
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. X, NO. X, 2024 1

Modelling HTS coils with different coupling
scenarios via integral method

Calvin C. T. Chow, Min Zhang, K. T. Chau, and Francesco Grilli

Abstract—High-temperature superconducting (HTS) tapes can
be stacked together to form cables which are then wound into
coils for potential use in electrical machines. The tapes in the
cable can either be uncoupled (insulated from each other),
coupled-at-ends (coupled at the terminals of the cable), or fully
coupled (electrically connected with each other). The integral
method can readily model the uncoupled scenario, and this paper
extends the integral method to model the coupled-at-ends and
fully coupled scenarios. We find that the proposed method has
a time advantage over the well-established T-A formulation of
Maxwell’s equations.

Index Terms—HTS modelling, integral method, J-model, multi-
tape superconducting cable

I. INTRODUCTION

High-temperature superconducting (HTS) tapes can be used
in the armature of electrical machines [1]–[7]. To wind coils in
the armature of electrical machines, HTS tapes can be stacked
to form a cable which is then wound into coils. The tapes
in the cable can be insulated from each other or electrically
connected with each other, and there is insulation between
cable turns. As in the literature [8], [9], we analyze three
different coupling scenarios of a coil wound from a cable:

1) Uncoupled: the tapes in the cable are insulated from each
other, and there is a separate power supply for each tape
at the terminals. Each tape turn in the coil carries the
same transport current.

2) Coupled-at-ends: tapes are insulated from each other in
the cable, but tapes of the cable are soldered together at
the terminals of the cable.

3) Coupled: tapes in the cable are electrically connected
along the whole length of the cable.

In all three scenarios above, there is insulation between
adjacent cable turns.

The decision to use which of the above winding method
depends on various factors. Using a multi-tape cable to wind
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a coil can give high current-carrying capacity [2], [10] and
decrease the inductance of the coil [8]. A high current rating
is needed for high-power electrical machines, and cannot be
substituted by having more turns and increasing the voltage in
cases where voltage has to be limited, e.g., in electric aircraft
due to safety reasons. Pardo et al. [8] showed that for the
armature of an electrical machine, among the three coupling
scenarios, the uncoupled case had the lowest ac loss, followed
by the coupled-at-ends case and followed by the coupled case.
Taking note of the advantages of non-insulated coils [11], [12],
a coupled coil may have the advantage of thermal stability and
reduced susceptibility to quenching because current around
local hotspots can be diverted to other tapes in the same cable
turn.

This paper addresses the problem of numerically modelling
the loss in the HTS layers in the coupled-at-ends and coupled
scenarios; the uncoupled scenarios can readily be modelled
since the current in each tape turn is known and is given by
the injected current. From the literature, the H-formulation (in
which magnetic field strength H is the variable being solved
for) can model the coupled-at-ends and coupled scenarios
easily by current constraints [9]. Zermano et al. [13] used the
H-formulation for the coupled-at-ends scenario. The Minimum
Electro-Magnetic Entropy Production (MEMEP) method has
also been used for the three coupling scenarios [8]. In terms
of the T-A formulation (in which current vector potential T
and magnetic vector potential A are the variables being solved
for), Wang et al. [14] developed a new way of using Neumann
boundary conditions on each tape and an integral constraint
for the total current of the cable to model a cable when
current in each tape is not known before computation and
thus cannot be specified in the Dirichlet boundary conditions.
On the other hand, Santos et al. [9] coupled the conventional
T-A formulation with an equivalent circuit so the current in
each tape calculated from the circuit is fed back into the T
formulation.

The integral method was proposed by Brandt [15] and
involved solving the current density in each meshed element in
the superconducting domain, based on an integral equation that
involves the current density. The integral method is faster than
the T-A formulation [16], [17]. However, like the conventional
T-A formulation, the conventional integral method requires the
current in each tape turn to be known. In this paper, we extend
the integral method to the two coupled scenarios where the
current in each tape is not known before computation. We do
this by extracting the necessary constraints (on the current
and voltage of the tape turns) from the equivalent circuit
representations of the tapes given by Santos et al. [9].

