as engi-
neers’ experiences. However, these conventional approaches have been 
widely criticized because of some drawbacks such as not enabling 
capturing the penurious knowledge and uncertainty that will lead to bias 
and inconsistent estimates of the risks (Ferson and Ginzburg, 1996). 
Consequently, if a robust strategy for characterizing uncertainty and 
lack of information is not achieved, risk or reliability results may 
expressively differ from reality, compromising any associated series of 
decisions relating to system safety with potentially serious 
consequences.

To address these challenges, there are robust methodologies avail-
able for uncertainty characterization and propagation, see e.g., (Aslett 
and Coolen, 2022; Faes et al., 2021; Gray et al., 2022). Among these 
methodologies, the Dempster–Shafer (D-S) evidence theory (Dempster, 
2008; Sentz and Ferson, 2002; Shafer, 1976) has been proven to be an 
effective technique to handle subjective or non-specific (e.g., an expert’s 
opinion) information, especially when there is not adequate data to 
specify events’ probability distributions without further assumptions 
(Zhao et al., 2022). Theoretical justifications for its application exist (e. 
g., Dubois and Prade, 1986; Klawonn and Schwecke, 1992; Voorbraak, 
1991). However, the D-S combination rule ignores conflicting evidence 
due to the presence of the normalization factor which associates the 
belief mass of conflict to the empty set. Following the work of (Sentz and 
Ferson, 2002), a procedure is proposed that does not require any ag-
gregation stage and the input information is not forced to have 
non-empty intersections. Instead, all possible combination values 
among a specific parameter are considered to create the Belief and 
Plausibility curves forming the so-called probability boxes which 
represent the guaranteed bounds of the variable under consideration. 
Probability boxes offer a straightforward way to deal with inconsistent 
sources of information, overlapping and multiple intervals, as well as 
small sample sizes. The drawback of these approaches is that the 
computational cost of propagating these structures through the system is 
generally quite high, due to the necessity to compute the extreme of the 
response for each realization of these structures called focal elements. 
However, efficient non-intrusive sampling methods exist that are 
applicable to any model , e.g., (Patelli, 2015; Rocchetta et al., 2018).

Graphical models such as Credal Networks (CNs), i.e., a generaliza-
tion of Bayesian Networks (Tolo et al., 2018a; Estrada-Lugo et al., 2020; 
Angelis et al., 2019) have gained increasing attention in safety analysis 
due to their flexibility to propagate different representations of uncer-
tainty (Morais et al., 2019, 2021). Therefore, in this work, by leveraging 
the strengths of both approaches, tried to enhance the robustness and 
accuracy of risk assessments.

The proposed approach is utilized for the risk assessment of a CGS 
system. First, FMECA is used to determine the worst-case hazard sce-
narios based on previous work by some of the authors (Rafiee et al., 
2019, 2020). Then, a Bow-Tie model (Cockshott, 2005) is employed for 
cause-consequence analysis of the hazard scenario and mapped into its 
equivalent CN (Hugo et al., 2022; Mauá and Cozman, 2020). Mapping 
Bow-Tie into CN allows accounting for dependencies among variables 
and the possibility of dealing with imprecision or partial availability of 
data. For further verification of the study, a sensitivity analysis (SA) is 
conducted. The approach allows the suggestion of mitigation strategies 
that can lessen the frequencies of the hazard scenario occurrence and its 
resulting consequences.

This paper is organized as follows: In section 2, an overview of the 
proposed framework is presented while details of the D-S theory are 
included in Appendix A.1. Section 3 shows the risk assessment of a City 

Gate Station, demonstrating the applicability of the approach to study 
real case examples. Section 4 summarizes the main findings and presents 
the advantages and limitations of the approach. Section 5 presents the 
conclusion of the paper. To demonstrate the usefulness of the proposed 
methodology in real industrial contexts affected by the presence of un-
certainty, it is applied to the CGS system of the gas industry.

2. Proposed methodology

2.1. Overview

The proposed approach as shown in Fig. 1 consists of three main 
phases: 1) risk identification, 2) risk analysis, and 3) risk mitigation (i.e., 
analysis and proposition of preventive measures). All the above- 
mentioned risk phases involve an aggregation phase.

2.2. Aggregation phase

Mathematical details and definitions of D-S theory are reported in 
Appendix A.1 while for the sake of clarity, a brief explanation and a 
simple example are reported here.

Let’s assume that three experts are provided the analysis of the 
probability of an event E, P(E). P(E) may be the probability of failure of a 
component and its values are shown in Table 1. In addition, each expert 
hastheir own confidence and expertise level. The confidence in the 
analysis is represented by the size of the interval provided, i.e., the 
distance between the belief interval, [Bel(P(E)), Pl(P(E))], while the 
expertise level is mapped into a weighting factor (in Dempster rule of 
aggregation it is the basic probability assignments).

In risk analysis, the focus is often on identifying failures and exam-
ining worst-case scenarios. Therefore, the quantity of interest is believed 
to be the largest value of P(E). This allows the aggregation of the in-
formation via the concept of cumulative distribution function general-
ized to Dempster-Shafer structures where the focal elements (belief 
intervals) are placed on the x-axis and the cumulative basic probability 
assignments on the y-axis using Eqs (A.5-A.6) (Yager, 1986).

The contribution of each belief interval is weighted according to the 
reliability of the sources as: 

m1,…,n (E)=
1
n
∑n

i=1
wimi(E) (1) 

where mi is are the basic probabilistic assignment, BPA, for the belief 
structures being aggregated and the wi’s are the weight of each expert. 
By summing the masses of all those intervals mi that are completely 
contained (Eq. (2)) or intersect (Eq. (3)) the interval [0,E*], the Belief and 
Plausibility curves are computed, respectively: 

Bel(E)=Bel(E≤E*)=
∑

mi⊂[0,E* ]
mi(E) (2) 

Pl(E)=Pl(E≤E*)=
∑

mi∩[0,E* ]
mi(E) (3) 

The aggregation of belief intervals delivered in Table 1 is provided in 
Table 2.

In often convenient to work with the complementary of the event E, i. 
e., E = {E> E*}. Belief and Plausibility become: 

Bel(E)=Bel(E>E*)=1 − Pl(E≤E*) (4) 

Pl(E)=Pl(E>E*)= 1 − Bel(E≤E*) (5) 

The resulting belief and plausibility curves shown in Fig. 2.

2.3. Risk identification

Risk identification is performed based on the FMECA approach to 
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recognize failure modes (usually identified by experts). It also provides a 
qualitative analysis by the specification of occurrence (O), severity (S), 
and detection (D) based on a ten-point scale aligned with International 
Standard IEC 60812 (International Electrotechnical Commission, 2006). 
From their product, the risk priority number (RPN) is formed allowing 
for ranking the severity of different failure modes (a higher RPN in-
dicates a more severe failure mode). When the values of O, S, and D are 
associated with intervals, the RPNs are calculated by the combining the 
products of the individual parameters. Therefore, RPNi,r is used to 
represent the RPN values for the i-th failure mode of the r-th 

combination and m
(
RPNi,r

)
its corresponding mass calculated according 

to Eq. (1).
After computing all combined RPN values, the Belief and Plausibility 

functions for each failure mode are calculated based on Eqs. (2) and (3), 
resulting in a probability box (similar to the plot in Fig. 2). Then, the 
prioritization of failure modes is performed.

The strategy adopted is as follows. The failure mode with the highest 
potential value of RPN at a given level of confidence or consensus is the 
one desired to be identified using the aggregation strategy (Section 2.2). 
Hence, a credibility level Pl(Ei) = Y is used to identify the corresponding 
upper bound, i.e., RPN*

i is obtained (if the Bel(Ei) =Y is used, the lower 

Fig. 1. Proposed methodology framework.

Table 1 
Experts’ judgment for a generic event E.

Experts Interval Weight

A [0.01, 0.02] 50%
B [0.015,0.02] 25%
C [0.025, 0.03] 25%

Table 2 
Aggregation of belief intervals.

