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Abstract— Mental workload (MWL) assessment is crucial in 

information systems (IS), impacting task performance, user 

experience, and system effectiveness. Deep learning offers 

promising techniques for MWL classification using 

electroencephalography (EEG), which monitors cognitive states 

dynamically and unobtrusively. Our research explores deep 

learning's potential and challenges in EEG-based MWL 

classification, focusing on training inputs, cross-validation 

methods, and classification problem types. We identify five types 

of EEG-based MWL classification: within-subject, cross-subject, 

cross-session, cross-task, and combined cross-task and -subject. 
Success depends on managing dataset uniqueness, session and task 

variability, and artifact removal. Despite potential, real-world 

applications are limited. Enhancements are necessary in self-
reporting methods, universal preprocessing standards, and MWL 

assessment accuracy. Specifically, inaccuracies are inflated when 

data is shuffled before splitting to train and test sets, disrupting 

EEG signals’ temporal sequence. In contrast, methods like the time-
series cross-validation or leave-session-out approach better 

preserve temporal integrity, offering more accurate model 

performance evaluations. Utilizing deep learning for EEG-based 

MWL assessment could significantly improve IS functionality and 

adaptability in real-time based on user cognitive states. 
 

Index Terms— Cross-validation, Deep learning, EEG signals, 

Mental workload  

 

I. INTRODUCTION 

In this paper, we propose a systematic review and meta-analysis 

of current research on deep learning techniques for classifying 

mental workload (MWL) levels using EEG data. This review 

focuses on identifying opportunities, challenges, and best 

practices within the field. MWL describes the cognitive 

resources required to engage in a particular task and 

encompasses mental effort, cognitive engagement, and the 

overall demands on an individual’s cognitive system during task 

performance. MWL is crucial when designing and optimizing 

any system requiring human interaction, significantly affecting 

performance, safety, efficiency, and user satisfaction. It plays an 

important role in various aspects of human life, such as 

influencing attention disorders in children [1], driving fatigue 

[2], [3], and task performance [4]. 

An effective MWL prediction and management are crucial 

for optimizing human performance and preventing cognitive 

overload or underload. People may try harder and use different 

approaches when faced with challenges, which can lead to 

improved performance despite an increased workload. 
However, excessive workload can lead to decreased 

performance due to being distracted, having limited mental 

resources, and juggling too many tasks. On the other hand, a low 

workload can result in not paying attention, being less alert, and 

even falling asleep, which can also negatively impact 

performance [5]. Therefore, it is critical to find the right amount 

of work that helps people perform at their best without causing 

problems [6]. Specifically, MWL plays an indispensable role 

across all facets of information interaction, encompassing both 

retrieval and consumption. The workload level directly impacts 

the efficacy of Information Systems (IS), influencing the user’s 

capacity to effectively locate, comprehend, and apply the 

acquired information [7]. By comprehending and accurately 

predicting MWL, we can facilitate the creation of adaptive IS 

systems [8]. Innovative systems designed to align with the user’s 

cognitive state dynamically promise substantial improvements 

in productivity, precision, and user satisfaction [9]. To measure 

MWL level and determine whether it is too low, at a good level, 

or too high, we can use specific measurement tools, such as 

performance-based measures, subjective measures, 

physiological measures, and neurophysiological measures [10]. 
Performance-based measures assess performance on a task or 

set of tasks, such as the time it takes to complete a task or the 

number of errors made. A decrease in performance can indicate 

a high MWL [11], but performance-based measures can be 

affected by other factors, such as motivation and fatigue. 
Therefore, it is important to use them in conjunction with other 

measures, such as subjective measures and neurophysiological 

measures [12]. 
Subjective measures assess the participant’s own perception 

of their MWL using a questionnaire. The most commonly used 

questionnaires include the Task Load Index (NASA-TLX) [13], 
Subjective Assessment Technique (SWAT) [10], and the 

Workload Profile [14]. These multidimensional questionnaires 

measure the overall workload during task performance. They 

require participants to evaluate and articulate their workload. 
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However, subjective measures have some limitations. The 

boundary between too low and too high MWL is often blurred 

for some people, making it difficult to determine if the 

workload is excessive or inadequate [15]. Additionally, self-
reporting can be complex, difficult to understand, and 

influenced by the participant’s competence, talents, and effort, 

potentially increasing their MWL [16]. 
While physiological measures, such as electrooculography 

(EOG) [17], [18], electrocardiogram (ECG) [19], [20] heart rate, 

blood pressure, and skin conductance, are used to assess the 

body’s physiological responses to stress [21], they have 

limitations. For instance, EOG and ECG are non-invasive and 

portable, but they are not directly related to brain activity [22], 
[23]. Moreover, changes in physiological measures can be 

caused by physical exertion, emotional arousal, and 

environmental stressors [24], making it challenging to 

distinguish between MWL and other sources of physiological 

arousal. 
Despite these challenges, MWL assessment remains a 

valuable tool for researchers aiming to elucidate its 

characteristics. Thus, many have turned to neurophysiological 

measures to assess the activity of the brain and nervous system. 
Specifically, brain signal activity has been evaluated using 

various neuroimaging techniques such as 

magnetoencephalography (MEG) [25], functional magnetic 

resonance imaging (fMRI) [26], functional near-infrared 

spectroscopy (fNIRS) [27], and notably, electroencephalography 

(EEG) [17]. 
Each neurophysiological signal has its own set of advantages 

and limitations. For example, MEG and fMRI can measure brain 

activity and have high temporal and spatial resolution, 

respectively. Yet, they are not suitable for all environments, and 

they are not only cumbersome and expensive but also require 

specialized equipment [28]. fNIRS, which is relatively 

inexpensive and portable, can measure brain activity in 

different brain regions. However, it has low spatial resolution 

and is prone to blood flow and movement artifacts. EEG, which 

is also portable, can measure brain activity with a high temporal 

resolution, making it ideal for detecting subjects’ MWL levels 

in real-time. Among these methods, EEG is often the preferred 

method for measuring a subject’s MWL level, particularly in the 

context of human-computer interaction, due to its noninvasive 

nature and high temporal resolution, which enable millisecond-
scale measurements [29], [30]. Research also shows significant 

correlations between MWL and physiological factors derived 

from EEG data [31]. These findings enable continuous 

measurement and classification of MWL, facilitating the 

development of more responsive and adaptive IS. The ability to 

classify between MWL levels—low, medium, and high—is a key 

to understanding the effectiveness of IS [32]. 
Considerable progress has been made in this field as a result 

of previous notable review papers [33]–[41]. However, given the 

dynamic nature of this field, it is vital to stay updated with the 

latest findings, emphasizing the need for more current and 

inclusive research. In line with recent advances, sophisticated 

deep learning models have been designed to accurately capture 

variant characteristics within EEG signals, allowing for precise 

classification of an individual’s MWL levels [42]–[46], [162]. 
Despite the promising potential of deep learning for classifying 

MWL levels from EEG signals, its application is not without 

several inherent limitations. Therefore, this study aims to 

uncover challenges and opportunities in MWL level 

classification from EEG signals using a deep learning model, 

drawing on existing literature, aiming to address the following 

research questions (RQs): 
 

 RQ1: “What input formulations have been utilized 

for training deep neural networks in MWL 

classification?”; 
 RQ2: “What cross-validation procedures are 

appropriate for EEG signals in the context of deep 

learning for MWL levels classification?”; 

 RQ3: “What types of MWL classification problems 

have been addressed using deep learning 

techniques?” 
 

To investigate our RQs, we have gathered and analyzed peer-
reviewed publications focusing on deep learning for EEG-based 

MWL level classification to bridge this knowledge gap. Our 

review includes an examination of signal preprocessing, feature 

engineering, and model training methodologies employed in 

these studies. In addition, we discuss prospects, challenges, and 

directions for improvement in this area. The application of deep 

learning to EEG signals is usually hindered by small sample 

sizes, the absence of standardized protocols for data 

preprocessing, the lack of diversity in study populations, and 

difficulties with feature extraction and model training. 
Through our systematic review, we have provided a 

comprehensive picture of the state-of-the-art MWL assessment 

and classification, as well as its applications in information 

systems. Our review has also identified a notable inconsistency 

in methodologies, particularly in the EEG data preprocessing 

step. Furthermore, essential aspects of model training, 

especially the implementation of cross-validation techniques for 

EEG-based MWL classification—a critical step in machine 

learning techniques—have not been sufficiently addressed in 

existing research. Additionally, there is a lack of categorization 

and explanation of MWL classification from EEG signals using 

deep learning model problems; these problems include within-
subject, cross-subject, cross-session, cross-task, and combined 

cross-task and -subject issues. Their understanding is pivotal as 

they are intricately linked to the methodology, influencing the 



3 

ID TCDS-2023-0548.R1 

 

choice of cross-validation strategies used in model evaluation. 
This comprehensive approach will enable a deeper 

understanding of MWL classification using EEG signals, 

paving the way for more accurate and reliable research in this 

IS field. 

II. METHOD 

   In the initial stages of our research procedure, we 

developed comprehensive search strategies for each database. 
Recognizing the distinct characteristics and capabilities of each 

platform, we adapted our strategy to maximize their advantages. 
 

A. Search Strategies 

The search strategy for each database is customized based on 

specific attributes. Particularly, some databases do not support 

Boolean operators, exact phrase searches, or wildcard usage 

and impose restrictions on string length, the number of search 

terms, and Boolean logic usage. Consequently, we modify the 

search terms for each database to align with their unique search 

procedures. The comprehensive search technique is detailed in 

Table I. 
 

TABLE I 

THE SEARCH TERMS FOR EACH DATABASE 

 

Databases Search Terms 

ACM Digital 

Library 

AllField:(“deep learning” OR CNN OR RNN OR LSTM 

OR GRU OR “Reinforcement learning” OR 

Transformer*) AND AllField:((cognit* load*) OR 

(information load*)) AND AllField: (“EEG”) AND 

AllField: (Classif*) 

IEEE Xplore 

(“deep learning” OR CNN OR RNN OR LSTM OR 

GRU OR “Reinforcement learning” OR Transformer*) 
AND ((cognit* load) OR information load)) AND (“EEG”) 
AND Classif* 

ScienceDirect 

(“deep learning” OR “Reinforcement learning” OR 

Transformer) AND (cognitive load OR information 

load) AND (“EEG”) AND Classification 

Scopus 

(ALL (( “deep learning” OR cnn OR rnn OR lstm OR gru 

OR “Reinforcement learning” OR transformer* )) AND 

ALL ((( cognit* AND load* ) OR (information AND load* 
))) AND ALL (( “EEG”)) AND ALL (classif* )) 

Springer Link 

(“deep learning” OR CNN OR RNN OR LSTM OR 

GRU OR “Reinforcement learning” OR Transformer*) 
AND (cognit* load OR information load) AND (“EEG”) 
AND Classif* 

Wiley Online 
Library 

“(“deep learning” OR CNN OR RNN OR LSTM OR 

GRU OR “Reinforcement learning” OR Transformer*) ” 
anywhere and “(cognit* load* OR information load*)” 
anywhere and “(“EEG”)” anywhere and “Classif*” 
anywhere 

 

                                                           
1  https://dl.acm.org/ 
2  https://ieeexplore.ieee.org/Xplore/home.jsp 
3  https://www.sciencedirect.com/ 

B. Inclusion and Exclusion Criteria 

To ensure that the research focused on the effectiveness of 

deep learning models in classifying MWL levels using EEG 

signals, the eligibility criteria were based on the study’s 

objective, methodology, and publication date. The primary aim 

was to investigate how deep learning models can be utilized for 

this purpose; only scholarly articles reporting original research 

were considered. Articles on the proposed devices, review 

articles, encyclopedia entries, book chapters, conference 

abstracts, editorials, short communications, software 

publications, and articles without full texts or abstracts were 

excluded to maintain consistency. These databases—ACM 

Digital Library 1, IEEE Xplore 2, ScienceDirect 3, Scopus 4, 

Springer Link 5, and Wiley Online Library 6—were used to 

retrieve the papers. 