This article has been accepted for publication in IEEE Transactions on Applied Superconductivity. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TASC.2024.3450991

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF STRATHCLYDE. Downloaded on September 24,2024 at 11:10:59 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. X, NO. X, 2024 2

1 2 Ntic

Cable turn 1

1 2 Ntic

Cable turn 2

1 2 Ntic

Cable turn Nct

Tape

Tape turn 1 2 Ntic
Ntic

+1
Ntic

+2
2Ntic

(Nct − 1)Ntic

+1
(Nct − 1)Ntic

+2
NctNtic

Axis of symmetry

rin dtape dcable

Details of discretization
y

x

∆x

∆y

(xi, yi)

(xj , yj)

Fig. 1: Arrangement of tapes in one side of a coil with Nct cable turns, made of a cable consisting of Ntic tapes stacked
together.

The rest of the paper is organized as follows. Section II
specifies the situation being modelled and introduces key
equations from the integral method that are needed for this
paper. Section III explains how we extend the integral method
to the coupled scenarios by specifying appropriate constraints.
Section IV shows simulations results for a coil under the
different coupling scenarios. Section V suggests, as future
work, how contact resistance can be modelled and how the
equivalent circuit used in this paper can be coupled with a
numerical method other than the integral method. We conclude
in Section VI.

II. PROBLEM SET-UP AND INTRODUCTION TO THE
INTEGRAL METHOD

A. Geometry modelled

This paper considers a 2D model of the straight section(s)
of a racetrack coil made up of winding a cable Nct turns (thus
Nct cable turns), and the cable consists of Ntic tapes stacked
together, as shown in Fig. 1. There are Nt = NctNtic tape
turns in total. The tapes can be uncoupled, coupled-at-ends,
or coupled as in the introduction. The cable carries a transport
current Iset(t); in the uncoupled case, each tape carries a
current Iset(t)/Ntic.

Only the superconducting layer of each tape turn is mod-
elled in this paper. Let the superconducting domain modelled
be S, which consists of the superconducting layer of every
tape turn. Each tape turn area is discretized into a single layer
of rectangular elements, and every element has same size ∆x
and ∆y along the x and y axes, respectively, as shown in
Fig. 1. Within each element, the electromagnetic quantities,
such as the magnetic vector potential A, current density J, and
electric field strength E, are constant. Therefore, we assume
that electromagnetic quantities do not vary across the width of
a tape; however, the 2D nature of the elements is considered

when doing area integration in equations in Section II-B.
Let Ne be the number of elements that the superconducting
domain S is discretized into. Let the centre of the element i
be ri = (xi, yi), i = 1, ..., Ne.

Due to the 2D geometry adopted,

A,J,E = {A(x, y, t), J(x, y, t), E(x, y, t)}ẑ (1)

At any one point, let A = AJ + Aa, where AJ is the
magnetic vector potential due to current in superconductor
domain S, and Aa is the magnetic vector potential due to
external magnetic field created by sources other than current
in S.

From B = ∇×A, where B is the magnetic flux density, and
Faraday’s law ∇×E = −∂B

∂t , we see that ∇× (E+ ∂A
∂t ) = 0

so E+ ∂A
∂t is a conservative field and can be described by the

gradient of a scalar potential: −∇ϕ = E+ Ȧ. Under our 2D
geometry, E + Ȧ = −∂ϕ

∂z . The potential difference per unit
tape length into page, ∂ϕ

∂z , in our 2D model can be supplied
by an external voltage source when the tape is connected to a
power supply.

B. Key equations from integral method

The integral method was originally developed by
Brandt [15] and is a method to solve for the evolution
of current density in superconductors. In this subsection, we
summarize key equations as reviewed in [17], starting with1

J̇(r) =− 1

µ0

∫
S

Q−1(r, r′)
[
E(r′) + Ȧa(r

′)
]
d2r′

− 1

µ0

Nt∑
j=1

∂ϕ(Ωj)

∂z

∫
Ωj

Q−1(r, r′) d2r′,
(2)

1Note that ∇2Ȧa in (14) of [17] is zero as explained in the same article.
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where Q(r, r′) = − 1
2π ln|r− r′| is the Green function for

2D; Q−1(r, r′) is defined by
∫
S
Q−1(r, r′)Q(r′, r′′) d2r′ =

δ(r − r′′); ∂ϕ(Ωj)
∂z is uniform in space in each tape turn area

Ωj , j = 1, 2, ..., Nt, due to reasons explained in [18]. For more
compact notation, for the rest of this paper,