P(E) < P(E)* Plausibility Belief

0 0 0
0.01 0.5 0
0.015 0.75 0
0.02 0.75 0.75
0.025 1 0.75
0.03 1 1

Fig. 2. Belief and Plausibility curves for the belief interval.
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bound RPN*
i can be obtained).

The failure mode with the greatest RPN* represents the worst-case 
hazard scenario and it is selected for a comprehensive and detailed 
risk analysis of the next phases of the study. Therefore, failure modes are 
sorted in descending order. The value of Bel

(
RPN*

i
)

is then used as the 
second criterion in the prioritization (again in descending order). The 
second criteria means that if two failure modes have the same value of 
RPN*, the failure mode with a larger Belief value is prioritized.

2.4. Risk analysis

The development of a Bow-Tie model was undertaken to illustrate 
the accident scenario identified in the previous phase. This model 
showcases the logical relationship between primary events, safety bar-
riers, and potential consequences through the use of AND and OR gates. 
Safety barriers are physical and/or non-physical measures implemented 
to prevent, mitigate, or control undesired accidents or events 
(Hosseinnia Davatgar et al., 2021). The construction of the Bow-Tie 
model involves mapping out the primary events leading to the identi-
fied hazard scenario on the left side of the diagram. These events are 
connected by logical gates to safety barriers positioned in the central 
part of the diagram. Safety barriers represent preventive or mitigative 
measures, including actions by prevention systems, operators, safety 
warning systems, emergency control systems, manual operations, 
automated risk reduction facilities, and personnel responsible for safety 
protocols.

The right side of the Bow-Tie model shows the potential conse-
quences resulting from breaches in the safety barriers. These conse-
quences are linked by OR gates to the primary events and safety barriers, 
illustrating the pathways through which an accident scenario could 
manifest. By visually representing the interplay between primary events, 
safety barriers, and consequences, the Bow-Tie model provides a 
comprehensive overview of the risk landscape and enabling stake-
holders to assess the effectiveness of existing safety measures and 
identify areas for improvement.

The Bow-Tie model is then mapped into its equivalent Credal 
Network (CN) using the mapping algorithm proposed by (Misuri et al., 
2018). The mapping is based on two steps approach: a graphical rep-
resentation and a numerical computation (Bobbio et al., 2001). In the 
graphical representation, the primary events of Bow-Tie make the pri-
mary nodes of CN while the top events of logical gates become the child 
nodes of the primary nodes in the CN. Safety barriers and consequences 
are also converted into their corresponding CN nodes.

For numerical computation, the probabilities of primary events in a 
Bow-Tie are assigned to probabilities of primary nodes in a CN. The 
logical gates defined by the Bow-Tie model produce conditional de-
pendencies among intermediate events and these dependencies are 
captured by the CPTs at the corresponding child nodes of the CN. In this 
work, the Noisy-OR (Noisy-AND) model is used to represent the logical 
OR (AND) gate and to capture the non-determinism in a system (Bobbio 
et al., 2001). This is obtained by replacing the conditional probability of 
success to be 1 with probability λi, and failure 0 with probability (1− λi) 
as shown in Table 3.

The prior probabilities along with amended CPTs are incorporated 
into the CN model as evidence for credal inference, allowing the 

calculation of the likelihood of an accident and its consequences. In 
order to determine the prior probabilities of primary events, Belief and 
Plausibility distributions are constructed based on the available infor-
mation, facilitating a comprehensive synthesis of data. An arbitrary 
confidence level (e.g., 90%) of Plausibility distribution is used to iden-
tify the upper bound of the probability of the primary event as threshold 
i.e., PE*

i (the lower bound can be calculated using the Belief function).
These values are then used in the commercial software GeNie to 

evaluate the corresponding Bayesian Network (i.e., CN are reduced to 
Bayesian Network when intervals reduce to crisp values). Credal Net-
works enable imprecision in the probability of events, dependencies 
among events, and modeling cascading events to be considered. This 
allows to design and identify preventive measures. In fact, once an ac-
cident takes place, it is necessary to determine the most contributing 
cause events (Li et al., 2020a, 2020b). The diagnosis analysis conducted 
in the study is based on backward reasoning where the posterior prob-
ability of each risk factor (or sequence of events) was obtained and 
thereby the associated risk factors that contribute to the incidence of a 
hazard scenario.

Finally, sensitivity analysis (SA) is used to provide insights into 
model robustness. By evaluating the impact of changes in the input 
parameters on a model output of interest, one can verify that the model 
responds as expected and is valuable for model validation. For instance, 
in a robust model, the output would be sensitive, but would not show 
abrupt variationwith any individual minor changes in the input (Razavi 
et al., 2021; Saltelli et al., 2008). Efficient computational methods for SA 
are available, see e.g., (Patelli et al., 2010) and sensitivity assessment of 
CN involving probability bounds that have been performed by (Morais 
et al., 2022; Tolo et al., 2018b). Hence, as the last step of the study, SA is 
performed to validate the study’s accuracy to confirm the previously 
identified variables that strongly affected the system’s behavior in the 
occurrence of an accident.

The sensitivity parameter D(SA) is computed as: 

D(SA)=
ΔPt

ΔPEi
(6) 

where Δ Pt and ΔPEi are the changes in the target node’s probability and 
in the i-th primary events, respectively.

2.5. Risk mitigation

This phase focuses on suggesting effective measures to avoid, reduce, 
eliminate, compensate, or control the negative consequences of hazard 
scenarios. The implementation of effective mitigation strategies con-
tributes to preventing any hazard occurrence from breaking out in the 
first place. However, only a few published articles have currently 
addressed suggesting mitigation measures for CGS hazards (Heydari 
et al., 2022; Nourian et al., 2019). For this purpose, team members and 
specialists attended specific meetings to discuss the risk results obtained 
from previous phases. The meetings provided opportunities for sharing 
personalized and specific information from domain experts to suggest 
some necessary actions to lessen the frequency of discovered contrib-
uting factors and subsequently the occurrence of the worst-case hazard 
scenario and its resulting consequences.

3. Methodology application

3.1. Case study: a city gate station

Natural gas is produced from onshore and offshore natural oil and 
gas wells and coalbeds and afterward in the refinery is converted to 
sweet gas which can be used by consumers. Since the refinery is far from 
the end-user consumption, the natural gas transfers via transmission 
pipelines (Arya et al., 2023). The long-distance between refineries and 
consumption points like cities and industrial plants poses significant 

Table 3 
Mapping of “AND” and “OR” gate in CPTs of Credal Network using noisy model.

A Success Failure

B Success Failure Success Failure

TOP (AND) Success λi 1− λi 1− λi 1− λi

Failure 1− λi λi λi λi

TOP (OR) Success λi λi λi 1− λi

Failure 1− λi 1− λi 1− λi λi
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challenges to the required pressure needed to overcome the losses along 
the path. Therefore, the pressure of natural gas at the transmission 
pipeline inlet is much higher than the required pressure at consumption 
points, and there are several booster and attenuator pressure stations 
along this way (Arabkoohsar et al., 2016). Along the transmission sys-
tem near the consumption points, CGS is located to regulate the gas 
pressure to be used by consumers.

A typical CGS is composed of several physical arrays of filters, pipes, 
valves, and pressure reduction devices (regulators) devised to meter and 
reduce the gas pressure so as to safely deliver to customers through 
distribution networks. The natural gas is first purified using several fil-
ters to remove contaminants and impurities and reduce the potential 
negative impacts on the station’s equipment. During the process of 
pressure reduction (i.e., gas expansion), the gas temperature drops. To 
prevent the formation of hydrates and negative icing effects, multiple 
heaters are used. Then, the gas is conducted to the transmission pipe-
lines, each having dedicated regulators to reduce the gas pressure to a 
lower level (Arya et al., 2023). At the next level, the gas is conducted to 
the Town Boundary Stations. A typical CGS configuration and its main 
parts are shown in Fig. 3.