 

C. Data Extraction and Quality Assessment 

Fig. 1, PRISMA workflow summarises data extraction and 

quality assessment during the literature search process. The 

initial search yielded 3,220 articles. After excluding non-
research articles, 1,927 remained. Following title and abstract 

screening, 508 articles were identified as EEG-related, and 184 

were found relevant to the research questions. After full-text 

screening, 108 articles were found relevant to the research 

questions and were included in the study. 
 

 

4  https://www.scopus.com/search/form.uri?display=basic#basic 
5  https://link.springer.com/ 
6  https://onlinelibrary.wiley.com/ 
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Fig. 1. Prisma flow diagram for the systematic review detailing database 

searches, the number of abstracts screened, and the full texts retrieved. 

III. LITERATURE REVIEW 

 This study aims to advance our knowledge of EEG-based 

MWL classification in deep learning by investigating various 

neural network structures, training inputs, MWL issues, and 

appropriate cross-validation techniques. This section will start 

with the background of MWL, including its assessment and 

classification. We will also explore the interplay between MWL 

and IS to provide a comprehensive context. Following this 

foundational overview, we will proceed with a thorough 

systematic review of the relevant literature 

 

A. Mental Workload (MWL) 

The notion of MWL is understood by many, yet it can be 

challenging to articulate [47]. As a concept, MWL is essential in 

comprehending the cognitive demands placed on individuals 

during task performance. MWL is closely associated with stress 

and strain, reflecting two aspects of our interaction with 

challenging tasks [48]. Stress refers to the external challenges 

that drain our mental resources, such as the complexity of the 

task, time pressure, environmental conditions, and the need to 

juggle multiple tasks [49], [50]. Strain, on the other hand, 

represents how we process, manage, and adapt to the stressors 

of the task, which is demonstrated through the use of cognitive 

skills such as memory and planning, as well as our accumulated 

experience [51], [52]. Therefore, achieving an optimal balance 
between demands and cognitive resources is crucial when 

managing MWL effectively. This is because the MWL 

significantly impacts cognitive strain, which can greatly 

influence an individual’s productivity and overall performance. 
MWL is evident in various areas of life, impacting everything 

from children’s attention spans to the design of educational 

programs [53], [54], from driving fatigue [2], [3] to performance 

across a broad spectrum of fields [4]. Research studies, such as 

Young et al. [15], have shown that excessive workloads often 

lead to decreased performance and increased errors. This is 

consistent with Kahneman’s resource model [55], which 

suggests that our cognitive resources are limited. The graph in 

Fig. 2 illustrates the relationship between MWL and 

performance. The x-axis represents MWL, while the y-axis 

represents performance. Performance improves as MWL 

increases, but only up to a certain point, after which it begins to 

decline, forming an inverted U-shaped curve. The optimal MWL 

varies depending on the complexity of the task at hand; simpler 

tasks may require a lower MWL, while more complex tasks 

may demand a higher one. To understand the intricacies of 

MWL, it is crucial to employ precise measurement tools. 
Methods such as analyzing performance metrics and 

administering questionnaires have advantages and limitations. 

However, EEG signals have recently emerged as a preferred 

method for assessing MWL levels in human-computer 

interaction contexts. This is largely due to its non-invasive 

nature and high temporal resolution, allowing millisecond-level 

measurements [29]. Additionally, EEG signals have been found 

to correlate highly with a person’s real-time MWL status [56], 
making it a valuable measuring tool for MWL research. 
However, these signals are often noisy and time-varying, which 

poses challenges for EEG-based MWL assessments.  
 

 
Fig. 2. The relationship between activation level, workload (task demands) and 

performance (adapted from de Waard 1996) 

 

B. MWL Assessment 

1) Performance Metrics  

Measuring an individual's MWL is crucial, particularly in 

safety-critical scenarios such as driving. Typically, this involves 

assessing task performance, which is vital for evaluating the 

effectiveness and efficiency of an individual's abilities. Direct 

task performance measures are useful for determining an 

individual's MWL by assessing their performance on the 

primary task. For example, in a driving scenario, errors in 

steering or inconsistencies in following distance can indicate a 

higher MWL. Additionally, monitoring attention and workload 

from a primary task can be done by assessing performance on a 

secondary task, such as responding to peripheral visual signals, 

while performing the primary task. As MWL increases on the 

primary task, performance on the secondary task declines [15]. 
One effective tool for assessing MWL in driving is the 

peripheral detection task (PDT), which measures response times 

and missed signals to visual cues. The PDT [57] is a secondary 

task measure of MWL and visual distraction. With the PDT, 

drivers must respond to random targets presented in their 

peripheral view. It specifically assesses an individual’s ability to 

detect and respond to stimuli presented in peripheral vision 

while engaged in a primary task, such as driving. During the 

primary task, if an individual’s MWL is high, their ability to 

process peripheral information decreases. So, if the participant’s 

MWL is high during the primary task (i.e., driving), their 

response times to the LED light will increase, and they may 

miss more signals. This change in PDT performance is used to 

infer the level of MWL the participant is experiencing [15]. In a 

study examining the impact of mobile phone conversations 

(hands-free and handheld) on driving performance in various 
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traffic environments, it was found that the complex urban 

environment presented the most demanding MWL, even 

without phone use, as indicated by significantly poorer 

performance [50]. Another widely used method for measuring 

participants’ MWL is cognitive tasks such as the n-back task 

[58]. The n-back task is a commonly used tool for MWL 

assessment and involves presenting participants with a 

sequence of stimuli such as letters, numbers, spatial positions, 

or sounds. Participants must identify whether the current 

stimulus matches the one presented “n” steps earlier in the 

sequence. The “n” factor can vary. Increasing numbers indicate a 

more demanding task, with common iterations including 1-
back, 2-back, and 3-back. Performance in the n-back task is 

assessed based on the accuracy of the responses, the percentage 

of correct recognition of both targets and non-targets and the 

reaction times for correct responses. An interesting pattern 

emerges as the task’s difficulty escalates: accuracy typically 

decreases and response times lengthen, indicating an increased 

MWL [59]. Performance metrics are essential for measuring the 

effectiveness of a system or task. Common performance metrics 

include response time, completion time, efficiency, 

engagement, accuracy, and error rate [60]. 
 

2) Subjective Assessment 

A self-report questionnaire is another method for measuring 

MWL, unlike an objective measure, which infers workload 

from task outcome. NASA-TLX [13], [61] is a widely used 

questionnaire that helps evaluate participants’ workload after 

performing a task. The questionnaire measures six different 

subscales of workload, including mental demands, physical 

demands, temporal demands, performance, effort, and 

frustration. Each subscale is rated on a 100-point scale with 5-
point increments. The raw score obtained from the first part is 

then subjected to a weighting process via a pairwise comparison 

of subscales, where participants choose the subscale they 

perceive to be more relevant to their workload. The frequency 

of subscale selection serves as a weight for that subscale, which 

is multiplied by the participant’s rating on each respective 

subscale to compute a weighted score for that subscale. The 

weighted scores are subsequently aggregated and divided by 15 

(the number of paired comparisons) to derive an overall TLX 

score that reflects the participant’s workload. SWAT [10] is a 

simpler alternative to NASA-TLX. It assesses participants on 

three subscales: time load, mental effort load, and psychological 

stress load. Participants choose from three levels—low, medium, 

and high—for each subscale. Another tool available for 

subjective MWL assessment is the Workload Profile (WP) 
questionnaire [14]. This tool evaluates MWL by asking 

individuals to assess the demand placed on them across eight 

distinct dimensions. These dimensions include 

perceptual/central processing, response selection and execution, 

spatial processing, verbal processing, visual processing, 

auditory processing, physical efforts related to manual tasks, 

and speech production. By gathering ratings on these 

dimensions, the WP questionnaire offers a comprehensive 

profile of the workload, highlighting how it is distributed across 

various cognitive and physical resources, providing a more 

nuanced understanding of workload beyond the overall 

intensity of demand.  
While self-reporting can offer valuable qualitative feedback 

on a participant's experience, it is inherently subjective and can 

be influenced by factors such as the participant's mood, 

willingness to provide honest responses, and ability to self-
assess. Furthermore, self-reporting may increase participants' 

MWL, especially in studies where participants are required to 

rate their MWL level after completing a task and immediately 

engaging in another task. 
 

3) Physiological Measures and Neurophysiological 

Measures 

Various physiological measurements are commonly used to 

assess MWL. For example, electrocardiac and cardiovascular 

activity can be measured from heart rate (HR), heart rate 

variability (HRV), and blood pressure (BP). However, the 

effectiveness of these measures can vary depending on the 

nature of the task being performed.  
In a recent study, Mach et al. [62] found that HR can be a 

suitable indicator of MWL under certain conditions. During the 

study, participants performed various tasks with varying levels 

of mental effort while their HR was monitored. The researchers 

observed that HR increased with MWL when participants were 

sitting but not walking. This could be explained by the fact that 

physical exertion from walking can raise HR even without 

mental exertion. Thus, while HR is a reliable indicator of MWL 

when participants are stationary, its validity diminishes when 

they are mobile.  
HRV is another important measure of the heart’s rhythm, and 

recent research has shown that it changes during periods of 

stress. Specifically, the part of HRV linked to relaxation tends 

to decrease, while the ratio indicating stress increases. 
Interestingly, while blood pressure also increases during 

stressful tasks, it does not fully return to baseline even after a 

break, particularly the diastolic pressure (the lower number in a 

blood pressure reading). These findings suggest that HRV may 

be a more sensitive and accurate indicator of mental stress than 

blood pressure, which can be influenced by physical factors 

such as muscle activity. This highlights the importance of 

considering HRV as a potential biomarker for stress in both 

clinical and research settings [63]. Although some studies have 

shown increased blood pressure with harder tasks, others have 

reported mixed results [21]. Blood pressure has limitations in 

measuring MWL because it does not consistently rise with the 

complexity of tasks. Therefore, other measures such as HR and 

HRV may be more suitable for assessing MWL than blood 
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pressure.  
Another measure adopted is respiratory measures such as 

respiration rate, which indicates the number of breaths per unit 

of time. The respiratory pattern is expected to change with an 

increase in MWL, resulting in slower and deeper breathing [64]. 
In a recent study, raw photoplethysmogram (PPG) data was 

collected to reconstruct respiratory signals while participants 

performed tasks. Using the respiratory pattern, the study 

effectively classified the MWL level [64].  
Eye-tracking measures are also well-established for assessing 