(
∂ϕ

∂z

)
j

:=
∂ϕ(Ωj)

∂z
=

∂ϕ(r)

∂z
∀r ∈ Ωj . (3)

The electric field E(r) is related to J(r) by E − J power
law

E = Ec

∣∣∣∣ JJc
∣∣∣∣n J

|J |
, (4)

where Jc is the critical current density of the HTS layer, Ec

is taken to be 10−4 V m−1, and n determines how steep the
E − J relation is.

In the discretized geometry, (2) is evaluated at the centre
of each discretized element, i.e., at r = ri, i = 1, 2, ..., Ne,
so we get Ne equations, which can be collected into matrix
form [17]

J̇ = Qinv(E + Ȧa) +QinvL
T ∂ϕ

∂z
, (5)

where Qinv = − 1
µ0∆x∆yQ

−1 with Q defined as
[
Q
]
ij

=∫
Ωj

Q(ri, r
′) d2r′ 1

∆x∆y ; L is an Nt × Ne matrix whose ele-

ment
[
L
]
ij

= 1, if the element j belongs to turn i and = 0

otherwise. J̇ , E, and Ȧa are Ne × 1 vectors whose elements
are [J̇ ]i = J̇(ri), [E]i = E(ri),

[
Ȧa

]
i
= Ȧa(ri), respectively.

∂ϕ
∂z is a Nt × 1 vector with

[
∂ϕ
∂z

]
i
=

(
∂ϕ
∂z

)
i
.

Equation (5) can be solved, for example by the forward
Euler method used in the Python code for Section IV, to find
the time evolution of J in all the elements, provided we give
an expression for ∂ϕ

∂z . The expression ∂ϕ
∂z contains the elements[

∂ϕ
∂z

]
i
=

(
∂ϕ
∂z

)
i

and so there are in total Nt unknowns, i.e.,(
∂ϕ
∂z

)
i
, i = 1, 2, ..., Nt.

The focus of Section III is to find an expression for ∂ϕ
∂z

for the coupled-at-ends and coupled scenarios, and below we
include the expression for ∂ϕ

∂z for the uncoupled case as derived
in [16] and reviewed in [17].

When tapes are uncoupled, the current in each tape turn
is known, which is equal to the externally applied current,
and thus we can impose the Nt current constraints [16]: for
i = 1, 2, ..., Nt,

İset(t)

Ntic
=

∫
Ωi

J̇(r, t) d2r. (6)

Let us define Ii to be the current in tape turn i = 1, 2, ..., Nt,

and substituting (2),

İi :=

∫
Ωi

J̇(r, t) d2r

=

∫
Ωi

s(r, t) d2r

−
Nt∑
j=1

[(
∂ϕ(t)

∂z

)
j

1

µ0

∫
Ωi

∫
Ωj

Q−1(r, r′) d2r′ d2r

]
,

(7)

where s(r, t) = − 1
µ0

∫
S
Q−1(r, r′)[E(r′) + Ȧa(r

′)] d2r′.
Substitute (7) into (6), we get [16], [17]: for i = 1, 2, ..., Nt,

−
Nt∑
j=1

[(
∂ϕ(t)

∂z

)
j

1

µ0

∫
Ωi

∫
Ωj

Q−1(r, r′) d2r′ d2r

]

=
İset(t)

Ntic
−
∫
Ωi

s(r, t) d2r.

(8)

Applying discretization and collecting the Nt equations of
(8), one for each tape turn i = 1, 2, ..., Nt, we can find the Nt

unknowns by solving [16], [17]:

Mu
∂ϕ

∂z
= Pu (9)

∂ϕ

∂z
= Mu

−1Pu, (10)

where Mu = ∆x∆yLQinvL
T , Pu = İset(t)

Ntic
1 − LQinv(E +

Ȧa)∆x∆y and 1 is a vector of 1’s. The subscript u stands for
“uncoupled”.