3.2. Expert details

An experienced multi-disciplined team composed of three safety and 
process experts in the field was established. As shown in Table 4, pro-
fessional position, years of experience, level of education, and age are 
the four factors considered in the calculation of experts’ weight (Ramzali 
et al., 2015). Although it is desirable to have access to a large number of 
experts, in practice their number is always very limited to between 3 and 
15 with an optimal number of 6 according to (Budescu and Chen, 2015) 
but also affected by practicalities (e.g., cost expert availability). Based 
on weighting scores delivered in Table 5, the involved experts’ corre-
sponding weighting scores were calculated as 0.33 for each as they were 
assessed as equally reliable and credible.

3.3. Phase1: risk identification

3.3.1. FMECA
This step was performed in a previous study by some authors of this 

paper (Rafiee et al., 2019, 2020) and summarized here for completeness. 
Meetings and brainstorming sessions were held by experts and 23 po-
tential failure modes were identified along with their associated causes 
and effects. Then, the identified failure modes were addressed and 
synthesized via FMECA as described by (Rafiee et al., 2019, 2020). 
Table 6 shows the identified failure modes. Table 7 synthesizes the 
judgments of experts on risk factors related to each failure mode 

bounded in the interval [1,10]. The three involved experts were 
considered equally reliable and credible (see section 3.2). Therefore, a 
mass of 1/3 was subjectively assigned to each expert estimation of 
specific risk factors. There were three experts with three risk factors for 
each failure mode, corresponding to 33 = 27 combinations for every 
failure mode. For the sake of space limitation, only the analysis of failure 
mode 15 is reported and the 27 combinations generated are shown in 
Table 8. Subsequently, the Belief and Plausibility distribution functions 
were developed utilizing the data provided in Table 8 and following Eqs. 
(2) and (3). These functions are visually represented in Fig. 4.

A confidence level of 90%, i.e., the value of the plausibility function 
equal to 0.9, was used to define the threshold value of the failure mode 
15, i.e., RPN*

15, corresponding to a value 126.
Failure mode prioritizing: The value of RPNi corresponding to 90% 

confidence was calculated for each failure mode. The upper bound, 
indicated as RPN*

i , was obtained from the Plausibility function (the lower 
bound RPN*

i could be obtained from the Belief function although not 
directly used here). The failure modes were ranked firstly according to 
RPN*

i and, as a second criterion, from the value of the belief function 

corresponding to the upper bound RPN*
i . For instance, Bel

(
RPN*

4
)
= 0 

while Bel
(
RPN*

3
)
= 0.148148, therefore it can be concluded that FM4 is 

more critical than FM3. The result can be seen in Fig. 5. The same pro-
cedure was applied for all failure modes and the ranking is reported in 
Table 9.

As shown in Table 9, FM21 (i.e., Gas emission through replacement 
operation of filter’s element) was identified as the most critical, with an 
upper bound of the Risk Priority Number estimated at 400 with 90% 
confidence (i.e., RPN*

21 = 400) and a Belief value of 0.222222. In 
contrast, FM20 (i.e., Leakage of filter’s gas throughout repairment) although 
with RPN*

20 = 400, has a Belief value of 0. Therefore, there is less belief 
that FM20 is as severe as FM21. It is important to note that FM21 was not 
previously analyzed in previous studies (Rafiee et al., 2019, 2020).

3.4. Phase 2: risk analysis

3.4.1. Bow-Tie construction
After consulting experts and reviewing safety standards, the poten-

tial risk factors involved in the worst-case hazard scenario were iden-
tified and the causal relationships between them were established. 
Subsequently, the risk model of the hazard scenario was built up based 
on Bow-Tie methodology to explicitly depict the failure mode FM21 “Gas 
emission through replacement operation of filter’s element”, as the hazard 
scenario.

The Bow-Tie model contains 41 primary events, 16 intermediate 
events, 4 safety barriers, and 7 consequences as shown in Fig. 6. The 
causes of hazard scenario were categorized into two main groups: 

Fig. 3. A simplified configuration of a typical CGS (reproduced with permission 
from Mostafavi and Shirazi, 2020).

Table 4 
Experts’ weighting scores (Ramzali et al., 2015).

Index Classification Score Index Classification Score

Professional 
position

Senior 
academic

5 Years of 
experience

30 ≥ 5

Junior 
academic

4 20–29 4

Engineer 3 10–19 3
Technician 2 6–9 2
Worker 1 ≤ 5 1

Level of 
education

PhD 5 Age >60 5
Master 4 50–59 4
Bachelor 3 40–49 3
Higher 
National 
Diploma

2 30–39 2

School level 1 <30 1
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human operational errors and mechanical failure. These main groups 
were further broken down into primary and intermediate events leading 
to hazard scenario occurrence. The descriptions of primary events and 
safety barriers are represented in Table 10.

In response to the occurrence of FM21, where flammable substances 
accumulate in the CGS area, safety barriers are put in place to prevent or 
reduce the potential consequences of this failure mode, such as fire 
hazards. These safety measures effectively address the issue of 

flammable substance accumulation and ensure a safer environment.
As shown in the right part of the Bow-Tie model (Fig. 6), there are 

four categories of barriers, including Emergency Shutdown Barrier 
(ESB), Immediate Ignition Barrier (IIB), Delayed Ignition Barrier (DIB), 
and Congestion existence Barrier (CongB). Each category of safety bar-
riers serves a specific purpose, but those barriers work together 
sequentially and in coordination to address risks and ensure a compre-
hensive response. For instance, in the event of a sudden increase in gas 
leakage, the ESB would automatically trigger the shutdown procedure, 
isolate affected areas, close gas valves, and activate alarms to alert 
personnel. By swiftly halting operations and containing the gas leak, the 
ESB is intended to prevent further escalation of the incident and set the 
stage for subsequent safety measures. If a spark or ignition source is 
detected near a CGS despite the activation of the ESB, the IIB would 
respond by sounding alarms, detecting the source, and activating fire 
suppression systems. This rapid elimination of the ignition risk would 
complement the actions of the ESB and prevent fires or explosions from 
occurring.

Following the successful mitigation of the ignition hazard by the IIB, 
the DIB comes into play in the event of a pipeline leak that releases 
flammable gas. Its intent is to introduce a time delay between leak 
detection and potential ignition to allow operators to assess and address 
the leak. This allows operators to isolate the leak, conduct repairs, and 
prevent the formation of an explosive gas mixture. Finally, the 
Congestion existence barrier facilitates the orderly evacuation of 
personnel by managing congestion, maintaining clear evacuation routes, 
and directing personnel away from the hazardous zone in case of a fire in 
a processing area while managing the gas leak with the DIB.

Overall, by working sequentially and complementing each safety 
barrier’s functions, a robust safety system was created that integrates 
preventive, reactive, and responsive measures to effectively manage and 
mitigate the impact of incidents.

For each safety barrier, two outcomes were considered leading to 

Table 5 
Experts’ information and corresponding weighting scores.

Expert No Title Professional position Level of education Years of experience Age Weighting factor Weighting score

1 Maintenance manager Senior academic Bachelor 21 48 15 0.33
2 Process inspector Senior academic Bachelor 22 49 15 0.33
3 Process site safety engineer Junior academic PhD 11 45 15 0.33

Table 6 
Identified failure modes in CGS system (Rafiee et al., 2020).

Failure mode Descriptions

FM1 Heater coil’s perforation
FM2 Thermocouple rod’s failure or ionization
FM3 Heater’s malfunction
FM4 Gas leakage from heater’s exterior part
FM5 Electrical valves’ malfunction
FM6 Compressor’s malfunction
FM7 Electrical motor’s malfunction
FM8 Emission of odorant in surroundings
FM9 Odorizer’s panel malfunction
FM10 Electricity existence in the body of the odorizer’s panel
FM11 Electricity existence in the body of the odorizer’s control panel
FM12 Odorizer’s injection system malfunction
FM13 Leakage of odorant through ventilation of odorizer
FM14 Odorant’s barrels perforation
FM15 Abrasion, pipe wall weakening, pipe thickness, and perforation
FM16 Fitting and pipeline’s gas leakage
FM17 Pipes and fittings vibration
FM18 Rupture of sensing
FM19 Detachment of sensor tubes
FM20 Leakage of filter’s gas throughout repairment
FM21 Gas emission through replacement operation of filter’s element
FM22 Combination of gas with oxygen sited in the separator’s bottom
FM23 Filter separator’s tech not fastening

Table 7 
Experts’ judgments about failure modes’ risk factors (Rafiee et al., 2020).