MWL. These measures are based on eye activities such as blink 

rate, blink closure rate, gaze angle, pupil size, diameter, and 

pupillary responses. In a recent study [65], pupil diameter and 

gaze entropy were used to distinguish differences in workload 

between task difficulty levels. The study found that both metrics 

increased as task difficulty levels increased. However, it should 

be noted that this method has a key drawback, in that it is 

unresponsive after overload occurs and is highly sensitive to 

changes in environmental illumination [66].  
Despite these challenges, MWL assessment remains a 

valuable tool for researchers aiming to elucidate its 

characteristics. Thus, many have turned to neurophysiological 

measures to assess the activity of the brain and nervous system. 
The signal used such as EOG [17], [18] and ECG [19], [20], as 

alternative measurement methods. Specifically, brain signal 

activity has been evaluated using various neuroimaging 

techniques such as MEG [25], fMRI [26], fNIRS [27], and 

notably, EEG [17].   
Each neurophysiological signal has its own set of advantages 

and limitations. For instance, EOG and ECG are non-invasive 

and portable, but they are not directly related to brain activity 

[22], [23]. On the other hand, MEG and fMRI are capable of 

measuring brain activity and have high temporal and spatial 

resolution, respectively. Yet, they are not suitable for all 

environments, and they are not only cumbersome and expensive 

but also require specialized equipment [28]. fNIRS, relatively 

inexpensive and portable, can measure brain activity in 

different brain regions. However, it has low spatial resolution 

and is prone to blood flow and movement artefacts.  
EEG, which is relatively inexpensive and portable, can 

measure brain activity with high temporal resolution, making it 

ideal for detecting subjects’ MWL levels in real-time. Among 

these neurophysiological signals, EEG is frequently preferred 

in human-computer interaction contexts due to its non-invasive 

nature and high temporal resolution, allowing for millisecond- 
scale measurements [29]. Its popularity is further enhanced by 

its strong correlation with a person’s real-time MWL status [56].  

 

C. MWL Classification 

Classifying MWL levels using physiological or 

neurophysiological measures requires precise labels for each 

response category. This can be done through two primary 

methods. Firstly, the self-report measures, as described in 

Section III-B2, involve participants providing their subjective 

assessments of their MWL levels using a questionnaire. This 

approach provides valuable insight into participants’ own 

perceptions of their MWL levels. Then, participants’ 
physiological data can be classified into discrete levels of MWL 

— low, medium, or high — and any changes or patterns in the 

data can be observed. Mapping this objective measure against 

self-reported data helps us better understand the correlation 

between personal experience and physiological and 

neurophysiological markers of workload.  
Task design offers an alternative yet equally systematic 

approach. In this method, researchers meticulously craft tasks 

expected to elicit varying levels of MWL. These tasks are 

typically employed during calibration to establish the baseline 

or reference point for low, medium, and high MWL levels. For 

example, a straightforward task is used to establish a baseline 

(low workload), a more intricate task for a medium workload, 

and the most challenging task for a high workload. The ensuing 

physiological and neurophysiological responses induced by 

these tasks help us to construct a profile of what low, medium, 

and high MWLs look like for each individual.  
In practical applications of these concepts, the n-back task, a 

well-established cognitive challenge, is often adjusted to induce 

varying levels of MWL. In this study [67], researchers modified 

a standard n-back task to create different levels of cognitive 

demand. The 1-back version represented a low cognitive load, 

while the 3-back represented a high cognitive load. During the 

experiment, while participants performed the tasks, their 

photoplethysmogram (PPG) signals were recorded and analyzed 

to reveal patterns in blood flow and respiration to the imposed 

cognitive demands.  
Building further on this empirical foundation, recent studies 

have demonstrated an inclination towards using multifaceted 

criteria to gain a more nuanced understanding of MWL. In 

recent work, researchers have employed more than one criterion 

to categorize subjects’ MWL. For instance, in one study [68], 
they utilized both task design (the 1-hour computerized letter 

recognition task) and questionnaires (the visual analogue scale 

of fatigue and the NASA-TLX) to categorize MWL. The task 

design induced an MWL of a certain intensity, while the 

subjective questionnaires allowed participants to self-report 

their perceived stress level or workload. The monitored 

physiological signal was the ECG from which heart rate 

variability (HRV) was derived and blood pressure waveforms 

captured using the finger volume clamp method. Combining 

these methods provides a more comprehensive assessment, as 

the task design ensures that MWL is being imposed.  
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Simultaneously, the questionnaires measure the participants’ 
subjective experience, which can vary individually.  
Researchers can create models that predict MWL levels based 

on physiological or neurophysiological data by combining 

subjective and objective measures. These models can be more 

accurate because they consider the individual variability in 

physiological or neurophysiological responses to MWL. This 

can be useful for tailoring assessments to the individual and for 

training classification models.  

 

D. MWL and Information System 

MWL, or the extent of cognitive resources required to 

complete a task, can range from low, requiring minimal 

cognitive effort, to high, exceeding an individual’s cognitive 

capacity, potentially resulting in errors, a decline in 

performance, and stress [61], [69]. In the context of IS, which 

consists of hardware, programs, data, procedures, and people 

that operate together to produce information that supports the 

operation and management functions of an organization [70], 
addressing MWL is essential for enhancing user interfaces, 

optimising algorithms, and promoting usability [32]. A search 

interface with excessive information or intricate layouts can 

produce a high MWL [71], leading to user frustration and 

hindering search efficiency [72]. On the contrary, a well-
designed search system within an IS that swiftly and accurately 

produces relevant results can diminish MWL, thus enhancing 

user satisfaction [73]. Understanding user MWL during the use 

of IS is crucial to improving overall system efficiency, ensuring 

universal accessibility, and driving beneficial design changes. 
Several challenges, such as inefficient information retrieval, 

complex user interfaces, irrelevant search results, slow response 

times, privacy concerns, and inaccurate or incomplete data, can 

intensify MWL [74]. These factors underline the necessity for 

continuous refinements in the design and functionality of IS 

[75].  
Effective management of MWL within the scope of IS is 

crucial in optimizing user interfaces, enhancing algorithms, and 

elevating user satisfaction [76]. In the broader context of 

designing and operating adaptive systems, managing MWL 

becomes even more crucial, as it directly influences user 

experience and system performance. Emerging technologies, 

such as EEG and deep learning, offer great promise for the 

future. These tools can predict a user’s MWL, enabling IS to be 

better adapted in real-time to the cognitive state and needs of 

the user.  

 

E. Data Preprocessing 

EEG features often display significant differences in scale, 

which can introduce bias in subsequent analyses. For example, 

the disproportionately large magnitude of theta waves 

compared to gamma waves may lead to an undue influence on 

model outcomes [77]. Additionally, the wide variability in EEG 

feature values can negatively affect the model classification 

performance [78]. Although data scaling techniques have been 

employed to transform features to a unified scale, there is no 

consensus on the most suitable scaling method. Researchers 

have utilized various techniques, such as z-score 

standardization [4], [53], [79]–[81], robust scaler [82], decibel (dB) 
conversion [77], and innovative algorithms, such as filter bank 

common spatial pattern (FBCSP) and optimal spatial-temporal 

pattern (OSTP) [83]. Nonetheless, the absence of a universally 

accepted approach and rigorous comparisons between these 

techniques may limit the generalizability of the findings. This 

led us to examine the general procedure of feature engineering, 

which is essential for creating effective models. 

To answer RQ1: “What input formulations have been 

utilised for training deep neural networks in MWL 

classification?”, this section focuses on the various strategies 

and deep learning models used for feature extraction, along 

with relevant references. In situations where a model serves 

both extraction and classification functions, feature extraction 

is prioritised. 
 

1) Data Scarcity in EEG-based MWL Levels 

Classification 

To train deep neural networks for MWL classification, 

thorough consideration must be given to data preparation, 

including data transformations and feature extraction, as these 

constitute the final input dataset. The limited availability of 

EEG-based MWL sample datasets presents substantial 

difficulty. Confidentiality and ambiguous factors inhibit the 

sharing of laboratory-collected EEG data, frequently resulting 

in a deficiency of models. This lack of data can result in subpar 

performance and over- or under-fitting problems. 
While data augmentation techniques, such as shift, scale, 

rotation, and reflection, are commonly employed in machine 

learning to mitigate the problem of inadequate data, these 

methods are incompatible with continuous EEG signals. They 

tend to disrupt the signals’ temporal characteristics [84]. 
Moreover, adding noise is also inadvisable due to the high 

randomness and temporal variability of the signals, potentially 

leading to local reformatting of EEG data.  
Upon reviewing recent literature, several innovative 

approaches emerge, each attempting to tackle the issue of 

limited EEG samples differently. Sun et al. [85] developed a 

shallow version of a CNN called WLnet to detect EEG signal 

patterns. Compared with algorithms such as common spatial 

pattern feature extraction, temporally constrained sparse group 

spatial pattern feature extraction, and EEGnet, WLnet 

outperformed them in terms of detection accuracy under stress 

and non-stress conditions. Zhang et al. [86] utilized transfer 

learning as an alternative approach to address the problem of 

insufficient EEG data. Using a pre-trained Inception-v3 model, 

a CNN designed for image analysis and object detection 
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allowed them to extract relevant features from the EEG data. 
They converted the 1D EEG signal into image-like data using 

a recurrence plot (RP) to train the model. While this study 

demonstrates the potential of transfer learning for MWL 

classification, it raises questions about the efficiency and 

scalability of converting 1D signals to image-like data and the 

possible loss of information during this process. Chavarriaga et 

al. [87] underscored the difficulties associated with labelling 

cognitive state data, arguing that existing computational 

models with limited label information for engagement 

assessment perform poorly due to overfitting. They explored a 

method that involved pre-training several deep learning 

models with unlabeled data and fine-tuning them with 

different proportions of labelled data (top 1%, 3%, 5%, 10%, 

15%, and 20%). The goal was to discover new representations 

for engagement assessment. The results showed that the 

engagement assessment performance of the new data 

representations was comparable to the original EEG 

characteristics. 
A thorough analysis of these studies reveals a progression in 

developing novel strategies to address the challenges posed by 

limited EEG samples in MWL classification. Approaches such 

as developing shallow CNNs, transfer learning, and pre-
training with unlabeled data offer promising avenues for 

future research. 
 