III. APPLYING APPROPRIATE CONSTRAINTS IN COUPLED
SCENARIOS

In this section, we explain how to find the Nt unknowns(
∂ϕ
∂z

)
i
, i = 1, 2, ..., Nt, for the coupled-at-ends and the

coupled scenarios. Under the coupled-at-ends and coupled
scenarios, we cannot readily impose the Nt current constraints
(6), since the current in each tape turn area is not known before
computation.

Santos et al. [9] examined the relationships between the
current, Ii and voltage per meter,

(
∂ϕ
∂z

)
i

of each tape turn
for the coupled-at-ends and coupled scenarios and presented
the relationships in the form of circuit diagrams. In Santos
et al. [9], the cross-sectional area of each tape turn i is
represented as a circuit element (which we call Ri in this
paper) with current Ii through it, and with the voltage across
it being the mean of E + Ȧ multiplied by 1 m evaluated at
the discretized elements of the tape turn2. The current-voltage
relationship for Ri is provided by the coupling between the
circuit model and the T-A formulation3 [9].

2Note E + Ȧ =
(

∂ϕ
∂z

)
i
, which is the unknown we want, and in this

paper we will interpret the voltage across the circuit element Ri as voltage
per meter

(
∂ϕ
∂z

)
i
.

3Current calculated from the electrical circuit is imposed as the constraint
in the T formulation (implemented in the partial differential equation
module in COMSOL); voltage, which is the average E + Ȧ (times
an arbitrary length of 1 m) of the elements of a tape turn, is extracted
from the A formulation (implemented via the magnetic field module in
COMSOL) and fed into the electrical circuit.
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A main contribution of this paper is to extract from these
circuit diagrams [9] the necessary constraints on Ii and

(
∂ϕ
∂z

)
i

and formulate the constraints mathematically into the form of
(9). Thus, the Nt unknowns

(
∂ϕ
∂z

)
i

can be determined in the
integral method for the coupled-at-ends and coupled scenarios.

A. Coupled-at-ends

As explained by Santos et al. [9], in the coupled-at-ends
case, tape turns that are part of the same physical tape have
the same current through them, and thus those tape turns are
connected in series in the equivalent circuit. The equivalent
circuit for a coil with Nct cable turns of a cable consisting of
Ntic coupled-at-ends tapes is given in Fig. 2.

From Fig. 2, we extract the following three sets of condi-
tions needed to find the Nt unknowns

(
∂ϕ
∂z

)
i

for the integral
method.

1) The sum of current of all tape turns in the first cable
turn (or any other cable turns) is equal to the applied
current on the cable. In the circuit in Fig. 2, this
corresponds to the fact that sum of currents through
Ri, i = 1, 2, ..., Ntic sum to Iset. Thus,

Ntic∑
i=1

İi = İset. (11)

This gives us one equation.
2) Tape turns that are part of the same physical tape have

the same current through them. In the circuit in Fig.
2, this corresponds to the fact that all Ri belonging to
the same tape are in series. Thus, for each tape i =
1, 2, ..., Ntic in a cable,

İi = İi+Ntic = İi+2Ntic = ... = İi+(Nct−1)Ntic
(12)

There are Nct− 1 equations in (12), and (12) applies to
each of Ntic tapes, thus this second set of constraints
gives us in total (Nct − 1)Ntic equations.

3) The sum of the voltages across all tape turns that belong
to a tape is the same for all tapes in the cable, since the
tapes in the cable are coupled at the ends of the cable.
In the circuit in Fig. 2, this corresponds to the fact that
the branches that represent tapes (each branch containing
the Ri of the tape in different cable turns) are in parallel
with each other, thus sharing the same voltage. Thus,

Nct−1∑
j=0

(
∂ϕ

∂z

)
1+jNtic

=

Nct−1∑
j=0

(
∂ϕ

∂z

)
2+jNtic

= ...

=

Nct−1∑
j=0

(
∂ϕ

∂z

)
Ntic+jNtic

.

(13)

This third set of constraints gives us in total Ntic − 1
equations.

Note the first and second sets of equations can be written
in terms of

(
∂ϕ
∂z

)
i

since İi can be written in terms of
(

∂ϕ
∂z

)
i

according to (7). Therefore, there are in total 1 + (Nct −

1)Ntic + Ntic − 1 = NctNtic = Nt equations, allowing us
to solve for the Nt unknowns. These Nt equations can be
collected into matrix form, like (9), as

Mcae
∂ϕ

∂z
= Pcae, (14)

where subscripts cae stand for “coupled-at-ends”. Thus, we
can solve for the Nt unknowns in ∂ϕ

∂z . Details of entries in
Mcae and Pcae are given in Appendix A.