FMi Detection Occurrence Severity

Expert1 Expert2 Expert3 Expert1 Expert2 Expert3 Expert1 Expert2 Expert3

FM1 [3,5] 5 [3,5] [4,6] 6 [6,7] [4,6] [6,7] [4,6]
FM2 [3,5] 5 5 [5,6] 6 [4,7] [6,8] [7,8] 7
FM3 [2,4] 5 [4,5] [4,6] [5,6] 5 [4,5] [4,5] 5
FM4 [2,4] [4,5] [4,6] [4,5] [5,6] [4,5] [2,5] [4,5] 5
FM5 [6,8] 8 [6,7] [4,5] 7 [4,6] [8,9] 9 [8,9]
FM6 [1,3] [1,3] [3,4] [2,4] 4 [4,5] [6,7] [6,7] 8
FM7 [1,3] [1,3] [3,4] [2,4] 3 [3,4] [6,7] [6,8] [6,7]
FM8 [3,4] [4,6] [3,4] [4,5] [4,5] [5,6] [3,4] 4 [4,5]
FM9 [2,3] 4 [3,4] [2,4] [2,4] 4 [6,7] [6,7] 6
FM10 [3,4] 4 [4,5] [3,4] 4 [4,5] [8,10] [9,10] 9
FM11 [1,3] 3 [3,4] [2,4] 4 [3,4] [8,10] [8,9] [8,9]
FM12 [1,3] [2,3] 4 [5,7] [5,6] 5 [6,7] 7 [5,7]
FM13 [1,3] [3,4] [1,3] [6,7] 7 [5,7] 4 4 [4,5]
FM14 [1,3] [2,4] [4,5] [6,7] 6 [6,7] [4,6] 6 6
FM15 [3,5] [3,4] 3 [4,6] [5,6] 7 [5,7] 7 7
FM16 [2,4] [2,4] 2 [3,4] 4 [4,5] [2,5] 4 [4,5]
FM17 [2,4] 4 [3,4] [5,7] 8 [7,8] 8 [8,10] [8,10]
FM18 [1,3] [2,3] 3 7 7 [7,8] [7,9] 9 [7,8]
FM19 [3,4] 4 [2,3] 5 5 [5,7] [7,9] [8,9] [8,9]
FM20 [4,5] 7 [5,6] [8,9] [7,9] 8 [8,10] [8,10] [8,10]
FM21 [4,5] 5 [5,6] [8,9] [7,9] 8 [8,10] [8,10] 9
FM22 [2,4] 4 [4,5] 8 [8,10] 8 [8,10] 9 [7,8]
FM23 [2,4] [2,4] 5 [8,9] 8 7 9 9 [8,9]
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two branches: one showing the consequence in case of successful action 
of the barrier, the other in case of failure of the safety barrier, generally 
causing the further development of the scenario. Table 11 reports the 
possible consequences arising as a result of accident occurrence, 

including small fire complications, environmental pollution, toxic ef-
fects, huge fire complications, etc.

3.4.2. Mapping Bow-Tie into equivalent credal network
In this stage, the representation of relationships among the variables, 

and the reflection of the degree of dependency between the parent node 
and its child node were determined. There were some dependencies 
between elements of the model that could not be outlined directly in the 
Bow-Tie approach. For instance, PE22 (Structural deficiency) is the com-
mon cause for the failure of “Tank lid leakage”, “Drain valve leakage”, 
“Inlet and outlet valve leakage”, and “Flange leakage”. Therefore, the Bow- 
Tie model was mapped into its equivalent CN following the simplified 
procedure shown in Fig. 7 for the AND and OR gates, respectively.

The initially created CN consists of conditional probabilities that take 
only binary form (“0” and “1” in the state of “success” or “failure” 
describe the non-occurrence and occurrence of an event, respectively). 
The derived binary states (0 or 1) in the CPTs for OR and AND gates 
make some states’ outcomes deterministic. For example, as shown in 
Fig. 7(a), the event IE1 (Inappropriate inlet and outlet valve fastening), 
would fail unavoidably when events PE34 (Unsafe human behavior) and 
PE35 (Lack of valves’ indicators) are true even though the event IE1 may 
not fail. Similarly, as shown in Fig. 7(b) on the success condition of both 
event PE5 (Permit’s un-usage) and event PE6 (Poor permit implementation) 
the failure of event IE2 (Poor issuance system permit) is still probable.

Table 8 
Expert’s judgment’s combination for failure mode 15.

Combination 
Number

Detectability Occurrence Severity Risk Priority 
Number

1 [3,5] [4,6] [5,7] [60,210]
2 [3,5] [4,6] [7,7] [84,210]
3 [3,5] [4,6] [7,7] [84,210]
4 [3,5] [5,6] [5,7] [75,210]
5 [3,5] [5,6] [7,7] [105,210]
6 [3,5] [5,6] [7,7] [105,210]
7 [3,5] [7,7] [5,7] [105,245]
8 [3,5] [7,7] [7,7] [147,245]
9 [3,5] [7,7] [7,7] [147,245]
10 [3,4] [4,6] [5,7] [60,168]
11 [3,4] [4,6] [7,7] [84,168]
12 [3,4] [4,6] [7,7] [84,168]
13 [3,4] [5,6] [5,7] [75,168]
14 [3,4] [5,6] [7,7] [105,168]
15 [3,4] [5,6] [7,7] [105,168]
16 [3,4] [7,7] [5,7] [105,196]
17 [3,4] [7,7] [7,7] [147,196]
18 [3,4] [7,7] [7,7] [147,196]
19 [3,3] [4,6] [5,7] [60,126]
20 [3,3] [4,6] [7,7] [84,126]
21 [3,3] [4,6] [7,7] [84,126]
22 [3,3] [5,6] [5,7] [75,126]
23 [3,3] [5,6] [7,7] [105,126]
24 [3,3] [5,6] [7,7] [105,126]
25 [3,3] [7,7] [5,7] [105,147]
26 [3,3] [7,7] [7,7] [147,147]
27 [3,3] [7,7] [7,7] [147,147]

Fig. 4. Belief and Plausibility Curves belonging to failure mode 15.

Fig. 5. Belief and Plausibility curves belonging to (a) FM3 and (b) FM4.

Table 9 
Ranking of failure mode according the 90% confidence of the upper bound of 
RPN and associated believe function.

Failure Mode Bel
(
RPN*

i
)

RPN*
i

Ranking

FM21 0.222222 400 1
FM20 0 400 2
FM23 – 280 3
FM22 – 256 4
FM16 – 250 5
FM5  240 6
FM17 – 224 7
FM2 – 210 8
FM1 – 180 9
FM18 – 168 10
FM10 – 160 11
FM19 – 135 12
FM15 – 126 13
FM12 – 120 14
FM14 0.222222 108 15
FM11 0 108 16
FM3 0.148148 100 17
FM4 0 100 18
FM6 0.074074 84 19
FM13 0 84 20
FM8 – 80 21
FM9 – 72 22
FM7 – 63 23
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Table 12 shows the amending CPT of an AND gate for intermediate 
node IE1, (Inappropriate inlet and outlet valve fastening) concerning the 
conditional probabilities of its parents. Table 13 reports the amending 
CPT of the OR gate of the intermediate node IE2 (Poor issuance system 
permit) concerning the conditional probabilities of its parents. The 
probability λi was established by using tacit and explicit engineering 
safety knowledge from a team of experts.

The primary events of the CN must be quantified probabilistically. In 
the absence of data, experts expressed their perception and knowledge 
about the probability of the primary nodes via empirical interval- 
numeric values, shown in Table 14. Equal BPA was allocated to the 
three sources of information that m1 = m2 = m3 = 1/3. The probability 
of primary events obtained from three experts, all with the same weight, 
is displayed in Table 14.