2) Deep Learning for EEG Feature Extraction 

In the machine learning and deep learning domains, 

addressing the challenges associated with high-dimensional 

data, such as multi-dimensional EEG signals, is important. 
While recent studies have made significant improvements to 

mitigate computational demands by feature engineering and 

identifying robust sets of features that enhance model 

performance in subsequent analyses, this review critically 

analyses these approaches, identifying their benefits, 

limitations, and possibilities for future research. This study 

seeks to uncover technological advances, methodological 

biases, and challenges in current EEG feature extraction 

methodologies.  
Firstly, manual feature extraction is the traditional method 

that people in the machine learning area have used. However, 

one of the biggest challenges of this method is that it is time-
consuming and labour-intensive in practical applications. 
Nevertheless, this approach facilitates a critical assessment of 

which feature set and classifier best suit a specific dataset [88]. 
Hand-crafted feature engineering relies heavily on meticulous 

preprocessing work and advanced domain knowledge [89], 
making model performance dependent on the quality of feature 

selection techniques. The types of features extracted vary across 

studies, illustrating the adaptability of these methodologies. 
Mohamed et al. [77] concentrated on time- and frequency-domain 

features, while Diaz et al. [90] focused exclusively on frequency-

domain and predefined features predicated on the potential of 

the theta frequency band for assessing MWL. Similary, Wu et 

al. [91] utilized the wavelet packet transform to decompose EEG 

signals into gamma, theta, alpha, and beta bands, employing the 

combined representation of the power spectrum curve area as 

the optimal features for assessing pilots’ mental status. 
Likewise, Chen et al. [92] implemented Wavelet packet 

decomposition to identify the most promising frequency band 

for evaluating mental load and incorporated the Hilbert-Huang 

transform algorithm in their analysis. Consequently, these 

techniques enable comprehensive exploration and 

understanding, albeit at the expense of time and potentially 

losing some pertinent data. 
 

a) CNN for EEG feature extraction 

To avoid the mentioned problems, recent advancements 

are focusing on using end-to-end deep neural networks with self-
adaptive feature learning capabilities. These advancements aim 

to address the challenge of automatic feature recognition more 

effectively. CNN, renowned for its success in image 

classification tasks, has emerged as a prevalent choice in EEG 

signal processing. CNN filters, serving as feature detectors, 

have shown effectiveness in directly capturing features from 

EEG signals. However, their application in EEG processing, as 

highlighted in Cao et al.’s study [93], needs careful analysis of 

the signal’s distinctive properties compared to standard image 

data. In a comparative analysis, Almogbel et al. [80] used raw 

EEG signals, without pre-processing, as input for a CNN model. 
The capacity of this model to automatically extract relevant 

information from EEG data is a major advancement in the 

identification of different levels of cognitive workload. 
 

b) 1D, 2D, and 3D CNNs 

Zhang et al. [79]’s introduction of a one-dimensional 

CNN (1D-CNN) to capture frequency band information from 

EEG signals represents a pivotal development. Their 

architecture consists of various filter lengths, which capture 

information from different frequency bands. In this work, the 

authors posited that automatic feature extraction is superior to 

hand-crafted feature engineering because all the useful 

information is retained in the original data without distortion. 
The 1D-CNN model has also been employed in several studies 

[3], [53], [82], [94]–[96] to discover patterns in EEG signals and 

automatically assess the cognitive state of subjects. While 1D-
CNN shows proficiency in capturing frequency band 

information, its comparability to multidimensional CNNs in 

terms of accuracy and efficiency remains under-explored. The 

adaptability of 2D and 3D CNNs opens up new avenues in EEG 

analysis and introduces complexity in data transformation and 

interpretation. The research by Qayyum et al. [97] utilizes a pre-
trained 2D-CNN for analyzing EEG signals related to human 

mental states during repetitive multimedia learning tasks. To 
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accommodate the 2D-CNN, the one-dimensional EEG signals 

were reshaped into two dimensions. This transformation was 

achieved through the short-time Fourier transform method, 

which enabled the 2D-CNN to extract significant information. 
The alpha brain wave, a key feature, was observed to display a 

uniform pattern across various cognitive tasks. Meanwhile, 

Kwak et al. [98], [99] reshaped the one-dimensional EEG signal 

into a 3D EEG image to allow the constructed 3D CNN to learn 

spectral and spatial information over the scalp. In this approach, 

multilevel features are retrieved in each layer of the proposed 

model, and each extracted feature is multiplied by a weighting 

factor to determine its usefulness in predicting the target 

variable. 
 

c) Hybrid CNN architectures 

Diverse aspects of signal analysis have been addressed 

by a number of CNN-based designs proposed in the literature to 

improve feature extraction. While some models, such as 1D-
CNN, focus solely on the temporal aspect of the signal, others, 

such as 3D-CNN, take spatial and spectral aspects into account. 
Nevertheless, it is essential to recognise that existing models 

have certain limitations. In light of these limitations, researchers 

have embarked on the development of hybrid CNN 

architectures to capture EEG signals more effectively. For 

example, a ternary-task convolutional bidirectional neural 

turning machine (TT-CBNTM) for analysing the cognitive states 

of subjects was proposed in [100]. The TT-CBNTM is built 

around two basic model architectures: CNN and bidirectional 

neural turning machines (BNTM). The suggested model 

considers EEG variables from spatial, spectral, and temporal 

dimensions. The CNN section examines the spatial and spectral 

characterization of EEG, after which the recovered temporal 

information is supplied to the BNTM part. A neural network 

architecture that combines CNN and BiLSTM networks was 

proposed by Dewan et al. [101] to capture both spatial and 

temporal features from sequential data, such as time series or 

spatial data. The main idea behind combining CNN and 

BiLSTM in Conv-BiLSTM-NN is to leverage the strengths of 

both models. CNNs excel at extracting spatial patterns and 

features, while BiLSTM networks are proficient in modelling 

sequential dependencies and capturing temporal dynamics. By 

combining these two components, Conv-BiLSTM-NN aims to 

effectively capture both spatial and temporal information, 

enabling comprehensive analysis of the input data. In addition, 

Zhang et al. [102] also investigated the spatial and temporal 

dimensions of EEG signals and introduced a novel model, a 

two-stream neural network (TSNN), to autonomously integrate 

spectral and temporal EEG data. The results demonstrated that 

the TSNN extracted meaningful information from both EEG 

dimensions, thereby enhancing the evaluation of MWL. The 

hybrid CNN architectures represent an innovative fusion of 

methodologies and provide promise in integrating spatial, 

spectral, and temporal data, yet their real-world applicability 

and implementation complexity merit further investigation. The 

development and application of various CNN architectures, 

including 1D, 2D, and 3D CNNs, as well as hybrid models, 

have significantly advanced the field of EEG signal analysis. 
These models enable researchers to automatically extract 

features and assess the cognitive state of subjects more 

accurately and efficiently than traditional hand-crafted feature 

engineering methods. 
In addition to developing and applying various CNN 

architectures that have significantly advanced EEG signal 

analysis, researchers have also explored alternative approaches 

to enhance feature learning further. A novel restricted 

Boltzmann machine (RBM) architecture has been employed in 

[103] and [84] for unsupervised feature learning of EEG signals, 

aiming to identify salient features for categorization. To pre-
train the RBM model, the mean absolute difference (MAD) 
features were utilized. Building upon the need for improved 

spatial precision, Chakladar et al. [104] highlight the issue of 

limited spatial precision in EEG signals, leading to suboptimal 

classification results. To address this, they propose a deep 

variational autoencoder (VAE) combined with a spatial 

attention-based approach (CBAM) to improve EEG spatial 

resolution and derive noise-free robust features from latent 

space for better classification. CBAM extracts spatial-channel 

level attention features from localized VAE signals in 

topographical videos. Similarly, Saha et al. [105] emphasize that 

EEG signals are channel-based temporal-spatial signal 

sequences, and some brain regions are more deeply involved 

than others, resulting in EEG oscillations that require further 

research and improvement. To tackle these issues, they 

introduce a region-dependent and attention-driven bi-directional 

long short-term memory (RA-BiLSTM) to encode region-level 

features for classification. 
The multi-branch long short-term memory with 

hierarchical temporal attention (MuLHiTA) [106] was designed 

for detecting MWL at an early stage. This model employs a 

unique strategy that enables parallel processing of interslice and 

interslice EEG samples by integrating two attention modules 

that are mutually advantageous. More precisely, the model was 

designed to analyze both the characteristics within individual 

segments of the EEG signal (interslice features) and the 

relationships or differences between different segments of the 

EEG signal (interslice features). This can provide a more 

comprehensive analysis of the EEG data. 
Yin et al. [107] put forward a transfer learning-based 

method to extract the dynamic properties inherent in EEG 

signals. This approach uses a large EEG dataset, gathered in the 

context of emotional stimuli, to enhance the model’s training 

stability with the help of a transferred MWL classifier. In 

another development, a unique feature creation network 

reported in [108] was able to identify the dynamic centre-based 

binary pattern (DCBT) and a multi-threshold ternary pattern 

(MTTP) within EEG signals. To further understand the 
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interconnections among signal channels, frequency-domain 

features were employed, leading to the proposal of multi-
channel networks and multi-threshold networks, as indicated in 

[109] and [110], respectively. This entailed the transformation of 

EEG time data into the frequency domain using spectrograms, 

which paved the way for the development of multi-channel and 

multi-threshold networks based on spatial distances. The 

networks were classified according to their structural properties. 
In addition, Ahmadi et al. [111] developed a novel characteristic 

known as the Gaussian copula mutual information (GCMI). This 

characteristic, computed from wavelet EEG coefficients, served 

to determine the relationships between various brain regions. 
Nevertheless, the fine-grained and multi-scale motif (FGMSM) 
method for feature extraction from raw EEG data was 

introduced by Shao et al. [112]. The method involves identifying 

patterns in the data at various time scales. By doing so, FGMSM 

aims to extract more pertinent information from the EEG 

signals, thereby enhancing the model’s capacity to account for 

cross-subject variations. 
The utilization of deep learning methods, particularly 

CNN and their variants, for EEG feature extraction, has shown 

promising results, as these techniques enable automatic and 

robust feature recognition. Hybrid CNN architectures and other 

advanced models, such as the restricted Boltzmann machine 

(RBM) and variational autoencoder (VAE), have further 

enhanced the process by accounting for spatial, spectral, and 

temporal dimensions of EEG signals. These advancements 

signify a paradigm shift from traditional manual feature 

extraction to automated approaches, enabling more efficient 

and comprehensive analysis of EEG data to evaluate subject’s 

MWL levels. 
In conclusion, feature extraction in EEG signal analysis 

is trending towards more sophisticated, automated techniques 

that take advantage of the most recent developments in deep 

learning. To be more precise, the new model aims to undertake 

a more thorough analysis by capturing spatial, spectral, and 

temporal dimensions [104]. In contrast, the previous model only 

captures one dimension, such as the frequency band, which is 

spectral dimension [79]. This change creates new opportunities 

for investigation and use in studying intricate brain functions. 
These studies collectively underscore the dynamic and 

expanding field of EEG research, showcasing the potential of 

advanced computational techniques to enhance understanding 

and application of brain activity data. 
 