B. Coupled
As explained by Santos et al. [9], in the coupled case, each

tape turn in a cable is in electrical contact and thus tape turns in
a cable turn are connected in parallel in the equivalent circuit.
The equivalent circuit for a coil with Nct cable turns of a cable
consisting of Ntic coupled tapes is given in Fig. 2 (considering
the dashed lines as solid lines in the figure). We have assumed
that there is zero contact resistance between the tapes in a cable
turn, as reflected by the fact that the tapes in a cable turn are
connected in parallel with no resistor on the dashed lines.

From Fig. 2, we extract the following two sets of conditions
needed to find the Nt unknowns

(
∂ϕ
∂z

)
i

for the integral
method.

1) The voltages across all tape turns within a cable turn
are the same. This is reflected by the fact that all Ri

belonging to the same cable turn are in parallel. Thus,
for each cable turn i = 1, 2, ..., Nct,(

∂ϕ

∂z

)
m+1

=

(
∂ϕ

∂z

)
m+2

= ... =

(
∂ϕ

∂z

)
m+Ntic

,

m = (i− 1)Ntic.
(15)

There are Ntic − 1 equations in (15), and (15) applies
to Nct cable turns, so this first set of constraints gives
us (Ntic − 1)Nct equations.

2) The sum of current through all tape turns in a cable
turn is equal to the current applied to the cable. This is
reflected in the circuit diagram as we can see that Iset =∑Ntic

l=1 I(k−1)Ntic+l for each cable turn k = 1, 2, ..., Nct.
Thus, taking time derivatives, for each cable turn k =
1, 2, ..., Nct

İset =

Ntic∑
l=1

İ(k−1)Ntic+l. (16)

Equation (16) applies to each of the Nct cable turns, so
this second set of constraints gives us Nct equations.

The second set of equations can be written in terms of(
∂ϕ
∂z

)
i

since İi can be written in terms of
(

∂ϕ
∂z

)
i

according
to (7). Therefore, there are in total (Ntic − 1)Nct + Nct =
NticNct = Nt equations, allowing us to solve for the Nt

unknowns. These Nt equations can be collected into matrix
form, like (9), as

Mc
∂ϕ

∂z
= Pc, (17)

where subscript c stands for “coupled”. Thus, we can solve
for the Nt unknowns in ∂ϕ

∂z . Details of entries in Mc and Pc

are given in Appendix B.
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Fig. 2: Equivalent circuit representing the relationship between current and voltage of each tape turn for the coupled-at-ends
(ignoring the dashed lines) and coupled (including the dashed lines) scenarios based on [9]. The label next to each resistor
is the tape turn number. The inset shows the meaning of the variables used in this paper.

IV. VALIDATION

In this section, we compare the ac loss of a racetrack coil
carrying transport ac under the three coupling scenarios. The
coil has Nct = 4 cable turns and the cable is made of
Ntic = 16 tapes. The transport current carried by the cable
is set to be Iset = I0 sin(2πft), where f = 500 Hz. The tape
parameters and geometry are the same as in Santos et al. [9],
with a constant critical current density Jc. Details of the coil
parameters are given in Table I. In the following simulations,
only one straight section of the coil is built in the geometry
of the 2D models, and the other side of the coil is taken into
account by symmetry. The ac loss values are for one side of
the coil only.