Belief and Plausibility were calculated as the Cartesian product of all 
masses (intervals) associated with each aggregated interval. A confi-
dence level of 90% was used to estimate the threshold value of primary 
events as the critical prior probabilities. For example, in Table 15, the 
aggregated interval related to the primary event 32 is provided, while 
the corresponding Belief and Plausibility curves are illustrated in Fig. 8. 
The calculations revealed that the upper probability for the primary 
event 32, i.e., PE32

* was determined to be 4.00⋅10− 5.
Furthermore, Fig. 9 displays the Belief and Plausibility curves of pri-

mary events PE10 (Human negligence due to repetitive missions), PE14 (Lack 

of sufficient experience), PE17 (Inadequate ventilation), PE19 (Improper 
weather conditions), PE28 (Unstable state of the screw), and PE38 (Screw 
fatigue and it’s cut off). Due to space limitations, the remaining primary 
events are not included in this report. The evaluation of these events at a 
90% confidence level reveals estimated probabilities of 0.06, 0.0099, 
0.02, 0.0002, 0.0007, and 0.0001, respectively. Additionally, Table 16
displays the estimated critical probabilities for the primary events (PE*

i ), 
and the safety barriers (Si).

Conditional dependencies were considered for the probability of 
failure of safety barriers, for instance S3,1 = 0.7 shows the probability of 
failure of DIB in case of successful action of ESB and S3,2 = 0.9 in case of 
failure of ESB. The identified values for the primary event with the CPTs 
were used as evidence for credal inference.

Although the interval formed by the [PEi, PEi ] could be used in 
Credal Network packages directly (Patelli et al., 2018), in this work only 
the upper bounds were used and therefore reducing Credal Network into 
a Bayesian Network. The latter was implemented in a commercial 
package GeNiE 2.0 softwere (GeNIe, 2019) . The Bayesian Network is 
shown in Fig. 10. The symbols PE and IE depict the primary and inter-
mediate nodes, respectively; a yellow box marks the hazard scenario; 
and the orange and red boxes are marked as a consequence and the 
safety nodes, respectively. The probability of the hazard scenario 
occurrence was computed to be 0.1866. As well, the probabilities of 
eight corresponding consequences, including Small fire complications, 

Fig. 6. Bow-Tie model for the hazard scenario identified in phase 1.
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Environmental pollution, Vast fire complications, Explosion, Minor fire, and 
Vapor cloud formation, were estimated to be 0.0168, 0.0392, 0.0392, 
0.0576, 0.0247, and 0.0091, respectively.

Bayesian (Credal) Networks enable diagnostic analysis, allowing for 
reasoning from symptoms to causes. This implies that, based on the 
system’s condition, one can obtain the posterior probability distribution 
for the primary event (Yazdi et al., 2021). For instance, the observation 
of hazard scenario occurrence corresponding to FM21 (i.e., Gas emission 
through replacement operation of filter’s element) and consequence C4 (i.e., 
Explosion) can serve as new evidence, leading to the updating of prior 
probabilities for all primary and safety nodes. The findings of this 
diagnostic analysis are presented in Table 17.

By comparing the prior probabilities with the updated probabilities 

of primary events, critical primary events can be pinpointed as those 
with a substantial increase in probability and a high posterior 
probability.

By considering the occurrence of the hazard scenario, the prior 
probabilities were compared with the posterior probabilities of primary 
events and the result is shown in Fig. 11.

Clearly, PE10, PE6, PE3, PE17, PE22, PE36, and PE13 show a substantial 
increase in the posterior probability values with respect their prior 
values.

Of these, the primary event PE10 (Human negligence due to repetitive 
missions) stands out as the most influential contributor to the hazard 
scenario probability, earning its rank as the most critical component. 
Following closely are PE6 (Poor permit implementation), PE3 (Lack of 
sufficient expertise), PE17 (Inadequate ventilation), PE22 (Structural defi-
ciency), PE36 (Unclenched state of moving screws), and PE13 (Hastiness and 
stress and during work), which also play vital roles in the occurrence of 
“Gas emission through replacement operation of filter’s element. 
Therefore, these events contribute to top event occurrence, and closer 
attention must be paid to these events to prevent the hazard scenario 
occurrence.

The results also follow the research that has underscored the human 
factors’ role in chemical process industries (Milazzo et al., 2021; Morais 
et al., 2019; Polavarapu, 2021; Qiao et al., 2020).

3.4.3. Sensitivity analysis
In this work, SA was used to appoint the probability of a specified 

target node to individual primary events. To this end, prior probability 

Table 10 
Symbols and descriptions of Bow-Tie model’s component.

Primary 
Event

Description Primary 
Event

Description

PE1 Unavailability of demanded 
equipment

PE25 Valve not-turning after 
greasing

PE2 Lack of timely manner of 
equipment demand

PE26 Valve Improper state all 
through greasing

PE3 Lack of sufficient expertise PE27 Irregular greasing
PE4 Lack of equipment 

calibration
PE28 Unstable state of the 

screw
PE5 Permit’s un-usage PE29 Washer improper 

installation
PE6 Poor permit implementation PE30 Washer fatigue
PE7 Deficiency in leak diagnosis PE31 Overpressure on the 

washer
PE8 Lack of leak diagnosis 

confirmation
PE32 Screw head cut off

PE9 Irregular thickness 
inspection on the filter and 
its facilities

PE33 Insufficient tightening 
force on the screw

PE10 Human negligence due to 
repetitive missions

PE34 Unsafe human’s 
behavior

PE11 Non-standard equipment PE35 Lack of valves’ 
indicators

PE12 Unpredictable gas 
interruption of subscribers

PE36 Unclenched state of 
moving screws

PE13 Hastiness and stress during 
work

PE37 Holding the retaining 
screws ON.

PE14 Lack of sufficient experience P38 Screw’s fatigue and its 
cut off

PE15 Lack of sufficient training PE39 Poor inspection of 
corrosion

PE16 Wrong risk assessment PE40 Erosion
PE17 Inadequate ventilation PE41 Non-standard fluid 

velocity
PE18 Blockage state of the safety 

lock
S1 Emergency Shutdown 

barrier (ESB)
PE19 Improper weather 

conditions
S2 Immediate ignition 

barrier (IIB)
PE20 Anti-corrosion coating’s 

failure
S31 Delayed ignition barrier 

(DIB) when ESB worked
PE21 O-Ring’s fatigue S32 Delayed ignition barrier 

(DIB) when ESB failed
PE22 Structural deficiency S4 Congestion existence 

(Cong)
PE24 Valve fatigue and its cut off  

Table 11 
Output event consequences of the Bow-Tie model.

Consequences Description

C1 Small fire complications
C2 Environmental pollution and toxic effects
C3 Huge fire complications
C4 Minor fire
C5 Explosion
C6 Vapor cloud formation
C7 Safety state

Fig. 7. Conversion rules between logic gates of Bow-Tie into its corresponding 
Credal Network: (a) for the AND gate, (b) for OR gate.

Table 12 
Amending CPTs of “AND” gate for E1.

PE34 Success Failure

PE35 Success Failure Success Failure

IE1 Success 0.98 0.02 0.02 0.001
Failure 0.02 0.98 0.98 0.999

Table 13 
Amending CPTs of “OR” gate foe IE2.

PE5 Success Failure

PE6 Success Failure Success Failure

IE2 Success 0.98 0.96 0.96 0.0015
Failure 0.02 0.04 0.04 0.9985
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values of identified critical primary events were subjected to a change of 
± 10% and the target node was FM21. The results of the SA are shown in 
Table 18.