TABLE II 

OVERVIEW OF INPUT FORMULATIONS IN DEEP NEURAL 

NETWORK FOR MWL CLASSIFICATION 

 

Input Formulation  References 

Raw EEG Signals [80] 
Transformed EEG Signals using CNNs  

 1D-CNN (Time-series Data) 
[79], [94], [53], [95], [96], 
[3], [82] 

 2D-CNN (Spectrograms) [97] 

Input Formulation  References 

Raw EEG Signals [80] 

 3D-CNN (3D EEG Images) [98], [99] 

 CNN Hybrid Models (CNN-LSTM)  [100], [101], [102] 

Feature-based Inputs  

 Time/Frequency Domain Features [77], [90] 

 Wavelet Transform Features  [91], [92] 

 Multi-Channel/Threshold Features [109], [110] 

 Features via Transfer Learning  [86], [107] 
Advanced Model Features  

 Unsupervised Learning (RBM) [103], [84] 

 Spatial Precision (VAE with CBAM) [104] 

 Temporal-Spatial (RA-BiLSTM) [105] 

 Temporal Attention (MuLHiTA) [106] 

 Transfer Learning (Dynamic Properties) [107] 

 Dynamic Pattern Features [108] 

 Fine-Grained Motifs (FGMSM) [112] 

 

Table II provides a concise overview of various input 

formulations used in deep neural networks for MWL 

classification. It highlights the progression from basic raw EEG 

signals to sophisticated model features, illustrating the evolving 

application of deep learning in EEG data analysis. 
 

F. Cross-Validation in MWL Classification 

To answer RQ2: “What cross-validation procedures are 

appropriate for EEG signals in the context of deep learning 

for MWL level classification?”, this section will discuss the 

various cross-validation strategies used in the context of EEG 

data and deep learning. In the case of EEG data, the proper cross-
validation technique can considerably improve a model’s 

predictive ability, making it a crucial step in classifying MWL 

levels.  
Cross-validation is an essential technique for evaluating deep 

learning models and assessing their performance [113]. Various 

cross-validation methods have been developed, including Hold-
out, K-folds, Leave-one-out, Leave-p-out, and Repeated K-folds, 

each with its algorithm. The choice of cross-validation method 

depends on the experimental goal, which may be subject-
dependent, task-dependent, or session-dependent.  

1) Hold-Out Cross-Validation 

Starting with the hold-out cross-validation, this 

straightforward technique splits the dataset into training and 

testing parts, typically in an 80:20 ratio. The model is trained 

and validated only once, with the limitation that performance 

may be inaccurate if the training and testing datasets have 

different characteristics. Fig. 3 demonstrates the data splitting 

process into training and testing sets employed in hold-out 

cross-validation. For a more robust evaluation, researchers 

often turn to K-fold cross-validation. 
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Fig. 3. Hold-out cross-validation technique 

2) K-fold Cross-Validation 

Building upon the hold-out cross-validation technique, the K-
fold cross-validation technique randomly divides the dataset 

into K equal non-overlapping parts or folds. Common values for 

K are 5 or 10, with one fold reserved for testing and the 

remaining K − 1. As illustrated in Table III, the K-fold cross-
validation technique appears to be the most popular, and 

various studies have utilized it. However, partition strategies 

vary across studies. For instance, in the study by Yang et al. [4], 
the data from all subjects were combined, shuffled, and then 

randomly divided into subsets to establish a subject-generic 

paradigm. On the other hand, the study conducted by Zeng et al. 
[114] adopted a task-generic paradigm, where data from 

different tasks were mixed before performing K-fold cross-
validation on each subject. This approach allowed for the 

combination of data from different tasks and subjects, ensuring 

generality across both subjects and tasks in their study [114]. Fig. 
4 demonstrates the data splitting process into training and 

testing sets, as employed in K-fold cross-validation. 
 

 

Fig. 4. K-fold cross-validation technique 

3) Leave-One-Out Cross-Validation 

Leave-one-out cross-validation (LOOCV), a variation of the 

K-fold cross-validation, uses the number of samples in the 

dataset (n) as the number of folds (K). One sample or subject is 

selected as the test set, while the remaining n − 1 samples form 

the training set. While LOOCV requires the building of n 

models instead of K models, thereby increasing computational 

overhead, its precision can prove invaluable in specific 

scenarios. Variants of LOOCV, such as Leave-subject-out, 

Leave-session-out, and leave-task-out cross-validation, have 

been developed to address specific experimental objectives. 
a)  Leave-subject-out cross-validation  

The leave-subject-out cross-validation, a popular choice for 

cross-subject classification model evaluation, reserves data 

from one subject for testing while the rest are combined for 

training. This procedure is repeated until each subject is used at 

least once as a testing subject [42], [78], [115]–[118]. Fig. 5 

demonstrates the data splitting process into training and testing 

sets, as employed in leave-subject-out cross-validation. To better 

suit different contexts, adaptations like leave-session-out cross-
validation have been introduced. 

 

 

Fig. 5. Leave-subject-out cross-validation technique 

b) Leave-session-out cross-validation:  
Applicable when training and testing EEG signals are 

recorded in separate sessions or days, this strategy reserves one 

session for testing and uses the remaining sessions for training 

[80], [85]. Another LOOCV variant, Leave-task-out cross-
validation, focuses on tasks themselves for data separation. 

c) Leave-task-out cross-validation:  
This approach involves selecting training and test data 

from different tasks [112], [119]. The dataset is divided into two 

subsets: a training set and a test set, with separation carried out 

randomly or based on specific rules. As an alternative to these 

LOOCV variants, leave-p-out cross-validation has been 

proposed. 
 

4) Leave-p-Out Cross-Validation 

Leave-p-out cross-validation (LPOCV), a method similar to 

LOOCV, reserves p samples/subjects for testing instead of just 

one. The remaining n − p subjects are used for training [120]. 
Unlike K-fold and LOOCV, which have independent test sets in 

each iteration, some parts of the testing set might overlap in 

LPOCV, potentially causing the model to remember the 

training set pattern. Other methods, such as Monte Carlo cross-
validation, have been explored to address these limitations. 

 

5) Monte Carlo Cross-Validation 

Monte Carlo cross-validation, also referred to as repeated K-
fold cross-validation or repeated random sub-sampling cross-
validation, is a variation of the K-fold method that aims to 

address some of its limitations. In this approach, the model is 

trained for a specified number of iterations, denoted by k. 
During each iteration, the data is randomly divided into training 

and testing sets, which can lead to certain data points appearing 

multiple times in the test set or not appearing at all. This 
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characteristic of Monte Carlo cross-validation introduces a 

degree of randomness that can help mitigate potential biases 

present in the data.  
Saha et al. [105] adopted the Monte Carlo cross-validation 

technique with four folds, arguing that it offers higher 

optimization than traditional K-fold and hold-out cross-
validation methods. This study randomly divided each fold into 

training and testing datasets with a ratio of 60:40. The predictive 

accuracy obtained through this method was averaged across the 

splits to derive the final results. 
Although Monte Carlo cross-validation provides a more 

robust approach than traditional cross-validation techniques, it 

is essential to consider the data’s specific characteristics. For 

instance, random shuffling may not adequately address the 

temporal nature of EEG signals before splitting the data into 

training and testing sets. If the goal is to predict a future event, 

such as a subject’s MWL, disrupting the temporal 

characteristics could lead to unreliable classification model 

performance [121]. Fig. 6 shows the Monte Carlo cross-
validation technique, which randomly splits the dataset into 

training and test sets multiple times. 
 

 

Fig. 6. Monte Carlo cross-validation technique 

6) Time-Wise Cross-Validation 

Considering the temporal nature of EEG signals, time-wise 

cross-validation has been suggested as a suitable strategy to 

accommodate these characteristics [123]. This approach 

partitions the samples from each task and session into n evenly 

distributed, contiguous segments. The model is trained on n − p 

segments from all tasks and validated on the remaining 

segments [122]. To minimize the impact of task transitions, 

some data from each task’s initial and final segments may be 

excluded from the analysis. This approach provides a more 

tailored solution to the unique challenges of EEG signals. Fig. 7 

illustrates the time-wise cross-validation technique, where the 

dataset is split based on the temporal order of the data points.  
 

Fig. 7. Time-wise cross-validation technique 

7) Time Series Cross-Validation 

Time series cross-validation is another method that considers 

the temporal characteristics of time series data, such as EEG 

signals. This approach preserves the temporal structure of the 

data by reserving a final part of the series as the testing dataset. 
Importantly, the corresponding training set only includes 

observations that occurred before those in the test set [124]. By 

preserving the sequential arrangement of the data, time series 

cross-validation effectively precludes the leakage of 

information from future observations into the present prediction 

period, ultimately resulting in a more dependable and precise 

evaluation of the model’s performance. In this way, time series 

cross-validation addresses the unique challenges of time series 

data and contributes to developing robust and generalizable 

models. Fig. 8 illustrates the time series cross-validation 

technique, where the dataset is split based on the temporal order 

of the data points. 
 

 

Fig. 8. Time series cross-validation technique 

Cross-validation techniques aim to replicate real-world 

scenarios for training models. Despite the diversity of 

algorithms across studies, temporal characteristics of EEG 

signals are crucial for accurate MWL predictions. It is essential 

to recall that EEG signals are naturally time series as workload 

levels change with the introduction or modification of tasks 

over time. Table III provides a comprehensive overview of 

various cross-validation techniques employed in studies on the 

classification of MWL levels using EEG signals. 
 

TABLE III 

CROSS-VALIDATION TECHNIQUES USED IN THE ANALYSIS 

 

Cross-validation technique References 

Hold-out 
[2], [3], [53], [86], [97], [103], [54], [125], 
[126] 

K-fold  

 5-fold [79], [82], [94], [111], [127], [128 

 10-fold 
[77], [94], [96], [98], [99], [100], [102], 
[109] 

 Other K [85], [86], [114] 
LOOCV  

 Leave-one(subject)-out  [42], [78], [115]–[118] 

 Leave-one(session)-out  [80], [85] 

 Leave-one(task)-out  [119], [112] 

LPOCV  

 Leave-p(session)-out  [120] 

Monte Carlo [105] 
Time-wise [122],[123] 
Time-series [124] 
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The literature review in this section focuses on the cross-
validation technique used to evaluate the deep learning model 

for MWL classification. We have found a gap in many studies - 
they fail to specify how they trained their models or which 

cross-validation techniques they employed. Even when 

mentioned, the explanation is often vague, with just the 

technique’s name provided. This lack of clarity makes 

reproducing these studies challenging, even when the machine 

learning architecture is known. Adding to the confusion is the 

inconsistency in using cross-validation methods for training 

MWL classification models with EEG data. Some studies have 

applied the k-fold cross-validation technique, which randomly 

splits EEG signals and feeds them into the model. However, this 

approach can disrupt the temporal integrity of EEG data, 

potentially leading to data leakage issues. Therefore, it is crucial 

to recognize that the cross-validation technique should align 

with the study’s specific research objectives and classification 

problems. 
 