First, we simulate the three coupling scenarios for two
periods (0.004 s) with I0 = 0.8Ic, where Ic is the critical
current of a tape multiplied by number of tapes in the cable.
We use three different methods and compare their results: the
integral method presented in this paper, the T-A formulation
and the H-formulation. The integral method is implemented
in Python; the T-A formulation is implemented in COMSOL
using the method described in Santos et al. [9]; and the
H-formulation is implemented in COMSOL, using “Global
Constraints” to specify current of tapes in each coupling
scenario. The current distribution at the instant t = 0.001 s
calculated by the integral method and the T-A formulation is
plotted in Fig. 3, and they agree with each other. Further,
the instantaneous ac loss of each scenario, and the time
taken by each method, are presented in Fig. 4. Each curve
from the integral method consists of 2001 data points joined
together, and each curve from the T-A formulation and the H-
formulation consists of 201 data points joined together. The
oscillations of curves of the integral method do not affect
average ac loss, as shown in Fig. 5. The T-A formulation and
the H-formulation have been validated with each other [9],
and here we can see the integral method agrees with them as
well. Since the time taken by the H-formulation is longer than

TABLE I: Simulation parameters

Description Unit Value

Tape properties

Tape width mm 4
Tape thickness µm 2
Critical current density Am−2 2.1959× 1010

Critical current A 175.67
n - 30
No. of elements per tape (Python,
Matlab, COMSOL)

- 80

Coil properties (refer to Fig. 1)

Number of tapes in cable, Ntic - 16
Number of cable turns, Nct - 4
Distance between adjacent tapes (centre-
to-centre) in a cable turn, dtape

mm 2.413/15

Distance from tape at end of a cable turn
to tape at start of next cable turn, dcable

mm 0.358

Inner radius of coil, rin mm 15

the T-A formulation, we only compare the integral method
with the T-A formulation below.

Second, we vary amplitude I0 from 20% to 100% of Ic and
simulate the ac loss for 1 period (0.02 s). The average ac loss
results in the second half of the period simulated are plotted
in Fig. 5, and excellent agreement can be seen between the
integral method and the T-A formulation. The time taken by
both methods are given in Fig. 6, and the integral method takes
45% or less of the time taken by the T-A formulation in all
cases.

V. POSSIBLE EXTENSION AND FUTURE WORK

A. Modelling contact resistance and termination resistance

The termination resistance of electrical contact at the ends of
the coil are modelled in Zermeno et al. [13] as a resistance in
an equivalent circuit, or a per unit resistance term contribution
to the E field in the H formulation. Adapting such approaches
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Fig. 3: Current (J/Jc) distribution of the three coupling
scenarios at t = 0.001 s calculated by the integral method
and T-A formulation.

to model terminal resistance in our equivalent circuit or by
modifying the E field definition in the integral method may
be possible extensions to this paper.

In Fig. 2 for the coupled case, we have assumed zero contact
resistance between the tapes, as tapes are connected with the
dotted lines (which represent wires) without resistors. Thus,
we assume that current is able to switch between tapes without
resistance at one of the two end-turns, which are not modelled
in our 2D model of the racetrack coil; but each tape keeps
the same transport current in the two straight sections of a
cable turn, since the 2D model assumes the straight sections
of the racetrack coil extend infinitely into the page. In the
future, contact resistance can be modelled using a partial
element equivalent circuit (PEEC) as used when modelling
non-insulated (NI) coil [12], [19] and parallel-wound NI coil
[20]. The PEEC approach divides the coil into small elements;
resistors connect elements of neighboring tapes to model
contact resistance.
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uncoupled, H- (14245 s)

Fig. 4: Instantaneous ac loss of one side of a racetrack coil
carrying transport ac, for different coupling scenarios of the
coil and calculated via different methods. The time taken by
each method is shown in brackets in the legend. Computer
specifications: Intel i7-8700 CPU @ 3.2 GHz 3.19 GHz; 32
GB RAM; Windows 10 Enterprise; COMSOL 6.0; Python
3.11, Spyder 5.4.2.
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Fig. 5: Average ac loss of one side of a racetrack coil
carrying transport ac in the second half of the first period
simulated. “IM” stands for integral method.

B. Applicability to other numerical methods

The equivalent circuit used in Santos et al. [9] and in this
paper may potentially be coupled with numerical methods
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Fig. 6: Time taken by the integral method and T-A formu-
lation to calculate ac loss of the racetrack coil. For the T-A
formulation calculated via COMSOL, the relative tolerance
is set as 1e-4, except for points 1 and 2, for which 1e-5
is used. For the integral method calculated via Python, all
data points are calculated by the forward Euler method with
(maximum step size, minimum step size) = (1e-6 s, 1e-9 s),
except points 3 and 4, which use (1e-7 s, 1e-9 s) and (1e-
7 s, 1e-10 s), respectively. Computer specifications are the
same as in the caption of Fig. 4.