When the probability of PE10 was subjected to an increase of 10%, 
the probability of hazard scenario incidence increased from 18.66% to 
19.02%. When probabilities of both PE10 and PE6 were increased by 
10%, the probability of hazard scenario occurrence increased from 
19.02% to 19.08%. When probabilities of PE10, PE6, and PE3 were 
increased by 10%, the probability of undesired event occurrence 
changed from 19.08% to 19.14%. When the probabilities of PE10, PE6, 
PE3, and PE17 were increased by 10%, the probability of undesired event 
occurrence increased from 19.14% to 19.20%. When the probabilities of 
PE10, PE6, PE3, PE17, and P22 were increased by 10%, simultaneously the 
probability of hazard scenario occurrence increased from 19.20% to 

19.24%. When the probabilities of PE10, PE6, PE3, PE17, PE22, and PE36 
were increased by 10%, the probability of hazard scenario occurrence 
increased from 19.24% to 19.26%. When the probabilities of PE10, PE6, 
PE3, PE17, PE22, PE36, and PE13 were increased by 10%, simultaneously 
the probability of hazard scenario occurrence increased from 19.24% to 
19.28%. Similarly, the decrease of primary events’ probabilities pro-
duces a decrease in the probability of occurrence of worst-case hazard 
scenario in the same way as shown in Fig. 12.

The results of the SA performed in this study satisfied the three ax-
ioms set by Jones (Jones et al., 2010). Therefore, the proposed model is 
partially verified since a slight change in the probabilities of primary 
events led to a reasonable variation in the occurrence probability of the 
selected target, FM21. Maintaining consistency with diagnostic analysis 
results as the descending order of contributing factors remained the 
same in posterior probability analysis.

3.5. Phase 3: risk mitigation

Once failure modes, the hazard scenario, and contributing factors 
have been identified, mitigation measures can be suggested to reduce 
the likelihood and consequences of these failures, i.e., reducing the 
associated risk. In this phase, it is essential to involve key stakeholders in 
the risk mitigation process to gather diverse perspectives and insights. 
This can help ensure that all relevant consequences are identified and 
that appropriate mitigation measures are suggested. The mitigation 
measures should be specific, actionable, and tailored to address the 
identified risks effectively. Additionally, regular review and updating of 
risk analysis is necessary to adapt to changing circumstances and new 
risks that may arise.

Following the two previous phases, the most contributing factor 
leading to the hazard scenario identified was “Human negligence due to 
repetitive missions”. Some action plans are proposed to address this 
factor, reduce its likelihood and impact.

Human negligence due to repetitive missions: 1) utilizing auto-
mation and technology solutions to streamline repetitive tasks and 
reduce the potential for human error due to negligence can be beneficial. 
This includes using software tools for data entry, scheduling reminders 
for critical tasks, or deploying sensors for monitoring equipment per-
formance. 2) regular safety checks and audits should be implemented on 
a strict schedule to ensure that all protocols and procedures are being 
followed correctly, helping identify any potential areas of negligence 
and addressing them promptly to prevent accidents or errors. 3) creating 
safety within the organization, where employees are encouraged to 
report errors or near misses without fear of reprisal, promotes trans-
parency and accountability, aiding in the identification and prevention 
of negligence from recurring. 4) establishing performance metrics and 
key performance indicators (KPIs) related to job duties and re-
sponsibilities can effectively track employee performance, helping 
identify any deviations or trends indicative of negligence through 

Table 14 
Experts’ knowledge of the primary events’ probabilities.

Primary Event Expert 1 Expert 2 Expert 3

PE1 [1.00E-3, 1.20E-3] [5.00E-4, 1.00E-3] [5.00E-4, 1.50E-3]
PE2 [1.50E-3, 2.00E-3] [5.00E-4, 1.50E-3] [5.00E-4, 1.00E-3]
PE3 [2.50E-3, 3.00E-3] [2.50E-3, 3.00E-3] [1.50E-3, 2.00E-3]
PE4 [1.50E-3, 2.00E-3] [1.50E-3, 2.50E-3] [1.00E-3, 1.80E-3]
PE5 [2.00E-7, 3.00E-7] [5.00E-7, 1.00E-6] [8.00E-7, 3.00E-6]
PE6 [1.50E-2, 2.00E-2] [1.00E-2, 1.20E-2] [2.00E-2, 2.30E-2]
PE7 [8.00E-6, 1.50E-5] [5.00E-6, 1.00E-5] [5.00E-6, 1.50E-5]
PE8 [5.00E-5, 9.00E-5] [4.00E-5, 6.00E-5] [4.00E-5, 6.00E-5]
PE9 [1.00E-3, 1.50E-3] [1.00E-3, 1.50E-3] [5.00E-4, 1.00E-3]
PE10 [3.50E-2, 4.00E-2] [2.00E-2, 3.50E-2] [3.50E-2, 4.00E-2]
PE11 [1.50E-3, 2.00E-3] [1.50E-3, 2.00E-3] [1.00E-3, 1.20E-3]
PE12 [5.00E-6, 8.00E-6] [6.00E-6, 9.00E-6] [3.00E-6, 7.00E-6]
PE13 [2.00E-3, 3.00E-3] [1.50E-3, 2.00E-3] [2.50E-3, 3.00E-3]
PE14 [2.00E-3, 2.50E-3] [1.50E-3, 2.00E-3] [2.00E-3, 2.50E-3]
PE15 [1.00E-3, 1.50E-3] [1.00E-3, 1.50E-3] [1.50E-3, 2.00E-3]
PE16 [1.00E-6, 3.00E-6] [2.00E-6, 3.00E-6] [8.00E-6, 9.90E-6]
PE17 [8.00E-5, 9.90E-5] [7.00E-5, 8.00E-5] [5.00E-5, 6.00E-5]
PE18 [5.00E-6, 9.00E-6] [5.00E-6, 9.00E-6] [8.80E-6, 1.00E-5]
PE19 [1.00E-4, 1.50E-4] [1.00E-4, 1.20E-4] [1.50E-4, 2.00E-4]
PE20 [3.00E-4, 9.00E-4] [4.00E-4, 6.00E-4] [3.00E-4, 8.00E-4]
PE21 [8.00E-5, 9.00E-5] [8.80E-5, 9.90E-5] [7.00E-5, 9.03E-5]
PE22 [4.00E-4, 9.00E-4] [4.00E-4, 5.00E-4] [5.00E-4, 9.00E-3]
PE24 [5.00E-6, 8.00E-6] [5.00E-6, 8.00E-6] [3.00E-6, 6.00E-6]
PE25 [5.00E-2, 1.50E-1] [8.00E-3, 1.50E-2] [1.00E-1, 2.00E-1]
PE26 [2.00E-3, 3.00E-3] [5.00E-4, 1.50E-3] [1.50E-3, 2.00E-3]
PE27 [1.50E-4, 2.00E-4] [5.00E-4, 1.50E-3] [5.00E-4, 1.00E-3]
PE28 [5.00E-4, 8.00E-4] [4.00E-4, 7.00E-4] [8.00E-4, 1.00E-3]
PE29 [7.00E-6, 9.00E-6] [7.00E-6, 9.00E-6] [5.00E-6, 9.00E-6]
PE30 [9.00E-5, 4.00E-4] [3.00E-4, 5.00E-4] [3.00E-4, 5.00E-4]
PE31 [3.00E-4, 5.00E-4] [5.00E-4, 9.00E-4] [2.00E-4, 6.00E-4]
PE32 [1.00E-5, 4.00E-5] [3.00E-5, 5.00E-5] [2.00E-5, 6.00E-5]
PE33 [4.00E-6, 7.70E-6] [5.00E-6, 7.00E-6] [9.90E-6, 1.00E-5]
PE34 [5.00E-4, 1.00E-3] [1.00E-3, 1.20E-3] [5.00E-4, 1.50E-3]
PE35 [5.00E-4, 9.00E-4] [5.00E-4, 4.00E-4] [8.80E-5, 1.00E-4]
PE36 [1.00E-6, 3.00E-6] [4.00E-7, 5.00E-7] [1.00E-6, 3.00E-6]
PE37 [1.00E-7, 2.00E-7] [1.00E-7, 2.00E-7] [4.00E-7, 5.00E-7]
PE38 [4.00E-6, 5.00E-6] [1.00E-6, 5.00E-6] [4.40E-6, 6.00E-6]
PE39 [7.00E-6, 9.00E-6] [3.00E-6, 5.00E-6] [4.00E-6, 8.00E-6]
PE40 [1.50E-3, 2.00E-3] [1.50E-3, 2.00E-3] [1.20E-3, 2.50E-3]
PE41 [5.00E-5, 7.00E-5] [7.00E-5, 8.00E-5] [2.00E-5, 3.00E-5]

Table 15 
All possible combinations of PE32.