G. Expanding Horizons in MWL Classification 

Deep learning techniques have emerged as pivotal tools 

within the rapidly advancing domain of EEG-based MWL 

classification. In this section, we will delve deeper into the 

breadth of applications of these techniques, scrutinizing their 

efficacy and challenges and answering the RQ3:  “What types 

of MWL classification problems have been addressed using 

deep learning techniques?”. This section offers a detailed 

exploration of how deep learning models have been utilized for 

such classification tasks. Deep learning, known for its swift 

growth and potential, has shown particular promise when 

applied to EEG studies, especially in classifying MWL. This 

potential, however, is coupled with the substantial challenges 

posed by the inherent variability between subjects, sessions, 

and tasks. To effectively manage these multi-dimensional 

variables, we have grouped them under two broad 

classifications: “within” and “cross”, as illustrated in Fig. 9. 
 

 

Fig. 9. EEG MWL Classification problems 

1) Within-Subject Problem  
This section focuses on the within-subject classification 

problem, the most popular study problem across papers related 

to EEG-based MWL classification. The “within-subject” 
approach focuses on charting the fluctuations in an individual’s 

MWL as they engage in a singular task during one recording 

session. According to the literature, this methodology reduces 

the confounding effects of inter-individual variability by 

concentrating solely on intra-individual changes. This 

depreciation allows for an isolated exploration of an 

individual’s MWL, which can be particularly useful in 

understanding individual physiological responses. 
Various model architectures and algorithms have been 

utilized to resolve this issue. This review evaluates these 

approaches and their contributions to the field in an effort to 

provide a thorough understanding of the topic. In this diverse 

landscape of models, traditional shallow models continue to 

hold their ground. Despite the growing popularity of deep 

learning models, techniques such as linear discriminant analysis 

(LDA), support vector machines (SVM), k-nearest neighbours 

(KNN), and random forest remain effective baselines in the 

literature [126], [128], [129]. These models offer the advantage of 

being generally easier to train and interpret than deep learning 

models. However, they might face challenges when dealing 

with the complex, non-linear relationships inherent in EEG data. 
The efficacy of CNN in extracting spatial features from EEG 

data has resulted in their increasing prominence in recent years 

[43], [46], [125], [126]. However, the limitations of CNN to 

capture temporal dynamics have caused researchers to 

investigate hybrid architectures that combine CNN with 

recurrent networks such as the LSTM network [42], [119]. These 

hybrid models have demonstrated promising results in 

addressing the temporal aspect of EEG data. Nevertheless, the 

complexity of these models may pose challenges during the 

training process and result in reduced interpretability. Almogbel 

et al. [80] utilized raw EEG signals without preprocessing as 

input to their developed CNN model. The model was engineered 

to automatically extract key information and discern three 

gradations of a vehicle driver’s cognitive workload and driving 

environment. The classification model proved adept at 

identifying the low MWL level but faced challenges when 

attempting to consistently discriminate between medium and 

high workload levels. This reveals room for improvement in the 

model’s ability to differentiate between higher levels of MWL. 
Similarly, with an emphasis on MWL classification, Lee et al. 
[130] implemented a CNN-based model. The research team 

constructed a multiple-feature block-based CNN (MFB-CNN) 
that harnessed temporal-spatial EEG filters to illustrate the 

current mental states of pilots, thereby enabling accurate 

classification. With a similar classification-centric approach, 

Qayyum et al. [97] employed a pre-trained 2D-CNN to categorize 

human mental states during recurrent multimedia learning tasks. 
By transforming one-dimensional EEG signals into a two-



14 

ID TCDS-2023-0548.R1 

 

dimensional format using the short-time Fourier transform 

technique, the researchers enabled the use of the 2D-CNN for 

classification. This methodology consistently tracked the 

behaviour of alpha brain waves across different cognitive tasks, 

thus successfully classifying each distinct mental state. Stacked 

denoising autoencoders (SDAEs) have been introduced as a 

solution to reduce the dimensionality of EEG features while 

retaining the local information present in the data [4], [93]. 
SDAEs provide an alternative method to address the within-
subject classification issue, addressing certain limitations 

associated with CNN-based models. However, they bring their 

own challenges, including the computational costs and their 

sensitivity to hyperparameter tuning, which demand further 

exploration. 
Ensemble models, which combine the strengths of multiple 

classifiers to boost performance, have also emerged. The 

ensemble CNN (ECNN) model proposed by Zhang et al. [131] is 

a testament to such an approach. Although ensemble models can 

potentially enhance performance, they could also introduce 

increased complexity and longer training times, which might be 

problematic in certain applications. Other deep learning models 

have also been utilized to tackle within-subject MWL 

classification problems. These include RNN [42], BiLSTM [45], 
[132], AConv-BiLSTM-NN [101], and BiLSTM-LSTM [43]–[45], 
[149]. The primary focus of these models is on capturing the 

spatial and temporal features present in EEG data. However, 

these models may require large amounts of data for effective 

training and are also susceptible to overfitting. Further models 

used in this context include the Gated Recurrent Unit (GRU) 
[43], bidirectional gated recurrent unit (BiGRU) [43], and a 

combination of BiGRU with GRU (BiGRU-GRU) [43]. Long 

Short-Term Memory (LSTM) networks [44] have also been 

applied. These models, too, focus on capturing the dynamics in 

EEG data but may bring their own challenges, such as the need 

for comprehensive data and the risk of overfitting. 
The within-subject classification problem in EEG-based 

MWL assessment has been tackled using an array of model 

architectures and algorithms. Researchers must weigh the trade-
offs among accuracy, computational complexity, and 

interpretability when selecting an appropriate model for their 

problem. Future efforts should be devoted to developing more 

efficient and robust models that effectively capture spatial and 

temporal EEG data features. Additionally, exploring innovative 

approaches to address the distinct challenges of EEG-based 

MWL classification will remain a significant area of research. 
 

2) Cross-Subject Problem 

The "cross-subject" approach, also known as the between-
subjects or inter-subjects approach, is more complex. It strives 

to construct a predictive model using data from several subjects 

to forecast the MWL of unseen subjects. This strategy requires 

the model to be trained on data from a cohort of subjects and 

then tested on its ability to classify the MWL of different 

individuals not included in the training phase. According to 

several studies, while this approach is fraught with challenges 

due to the inherent variability in EEG signals between 

individuals, it offers broader applicability. It necessitates a 

meticulous selection of machine learning algorithms and 

potentially requires the normalization or standardization of 

features to counterbalance individual differences. 
However, effectively transferring the EEG analysis model 

of existing subjects to other subjects’ EEG signals has proven to 

be a complex task [116]. In response to this challenge, Hefron et 

al. [78] developed a novel approach that entailed training a 

model on a specific subject and then applying this model to 

other subjects for classification. This model, termed a multi-path 

convolutional recurrent neural network (MPCRNN), was tested 

in a non-stimulus-locked multi-task environment to predict a 

subject’s cognitive workload levels. Notably, the MPCRNN 

demonstrated an increase in classification accuracy and a 

decrease in variance across different participants, which 

underscores its potential effectiveness for addressing the cross-
subject problem in EEG-based MWL classification. Meanwhile, 

Zheng et al. [115] proposed an extreme learning machine (ELM)-
based ensemble, the ED-SDAE, to classify cross-subject 

cognitive workload levels, aiming to reduce subject-
independent variation and discover time-variant EEG signal 

properties. Alternative methods were proposed by Jimenez et al. 
[117], who introduced a unique deep neural network 

architecture that merges the strengths of residual networks and 

GRU. This model effectively captured patterns across various 

regions and frequencies and interpreted changes over time. In 

another study, they proposed a custom domain adaptation 

(CDA) method designed to reduce both marginal and 

conditional distribution differences and personalize a classifier 

for each subject, resulting in higher accuracy compared to other 

deep unsupervised domain adaptation (D-UDA) methods.  
Jimenez et al. [133] also addressed the issue of disparate EEG 

signal distributions among different subjects by proposing a 

custom domain adaptation (CDA) method integrating adaptive 

batch normalization (AdaBN) and maximum mean discrepancy 

(MMD) into two separate deep neural networks. This method 

aimed to reduce both marginal and conditional distribution 

differences and personalize a classifier for each subject, 

achieving higher accuracy than other deep unsupervised 

domain adaptation (D-UDA) methods. Yin et al. [134] developed 

a switching deep belief network with adaptive weights (SDBN) 
model for assessing the subject’s operator functional states 

(OFS). The model architecture consisted of two sets of deep 

belief networks (DBNs): static and dynamic. The static DBNs 

aimed to eliminate higher-level representations of EEG 

features, while the dynamic DBNs were designed to capture 

novel EEG feature characteristics from unseen testing subjects. 
Zeng et al. [2] employed a gradient boosting-based classifier, 

LightFD, developed using the LightGBM framework. This 

model was particularly effective in identifying variations in 
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drivers’ mental states. The LightFD model, as proposed by the 

researchers, showcased robust transfer learning capabilities 

coupled with minimal time consumption. These characteristics 

rendered it especially suitable for real-time EEG mental state 

prediction, underlining its potential utility in real-world 

applications. In a parallel effort, Shao et al. [112] employed a 

BiLSTM model for their investigation, demonstrating the 

application of recurrent neural networks in handling the 

complexities and temporal dynamics of EEG data for cross-
subject MWL analysis. Finally, Zeng et al. [116] utilized a 

domain-adversarial neural network (DANN), a model that has 

demonstrated superior performance in transfer learning, notably 

in document analysis and image recognition. However, it was 

not previously applied directly in EEG-based cross-subject 

fatigue detection. They proposed a novel model, a generative 

domain-adversarial neural network (GDANN), which integrated 

DANN with generative adversarial networks (GAN) for EEG-
based cross-subject fatigue mental state prediction. The 

GDANN model aimed to address the problem of different EEG 

distributions across subjects. It attempted to balance disparities 

in the sample sizes between the source and target domains, 

selected the most appropriate Top N source domain subjects for 

experimentation, and endeavored to extract as many invariant 

features of the target domain as possible. The model allowed 

transfer learning to be conducted across various domains and 

data tasks. Experimental results revealed that the performance 

of GDANN surpassed that of DANN, SVM, and EasyTL. In a 

related advancement, Ma et al. [135] further refined this domain 

by introducing a dynamic threshold distribution domain 

adaptation network (DTDDAN). This innovative model 

leverages domain discrimination and Jensen-Shannon loss to 

effectively address individual differences, thereby enhancing 

the learning of invariant EEG features for cross-subject driver 

fatigue recognition. 
The cross-subject challenge in EEG-based MWL 

classification is primarily rooted in inter-individual variability. 
Specifically, the difference in data distribution from one subject 

to another presents a considerable obstacle to machine learning, 

particularly in training and applying models across these 

varying distributions. To address this, the researchers have 

developed a range of models tailored to navigate this variability 

effectively. Despite ongoing research, there’s a notable trend in 

the current literature towards single-session studies, indicating 

a significant gap in developing cross-session models with 

broader generalizability and relevance. The next section will 

explore MWL classification through the “cross-session” 
approach to fill this research gap. 