Combination Number Interval

1 [1.00E-5,4.00E-2]
2 [1.00E-5,5.00E-5]
3 [1.00E-5,6.00E-5]
4 [3.00E-5, 4.00E-2]
5 [3.00E-5, 5.00E-5]
6 [3.00E-5, 6.00E-5]
7 [2.00E-5, 4.00E-2]
8 [2.00E-5, 5.00E-5]
9 [2.00E-5, 6.00E-5]

Fig. 8. Belief and Plausibility curves belonging to PE32.
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regular reviews. 5) a job rotation program should be developed to offer 
employees diverse experiences and prevent them from becoming too 
complacent in their current roles by moving employees through 
different roles and responsibilities within the organization. This can help 
prevent employees from becoming stagnant in their current roles, 
keeping them engaged and motivated. 6) clear reporting and investi-
gation protocols should be implemented for employees to report in-
cidents, near misses, or concerns related to negligence. By creating a 
structured process for reporting and investigating incidents, organiza-
tions can address issues promptly, identify root causes, and implement 
corrective actions to prevent recurrence. 7) involving employees in 
safety committees, task forces, or safety improvement initiatives to 
empower them to contribute ideas, identify risks, and propose solutions 
to prevent negligence. By engaging employees in safety initiatives, or-
ganizations can leverage their insights and experiences to enhance 
safety practices and prevent incidents of negligence. 8) offer access to 
employee assistance programs (EAPs) to support employees’ mental 
health, well-being, and work-life balance. By addressing employees’ 
stress, fatigue, and personal challenges, organizations can prevent dis-
tractions, errors, and instances of negligence stemming from personal 
issues impacting work performance.

Once appropriate mitigation measures are defined, they need to be 
implemented within the CGS system. It is crucial to have a system in 
place to track the progress of the mitigation measures, monitor their 
impact, and subsequently make adjustments as necessary. Continuous 
monitoring and review, including regular risk assessments, internal 

Fig. 9. Belief and Plausibility curves belonging to PE10 (a), PE14 (b), PE17 (c), PE19 (d), PE28 (e), PE38 (f).

Table 16 
Estimated primary events’ prior probabilities.

Primary Event Prior probability Primary Event Prior probability

PE1 1.00E-3 PE25 2.00E-3
PE2 1.00E-3 PE26 2.00E-3
PE3 9.00E-3 PE27 1.50E-3
PE4 1.80E-3 PE28 7.00E-4
PE5 8.00E-5 PE29 1.00E-5
PE6 9.0E-3 PE30 4.00E-4
PE7 1.00E-5 PE31 5.00E-4
PE8 6.00E-5 PE32 4.00E-5
PE9 1.00E-3 PE33 1.00E-5
PE10 6.00E-2 PE34 9.00E-4
PE11 9.00E-3 PE35 9.00E-4
PE12 9.00E-5 PE36 1.00E-3
PE13 9.90E-3 PE37 1.00E-5
PE14 9.90E-3 P38 1.00E-5
PE15 9.93E-3 PE39 1.00E-5
PE16 1.00E-4 PE40 5.00E-3
PE17 2.00E-2 PE41 9.00E-4
PE18 4.00E-3 Safety event
PE19 2.00E-4 S1 2.70E-1
PE20 6.00E-4 S2 3.90E-1
PE21 1.00E-5 S3,1 7.00E-1
PE22 9.00E-3 S3,2 9.00E-1
PE24 1.00E-5 S4 7.00E-1
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audits, and external reviews, are essential aspects of the risk analysis and 
mitigation process. They help assess the performance of existing miti-
gation measures and ensure that the risk management processes remain 
robust and adaptive. This aspect can be analyzed in future studies as the 
fourth phase of the risk management of the current study. This study 
does not quantify the impact of suggested measures but only suggests 
some potential mitigation strategies. The results of this part may provide 
some insight for policy-makers to formulate and execute the suggested 
policies and prevention strategies.

4. Discussion and limitations of the approach

The present study employs a highly practical yet robust approach to 

assessing risks by incorporating three phases, including risk identifica-
tion, analysis, and mitigation. The proposed approach is based on in-
dustrial standard techniques such as FMECA, Bowtie, and Credal 
Network, coupled with robust modeling of uncertainty based on D-S 
theory. The approach is generally applicable and especially important 
when there is no exact evidence introduced in the analysis, ambiguities 
arise from different sources of information, or when there is not enough 
information. This provides a more reliable risk assessment process 
compared to some quantitative methodologies that may struggle to deal 
with conflicting data types and uncertainty. The approach also allows 
one to select the level of confidence desired (to define the probability of 
the events) and to understand the need and consequences of collecting 
more data to improve the knowledge about specific factors.

Nevertheless, it is crucial to acknowledge the limitations and chal-
lenges inherent in the developed approach. The proposed approach 
makes use of multiple methods that can lead to prolonged assessment 
processes, potentially challenging industries with tight timelines. 
Moreover, the interpretation of the results may require more specialized 
skills for effective analysis. Additionally, the approach introduces some 
computational complexity, particularly with a large number of hy-
potheses considered, which hinders communication with non-technical 
audiences. However, this limitation can be alleviated by providing 
training for effective result interpretation, which can bridge the gap 
between technical and non-technical audiences.

The constructed Bow-Tie model relies on the expertise of the 
involved experts. As a result, it is uncertain whether all relevant factors 
of the model were considered by the experts in a real decision-making 
context or if their hypothetical decisions would accurately reflect real- 
world actions. Neglecting other relevant factors that could be relevant 
to the hazard scenario of CGS could result in an incomplete under-
standing of the overall risk profile of the station. Thus, a necessary 
course of action can be taken by implementing a structured validation 
process, such as peer reviews and expert panels, which can help ensure 
the accuracy and completeness of the Bow-Tie model.

It is crucial to acknowledge that risk management extends beyond 
the three phases presented here. For instance, in phase 3 some mitiga-
tion measures were suggested to address the identified risks, but the 
feasibility and sustainability of the proposed solutions have not been 

Fig. 10. Bayesian network derived and defined in GeNie software.

Table 17 
Primary events’ posterior probabilities.

Primary event Posterior probability Primary event Posterior probability

PE1 4.40E-3 PE25 9.20E-3
PE2 6.70E-3 PE26 9.20E-3
PE3 4.02E-2 PE27 6.90E-3
PE4 8.00E-3 PE28 2.90E-3
PE5 3.00E-4 PE29 4.00E-5
PE6 4.16E-2 PE30 1.60E-3
PE7 4.00E-5 PE31 2.00E-3
PE8 2.00E-4 PE32 1.00E-4
PE9 4.60E-3 PE33 4.18E-2
PE10 2.46E-1 PE34 9.00E-4
PE11 3.69E-2 PE35 9.00E-4
PE12 3.00E-4 PE36 4.30E-3
PE13 4.06E-2 PE37 4.00E-5
PE14 4.06E-2 P38 4.00E-5
PE15 4.06E-2 PE39 4.00E-5
PE16 4.00E-4 PE40 2.32E-2
PE17 2.12E-2 PE41 4.10E-3
PE18 4.20E-3 Safety event
PE19 5.00E-4 S1 3.30E-1
PE20 2.70E-3 S2 4.70E-1
PE21 4.00E-5 S31 1
PE22 4.98E-2 S32 1
PE24 4.00E-5 S4 1
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analyzed. Exploring alternative preventive measures can lead to the 
identification of innovative solutions that may not have been considered 
initially. This encourages a more comprehensive and strategic view to 
risk mitigation, ensuring that industries have access to a diverse set of 
tools and strategies to manage risks effectively.

5. Conclusions

In this paper, a systematic accident scenario of a City Gate Station 
which is one of the most vital installations of gas transferring networks 
was developed. The proposed methodology offers a comprehensive and 
structured approach for risk assessment of high-risk process industries 

under uncertainty, especially for complex systems with limited, con-
tradictory, or conflicting information by incorporating phases of risk 
identification, analysis, and mitigation, leading to effective risk man-
agement strategies. Utilizing multiple methods like FMECA, Bow-Tie, 
Credal Network, and D-S theory, the methodology ensures a thorough 
analysis of risks and the integration of mitigation strategies for proactive 
risk reduction.