 

3) Cross-Session Problem 

The “cross-session” approach involves tracking an 

individual’s MWL across multiple sessions. This strategy seeks 

to develop a model capable of predicting the MWL from one 

session and then applying this model to data from different 

sessions. The model undergoes training during one session (the 

training set) and is then tested for its ability to classify MWL in 

a different session (the test set). While this approach allows for 

a more longitudinal assessment of an individual’s MWL, it is 

challenged by the potential intra-individual variability in EEG 

signals between sessions, which might not be related to changes 

in MWL but other confounding factors such as fatigue or stress 

[136].  
As discussed in the III-G2, numerous studies have proposed 

innovative approaches for addressing cross-subject problems. 
However, the issue of cross-session variability remains 

relatively unexplored and presents unique challenges in EEG 

signal classification. The dataset may display substantial 

variation even when collected from the same participant during 

distinct sessions. As a result, models trained exclusively on 

EEG signals from one session may struggle with generalization. 
Additionally, static pattern classifiers may not be suitable for 

classifying dynamic data, such as EEG signals recorded on 

different days. Several methodologies have recently been 

proposed to tackle the cross-session problem in response to 

these challenges. For example, Yin et al. [81] introduced an 

adaptive stacked denoising autoencoder (SDAE) model. This 

model was designed to train a static pattern classifier with EEG 

signals recorded on separate days for both training and testing. 
The aim was to adaptively update the weights of the shallow 

hidden neurons during the testing phase, thereby enabling more 

accurate classification across sessions. 
Despite these initial efforts, current literature suggests that 

the estimation of cross-session cognitive workload levels using 

deep learning models has not been thoroughly explored. This 

area calls for further research to enhance the generalizability 

and applicability of EEG-based MWL classifiers across 

multiple sessions. 
 

4) Cross-Task Problem  
In Section III-G2 and III-G3, we examined the obstacles 

related to "cross-subject" and "cross-session" variations, 

respectively, in EEG-based MWL classification. An equally 

significant hurdle is the "cross-task" challenge. The complexity 

of this issue arises from the unique EEG patterns produced by 

different tasks. The goal is to devise models capable of assessing 

MWL across various tasks, utilizing training data from one task 

and applying it to test data from a different task performed by 

the same individual. While this approach promises wide 

applicability across tasks, its complexity is underlined by the 

distinct MWL types and levels different tasks evoke, resulting 

in varied EEG signatures.  
In the realm of EEG-based emotion recognition, Li et al. [137] 

provide a structured literature review, categorizing transfer 

learning research into cross-subject, cross-session, and, 

crucially, cross-task domains as well. However, they explicitly 

identify a significant research gap: the absence of cross-task 

transfer learning studies directly relevant to EEG-based emotion 
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recognition. This gap starkly contrasts with our research in the 

MWL domain, where cross-task applications are actively being 

pursued and developed. For instance, Lim et al. [138] 
investigated the application of consistent frequency features 

(alpha, beta, and theta) across diverse cognitive workload tasks 

using two distinct datasets. The first, a multitasking dataset, 

involved participants in simultaneous activities designed to 

induce three levels of MWL. The second, a Stroop test dataset, 

assessed MWL through a psychological test where participants 

name the color of a word that may spell a different color. They 

employed Transfer Component Analysis (TCA) for domain 

adaptation to reduce dataset distribution differences and 

enhance classification effectiveness. Despite its theoretical 

promise, their findings revealed an average classification 

accuracy of only 30.0%, a figure above chance levels but still 

insufficient for practical applications. This underscores the need 

for more advanced methods to improve cross-task performance. 
Alternatively, Shao et al. [112] introduced a novel concatenated 

structure combining deep recurrent and 3D convolutional 

neural networks (R3DCNNs) to learn EEG features across tasks. 
This method converted 1D EEG signals into 3D 

representations, enabling the R3DCNNs model to capture EEG 

features from spatial, spectral, and temporal perspectives. This 

approach showed potential in the binary classification of low 

and high MWL levels across tasks, marking progress in the 

cross-task challenge. However, the computational demands of 

this advanced model remain a concern. Other studies, such as 

those by Zeng et al. and Zhou et al., have also shown potential 

for tackling this issue [54], [114] by using CNN-based models. 
Furthermore, Kirchner et al. [139] developed two different 

classifiers to detect single-trial event-related potentials (ERP), 
with two types of transfer cases focused on applying models 

trained on one task to another task. This approach suggests a 

growing interest in addressing the cross-task problem in MWL 

classification. 
Despite the complexity of the challenge, the literature review 

suggests that limited progress has been made in addressing it. 
Developing innovative neural network architectures that can 

discern EEG signals from various tasks is crucial, as current 

methods for detecting MWL are primarily laboratory-based and 

task-specific. However, cognitive overload can occur in diverse 

scenarios. Therefore, translating these models to practical 

applications could bridge the gap between laboratory settings 

and real-world environments, providing a more versatile 

approach to detecting workload levels across different tasks. 
 

5) Cross-Task and -Subject Problem  
A combination of “cross-task” and “cross-subject” approaches 

presents a significant challenge yet promises the highest level 

of robustness and generalizability. This model is expected to 

predict MWL across various tasks and individuals. This 

problem has only been tackled by a few researchers. A 

significant contribution to this topic was made by Zeng et al. 

[114], who developed two CNN-based EEG classifiers, EEG-
Conv and EEG-Conv-R, to identify drivers’ MWL. The EEG-
Conv model is based on a traditional CNN architecture, while 

EEG-Conv-R combines the CNN approach with deep residual 

learning to enhance the model’s performance. This combination 

addressed cross-task and cross-subject challenges, marking an 

innovative approach to EEG-based MWL classification. The 

potential for the development of more robust and versatile 

models was demonstrated through this research, signifying a 

significant step forward in handling “cross-task” and “cross-
subject” variations. Nevertheless, the scarcity of studies 

investigating these combined problems indicates that further 

research is needed to establish more effective methods for 

managing such variations in real-world applications.  
In exploring the role of deep learning in EEG-based MWL 

classification, this section addresses the variety of classification 

problems tackled by these techniques. Deep learning’s 

versatility is evident in managing the variability inherent in 

subject, session, and task data. The classification challenges are 

broadly categorized into "within" and "cross" groups, reflecting 

deep learning’s capacity to adapt to complex EEG analysis 

requirements. For an overview of deep learning models applied 

across these MWL classification scenarios, see Table IV, 

highlighting the approaches and their efficacy in addressing 

specific challenges. 
 

TABLE IV 

DEEP LEARNING APPROACHES TO MWL  

CLASSIFICATION PROBLEMS 

 
MWL 

Classification 

Challenge  

Deep Learning Approaches and 
References 

Within-
subject 

Traditional shallow models (LDA, SVM, KNN, 

Random Forest) [126], [128], [129], CNN-based models 

[43], [46], [125], [126], Hybrid CNN-LSTM models [42], 
[119] 

Cross-subject  

MPCRNN [78], ELM-based ensemble (ED-SDAE) 
[115], Deep neural network with GRU [117], Custom 

domain adaptation (CDA) [133], SDBN for OFS 

assessment [134], LightGBM framework (LightFD) [2], 
BiLSTM model [112], DANN and GDANN for fatigue 

detection [116] 
Cross-session  Adaptive SDAE model [81] 

Cross-task 

TCA for domain adaptation [138], Deep R3DCNNs 

[112], CNN-based models for MWL across tasks [54], 
[114], ERP detection classifiers [139] 

Cross-task 

and -subject 

CNN-based classifiers (EEG-Conv and EEG-Conv-R) 
for MWL identification [114] 

H. Synthesis of Finding in EEG-Based MWL Classification 

Drawing from the existing literature, we envisage possible 

further combinations such as the “cross-subject” and “cross-
session” methodologies, as well as the tripartite approach that 

incorporates “cross-subject”, “cross-session”, and “cross-task” 
elements. The dual method of “cross-subject” and “cross-session” 
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is aimed at formulating a model capable of predicting MWL 

diversely across subjects and sessions. The most challenging yet 

potentially rewarding scenario lies within the all-encompassing 

“cross-subject”, “cross-session”, and “cross-task” approach. This 

ambitious strategy is designed to generate a model that can 

predict MWL across a spectrum of individuals, sessions, and 

tasks, creating a highly flexible tool with considerable real-
world applicability. However, the existing literature on these 

complex problems is still limited. Thus far, the research 

community has not fully engaged with these two 

methodologies’ inherent challenges, making them a promising 

avenue for future exploration and innovation in this ever-
evolving field. 

Decoding MWL levels from EEG signals is difficult. This 

task presents many difficulties, primarily due to the intricate 

and numerous factors involved, all contributing to the overall 

difficulty of accurate MWL decoding. These challenges include 

cross-subject physiological variability arising from differences 

in individuals’ brain activities and physical responses. 
Additionally, cross-session variability refers to fluctuations in a 

single subject’s performance across different sessions, while 

cross-task variability highlights the differences that emerge 

when subjects perform various tasks. Moreover, the vast 

diversity of real-world environmental variables, such as 

ambient noise, lighting conditions, and external stressors, can 

also impact MWL decoders’ performance. To create more robust 

and accurate models, it is crucial to consider individual factors 

like gender, expertise, age, experience, and emotions during 

model training. These factors can significantly influence a 

person’s MWL, and by accounting for them, the models can 

better capture the nuances of MWL across different contexts 

and individuals. 
Addressing this research gap is crucial because it is the first 

step towards real-life application improvement. Once we can 

reliably capture the user’s MWL while they perform the tasks, 

we can expedite the improvement of systems and applications. 
For instance, we would no longer need to wait for post-
interaction feedback to evaluate its effectiveness in a search 

system. However, we can instead directly utilize the user’s EEG 

signal to assess whether the system design matches the user’s 

cognitive demands and expectations. 

IV. CHALLENGES AND OPPORTUNITIES FOR FUTURE RESEARCH 

Much progress has been made in interpreting EEG signals for 

assessing people’s MWL levels. However, the complexity of 

these signals presents an intriguing challenge to those 

unfamiliar with the discipline, frequently inspiring further 

investigation. This study goes beyond answering the three initial 

research questions noted in by uncovering challenges and gaps 

that offer opportunities for future studies. This section will look 

into the difficulties of using deep learning models to classify 

MWL levels from EEG signals and suggest areas for future 

research.  
 

A. Dataset Diversity and Scarcity Challenge 

  EEG signal collection and developing deep learning models 

for MWL classification face numerous obstacles. Diverse 

datasets employed by distinct research groups and a shortage of 

publicly accessible datasets hinder experiment replication and 

comparison of results. Additionally, the distinctive nature of 

each dataset and insufficient data obstruct the determination of 

relationships between input and output data. One specific 

challenge is underfitting, which can arise due to the distinct 

characteristics of each dataset. Insufficient data makes 

identifying connections between input and output data difficult, 

ultimately leading to underfitting in the models. To overcome 

these challenges, increased availability of online datasets is 

necessary.  
 

B. Self-Reporting Workload Challenges    

In classifying MWL, we utilize neural networks that employ 

EEG signals as input, supplemented by labels from participant 

evaluations. These labels, indicative of self-reported workload 

levels, are gathered through post-experiment questionnaires 

[140]. This approach can be viewed as a secondary task [15]. To 

conduct post-task self-report feedback or performance 

evaluations, individuals must be trained to understand the 

instrument used for expressing their MWL [141]. These methods 

can increase subjects’ burdens, making it harder for them to 

respond to new events. Future research would benefit from 

integrating measurements such as heart rate monitoring as 

labels for a more accurate reflection of the MWL of individuals. 
Due to the direct correlation between an increase in MWL and 

an increase in pulse rate, this is the case [142]– [144].  
 

C. EEG Preprocessing and Noise Removal Challenges  

A comprehensive EEG preprocessing pipeline is essential 

and empowering for machine learning practitioners without a 

neuroscience background. Artefact removal toolboxes are 

becoming increasingly sophisticated, with the capacity to 

autonomously cleanse EEG data of ocular, muscle, and cardiac 

signals based on identifiable patterns. The future development 

of pattern recognition algorithms for various environmental 

noises, such as traffic, trains, and aeroplanes, is essential and 

thrilling. This innovation will enable even more effective noise 

removal, thereby enhancing EEG signal preprocessing quality 

in laboratory and real-world contexts with dynamic 

soundscapes. 
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D. Enhancing Model Generalization and Minimizing 

Calibration Requirements  

The practical utility of deep learning models for MWL 

estimation is based on their capacity to generalize effectively 

and require minimal calibration, enhancing their applicability 

in real-world settings. An ideal model should possess strong 

generalization properties, enabling its use across different 

subjects performing the same task. Additionally, the model 

should exhibit adaptability to mental and environmental 

fluctuations during a session, ensuring its relevance and 

accuracy in various contexts. Prioritizing these attributes in 

model development can significantly improve the practicality 

and utility of deep learning models for EEG-based MWL 

classification.  
 

E. Integration of Artifact Removal and Online Learning in 

Advanced Deep Learning Models 

Future research could investigate the development of deep 

learning models that incorporate an integrated artifact removal 

layer. This approach could facilitate the direct input of raw data 

during the model training phase, thereby streamlining the 

overall process. Furthermore, creating models that are capable 

of continuous adaptation through online learning is essential for 

maintaining their relevance and accuracy in real-world 

applications. This combination of cutting-edge techniques can 

significantly improve the performance and utility of deep 

learning models for EEG-based MWL estimation.  
 

F. Resource-Efficient Adaptive Modeling for Constrained 

Environments 

Since a continuously adaptive model is needed, using 

cumbersome models can be inefficient in terms of energy 

efficiency and computational cost. Tiny machine learning 

(tinyML) [145] is a cutting-edge field that applies machine 

learning to performance- and power-constrained devices. For 

example, devices that detect a pilot’s MWL must be small and 

housed within a flight helmet. Operating neural networks on 

devices with limited resources requires algorithm and hardware 

co-design. The real-time control system is regarded as the 

modern vehicle’s brain [146].  
 

G. Managing Cross-Subject, Cross-Session, and Cross-Task 

Variability in MWL Classification 

Exploring “cross-subject”, “cross-session”, and “cross-task” 
methodologies offer a pathway to refining EEG-based MWL 

classification. Integrating these approaches aims to develop 

versatile models capable of accurately predicting MWL across 

diverse subjects, time frames, and tasks. Despite its promise, 

current literature on these comprehensive strategies is sparse, 

marking an essential area for future exploration. Challenges in 

MWL decoding stem from physiological variabilities, session-
to-session and task-to-task performance fluctuations, 

environmental influences, and personal attributes like gender 

and age. Addressing these complexities is vital for creating 

robust MWL predictors. Progress in this domain has significant 

practical implications. By effectively capturing MWL through 

EEG signals in real-time, systems and interfaces can be directly 

evaluated and improved based on cognitive demands, 

enhancing user interaction without relying on delayed feedback. 
In the future, to manage cross-subject, cross-session, and cross-
task variability in MWL classification, we can leverage the co-
teaching graph learning method, which is used in [147] to the 

approach used in EEG-based motor imagery recognition. This 

method enhances feature extraction and mitigates the impact of 

noisy data, making it a promising technique for developing 

versatile models that accurately predict mental workload across 

diverse conditions. 
 

H. Temporal Dynamics in Cross-Validation for MWL EEG 

Analysis 

 Researchers investigating EEG signals in the context of 

MWL levels can enhance their studies by considering the 

inherent time series characteristics. This includes incorporating 

the assumption of independently and identically distributed 

(i.i.d.) time series elements into their cross-validation procedures, 

which can improve the robustness and reliability of their 

findings [148]. Traditional cross-validation approaches involve 

randomly splitting EEG signals into training and test sets, 

disregarding the temporal dynamics of MWL levels. To address 

this limitation and improve model accuracy, it is crucial to 

emphasize the importance of considering the temporal 

component when selecting cross-validation methods for EEG 

analysis. Since physiological signals are influenced by previous 

time steps and their statistical properties vary across individuals 

and types of mental tasks [107], future research should focus on 

developing models capable of capturing common properties 

found across subjects, sessions, and tasks.  
 

I. Cross-Validation Issue in MWL Classification 

In III-F, we address the use of CV techniques for evaluating 

deep learning models in MWL classification, identifying a 

critical gap in current practices. Many studies provide 

inadequate details on their model training and CV approaches, 

undermining reproducibility—especially problematic given the 

complex nature of machine learning models. Common methods 

such as k-fold cross-validation and random data division 

overlook EEG data’s temporal and subject-specific 

characteristics in MWL classification, leading to potential 

overestimating of model performance. This oversight affects the 

integrity of research findings and the efficacy of MWL 



19 

ID TCDS-2023-0548.R1 

 

assessment tools. We argue for reevaluating CV strategies, 

advocating for methods that maintain EEG data’s temporal 

sequence (e.g., time-series cross-validation [43]) and mirror real-
world scenarios (e.g., subject-specific splits). Additionally, we 

recommend standardizing detailed documentation of data 

handling, model training, and validation processes to improve 

MWL research reproducibility and transparency. Establishing 

standardized CV guidelines could markedly enhance the field, 

ensuring research reliability and facilitating a unified literature 

for future work. 
 

J. Other Recent Advances and Applications 

Apart from investigating EEG-based MWL applications, we 

also delve into recent advancements in deep learning models 

that have significantly impacted various domains within EEG 

research. All of this work could be further investigated and 

expanded from the perspective of mental workload detection 

using EEG signals. Sun et al. [150] developed a novel Gating 

mechanism and Dilated Convolutional Neural Network 

(GDCNN) which efficiently decodes driving intentions from 

EEG signals, achieving superior accuracy compared to 

established benchmarks like EEGNet and DeepConvNet. On 

another front, Zhang et al. [151] systematically reviewed brain 

fingerprints as a novel biometric feature, extracting them 

through various neuroimaging technologies, including EEG, 

MRI, MEG, and fNIRS, and discussing their application in 

identity recognition. Furthermore, Chakladar et al. [104] 
introduced a Variational Autoencoder and Convolutional Block 

Attention Module (VAE-CBAM) based model for estimating 

cognitive workload from EEG, which significantly improved 

classification performance in mental arithmetic tasks. In the 

realm of emotion recognition, Liu et al. [152] compared the 

effectiveness of deep canonical correlation analysis (DCCA) 
and bimodal deep autoencoders (BDAE) across multiple 

datasets, demonstrating the robustness of these models under 

various noise conditions. 
Additionally, Sun et al. [153] tackled the challenge of 

automatic sleep spindle detection using a convolutional neural 

network with a label refinement component, which helped 

optimize feature learning despite inaccuracies in label data. In a 

broad review, Gong [154] encapsulated a decade’s progress in 

applying deep learning to EEG, highlighting applications in 

brain-computer interfaces and disease detection among others. 
The issue of seizure prediction was addressed by Zhang et al. 
[155], who introduced a transformer-based domain adversarial 

model to enhance generalization across different patient 

datasets. Moreover, Li et al. [156] proposed a trainable adjacency 

relation driven graph convolutional network (TARDGCN) to 

improve EEG-based emotion recognition by enhancing the 

correlation among multichannel EEG sets. 
In an analysis of EEG data complexity, Lin et al. [157] 

presented a multistream 3D CNN with parameter sharing, 

which not only reduced the model’s susceptibility to overfitting 

but also improved performance in tasks like lane-keeping and 

sleep monitoring. In clinical applications, Shahabi et al. [158] 
developed a hybrid model combining transfer learning, LSTM, 

and attention mechanisms to predict responses to 

antidepressants in patients with major depressive disorder, 

achieving exceptionally high classification accuracies. Li et al. 
[159] contributed a novel feedback capsule network for patient-
specific seizure prediction, effectively capturing and integrating 

spatiotemporal properties from EEG signals. Addressing 

privacy concerns in motor imagery classification, Zhang et al. 
[160] introduced a lightweight source-free transfer learning 

approach, which maintained high classification performance 

while ensuring data privacy. Finally, Karnati et al. [161] and 

Wang et al. [147] respectively advanced deception detection and 

cross-subject motor imagery recognition using novel neural 

network models, demonstrating substantial improvements in 

accuracy and generalizability.  

I. DISCUSSION & CONCLUSION 

This paper conducted a systematic review and meta-analysis 

of the current research on deep learning techniques for 

classifying MWL levels using EEG data and addressing 

associated challenges and limitations. We developed tailored 

search strategies based on criteria such as Boolean and string 

length of each database, and inclusion and exclusion criteria 

were summarised to ensure the relevance and accuracy of our 

data collection. After applying inclusion and exclusion criteria, 

we narrowed down our initial pool of 3,203 articles to 91 

relevant articles for our study. By delving into the existing 

literature, we identified research gaps, set more precise goals, 

and investigated three key research questions on (i) the types of 

input formulations used, (ii) the cross-validation procedures 

deemed suitable for EEG signals in the context of deep learning, 

and (iii) the nature of specific MWL classification problems 

tackled. Furthermore, it outlined the encountered challenges and 

proposed directions for future research.  
In conclusion, the measurement of MWL using EEG signals 

in the field of brain-computer interaction has seen growing 

interest and presents exciting challenges. Deep learning has 

shown promising results in forecasting mental effort, but its 

application in MWL classification varies across studies. These 

challenges include dataset uniqueness, self-reporting 

limitations, variability across sessions and tasks, artefact 

removal, energy efficiency, and resource constraints. To address 

these challenges, it is essential to establish a universal 

preprocessing pipeline, create models with integrated artefact 

removal, and consider within-subject, cross-subject, cross-
session, cross-task, and cross-task and -subject variability. 
Incorporating temporal dynamics in cross-validation and 

refining self-reporting methods can improve the accuracy of 
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model evaluation and workload assessment. Despite the 

challenges faced, deep learning algorithms have improved 

MWL classification. With further research and development, 

they may become more suitable for real-world applications, 

advancing the development of more effective brain-computer 

interfaces and related applications. Researchers are encouraged 

to build upon these findings and develop practical solutions for 

EEG-based MWL classification.  
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