The approach utilized Belief and Plausibility curves to facilitate the 
propagation of uncertainty. By doing so, it effectively addresses the 
epistemic uncertainty inherent in experts’ risk factor ratings, allowing 
for interval-valued analysis and providing a more comprehensive rep-
resentation of experts’ knowledge and perception. It also eliminates the 
need for experts to express a belief probability assignment and avoids 
assumptions about the distribution of BPAs, enabling the handling of 
conflicting judgments. Moreover, the uncertainty of the input data is 
appropriately propagated throughout the analysis, maintaining an 
epistemic approach until the final results are obtained. By considering 
uncertainty and imprecise information in risk assessment, policymakers 
can develop more robust regulations and standards that promote a 
culture of safety, transparency, and accountability within the industry. 
This can lead to improved safety standards, enhanced emergency 
response protocols, and a more resilient infrastructure that safeguards 
the well-being of both workers and the surrounding community.

The case study conducted a thorough analysis of the City Gate Sta-
tion and identified the most critical failure mode as the “Gas emission 

Fig. 11. Comparison of probability changes in primary events following the hazard scenario occurrence.

Table 18 
Sensitivity values of contributing factors on probability of hazard sce-
nario occurrence.

Critical primary nodes D(SA)

PE10 1.019721
PE10, PE6 1.02299
PE10, PE6, PE3 1.026152
PE10, PE6, PE3, PE17 1.029046
PE10, PE6, PE3, PE17, PE22 1.03119
PE10, PE6, PE3, PE17, PE22, PE36 1.032315
PE10, PE6, PE3, PE17, P22, PE36 , PE13 1.033387

Fig. 12. Sensitivity analysis of contributing factors on probability of hazard scenario occurrence.
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through filter replacement operation" through the FMECA process, while 
considering expert imprecision. This worst-case hazard scenario was 
then modeled using the Bow-Tie method and mapped into a Credal 
Network to quantify the risk and to provide a detailed understanding of 
the root cause and key contributing factors such as “Human negligence 
due to repetitive missions”, “Poor permit implementation”, “Lack of sufficient 
expertise”, “Inadequate ventilation”, “Structural deficiency”, “Unclenched 
state of moving screws”, and “Hastiness and stress and during work”. Rec-
ommendations were provided to address identified contributing factors 
to reduce the likelihood of accidents at City Gate Stations and enhance 
overall safety performance and reliability. Implementing these in-
terventions can proactively manage risks, improve safety performance, 
and create a secure operational environment at the stations.

These results highlight the significance of employing advanced 
analytical techniques in identifying, analyzing, and mitigating risks in 
complex systems. Although the approach proposed has been applied to a 
City Gate Stations, it can be adopted in other engineering fields or safety 
cases where often probabilities are estimated from limited data or expert 
elicitation.
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Appendix A. Material and method

A.1. Dempster-Shafer theory of evidence

Dempster-Shafer (D-S) theory, was introduced by Dempster and Shafer for dealing with data inadequacy (Dempster, 1967; Shafer, 1976). D-S 
theory resembles a discrete probability theory except that the locations at which the probability mass resides are defined as sets of real values named as 
focal elements, rather than precise points. Typically, focal elements are chosen among closed intervals so-called focal intervals. In the context of expert 
elicitation, D-S allows expressing the beliefs in an uncertain parameter x within a certain set of intervals A and with an associated level of confidence. 
Mathematically, the value of x is quantified by the Basic Probability Assignment (BPA) that satisfies the following conditions: 

0≤m(Xi) ≤ 1 (A.1) 

m(∅ )=0 (A.2) 
∑

A∈U
m(X) =1 (A.3) 

Equation (A.1) expresses that the degree of belief m associated with each value in set Xi must be in the range of [0,1]; equation (A.2) means that no 
belief should be allocated to events that cannot occur; equation (A.3) expresses that the total mass (all beliefs) of X must sum to 1. The D-S variables 
can be plotted by drawing rectangles in which the height represents the mass mi and the width the range Xi showing the amount of evidence 
cumulatively supporting the bounded ranges, The D-S structure is a set of pairs comprising closed intervals and corresponding BPAs as presented by 
Ferson et al. (Ferson et al., 2003a): 

{([a1, b1],m1), ([a2, b2],m2),…, ([an, bn],mn)} (A.4) 

where ai ≤ bi ∀ 1 ≤ i ≤ n represent the bounds of each BPA.
These intervals produce an upper and lower cumulative distribution functions known as Belief and Plausibility function (see fig. A.1).

Fig. A.1. BPA of five focal and corresponding Belief and Plausibility Functions.
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The Belief function Bel(X∈ [b, b]) is formed by those focal intervals [ai, bi] completely contained within [b, b]. On the other hand, the Plausibility 
function Pl(X∈ [b, b]) is computed by considering all the focal intervals that intersect [b,b]. Therefore, given all the evidence, the Belief and Plausibility 
functions represent the best and worst-case scenarios, respectively (Shenoy, 2023). These two scenarios are represented by the cumulative belief and 
plausibility functions: 

F(x)=Bel(X∈ (− ∞,X])) =
∑n

bi≤x,i=1
m([ai, bi]) (A.5) 

F(x)=Pl (X∈ (− ∞, x]))=
∑n

ai≤x,i=1
m([ai, bi]) (A.6) 

The pair of lower and upper cumulative distribution functions [F, F] forms the so-called probability boxes or P-boxes. When the focal elements are 
reduced to precise values, the Belief and Plausibility functions coincide, and they represent the cumulative distribution function (CDF) of probability 
theory. Therefore, the probability boxes can be seen as the uncertainty around the CDF: F(x) ≤ F(x) ≤ F(x) due to the incertitude on the BPA as can be 
seen in fig. A.2. The wider the distance between the upper and the lower bound is, the higher the incertitude associated with the random variable X.

Inversely, since a unique p-box, [F, F], can induce many D-S structures, in practice a D-S structure is often approximately obtained using dis-
cretization techniques (Ferson et al., 2003b).

Fig. A.2. Complementary Cumulative Belief and Plausibility Functions.

A.2. Bayesian networks

A Bayesian Network (BN) is a directed acyclic graph that captures the dependencies among events via joint probability distributions. BNs provide 
predictive and diagnostic inference. A BN is formed by nodes that represent variables with parent nodes representing independent variables with 
assigned probability distribution functions, while child nodes depend on the status of parent nodes. Arcs show the dependencies among variables (i.e., 
they connect parents and child nodes), Conditional Probability Tables represent a unique probability distribution for every variable conditional on any 
configuration of the parents.

The BN can be regarded as a joint probability mass function over a collection of random variables, structured as a vector X = (X1,X2,…,Xn). 
Considering pa(Xi) the state Xi of the parent node and thanks to the Markov condition (i.e., independence of each node of its non-descendant con-
ditional on its parents) and conditional dependencies of variables, the joint probability distribution, i.e., P(X) belongs to a set of variables X = (X1,X2,

…,Xn) is demonstrated by (Jensen, 2001): 

P(X) =
∏n

i=1
P(xi|pa(Xi)) (A.7) 

Accordingly, by calculating the prior probability of variables Xi predictive reasoning can be carried out as 

P(xi)=
∑

X\xi

P(X) (A.8) 

Also, once new information or pieces of evidence are available, diagnostic inference can be performed via probability updating ,Hassan et al.,
2022. By introducing evidence XE = xE, the updated probability of queried variable Xq, is: 

P
(
xq
⃒
⃒xE

)
=

∑
xM

∏n
i=1P(xi|pa(Xi))

∑
xM,xq

∏n
i=1P(xi|pa(Xi))

(A.9) 

Where XM := X /
( {

Xq
}
∪XE

)
, the domains of the arguments of the sums are left implicit and the values of Xi and pa(Xi)i are those consistent with X =

(
Xq,XM,XE

)
(Antonucci et al., 2010).
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