other than the T-A formulation and integral method. The T-
formulation [21] is similar to the integral method in the sense
that only the superconductor domain is meshed (i.e., without
meshing the air) [22], thus may offer time advantage like
the integral method over methods that mesh the air domain.
The T-formulation has been implemented using the Galerkin
method and backward difference method for discretization in
space and time, respectively [23]. The transport current in
each tape is imposed by specifying the current potential T
at the edges of the tape [23], [24]. In the coupled-at-ends and
coupled scenarios, where tapes’ current are not known before

computation, potentially the tapes’ current at each time step
can be found by solving a set of equations based on constraints
on current and voltage extracted from the equivalent circuit
similar to what is presented in Sections III-A and III-B, with
voltage taken as E + Ȧ.

VI. CONCLUSION

In this article, we have extended the integral method to
model coils made of HTS tapes that are coupled or coupled-
at-ends. In such cases, the current in the tapes are not known
prior to solving the model. However, we formulate a set of
constraints based on the equivalent circuit proposed by Santos
et al. [9] for the coupled and coupled-at-ends scenarios, and in
this way, we solve for the voltage gradient in the tapes, which
are needed in the integral method. The integral method has a
time advantage over the existing method of T-A formulation
coupled to an equivalent circuit, taking less than 45% of the
time of the latter in a wide range of transport ac amplitudes
simulated.
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APPENDIX A
Mcae AND Pcae

This appendix explains the details of entries of Mcae and

Pcae in (14). Mcae and Pcae are filled by considering the three

sets of constraints in Section III-A.

A. First set of equations

Substitute (7) in (11),

−
Nt∑
j=1

[(
∂ϕ(t)

∂z

)
j

Ntic∑
i=1

1

µ0

∫
Ωi

∫
Ωj

Q−1(r, r′) d2r′ d2r

]

= İset(t)−
Ntic∑
i=1

∫
Ωi

s(r, t) d2r.

(18)

Discretizing (18), we can fill the first row in (14) with[
Mcae

]
1,j

=

Ntic∑
i=1

[
LQinvL

T
]
i,j
∆x∆y (19a)

[
Pcae

]
1
= İset −

Ntic∑
i=1

[
LQinv(E + Ȧa)

]
i
∆x∆y. (19b)

B. Second set of equations

To set İa = İb, from (7),
Nt∑
j=1

(
∂ϕ(t)

∂z

)
j

1

µ0

[ ∫
Ωb

∫
Ωj

Q−1(r, r′) d2r′ d2r

−
∫
Ωa

∫
Ωj

Q−1(r, r′) d2r′ d2r

]
=

∫
Ωb

s(r, t) d2r −
∫
Ωa

s(r, t) d2r.

(20)
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In (12), İi+lNtic
= İi+(l+1)Ntic

, l = 0, 1, ..., Nct − 2, and
(12) applies to each tape i = 1, 2, ..., Ntic. These (Nct−1)Ntic

equations can be implemented by putting a = [a]k and b =
[a]k +Ntic, k = 1, 2, ..., (Nct − 1)Ntic in (20) where

a = [1, 1 +Ntic, ..., 1 + (Nct − 2)Ntic,
2, 2 +Ntic, ..., 2 + (Nct − 2)Ntic,
...
Ntic, Ntic +Ntic, ..., Ntic + (Nct − 2)Ntic]

(21)

So far, one row has been filled in (14), and the next (Nct−
1)Ntic rows can be filled as follows after discretizing (20):[
Pcae

]
1+k

=

([
LQinv(E + Ȧa)

]
b
−
[
LQinv(E + Ȧa)

]
a

)
∆x∆y, (22a)[

Mcae

]
1+k,j

=

([
LQinvL

T
]
a,j

−
[
LQinvL

T
]
b,j

)
∆x∆y

(22b)
k = 1, 2, ..., (Nct − 1)Ntic, a = [a]k, b = [a]k +Ntic.

C. Third set of constraints

Equation (13) can be rewritten as

Nct−1∑
j=0

(
∂ϕ

∂z

)
k+jNtic

−
Nct−1∑
j=0

(
∂ϕ

∂z

)
k+1+jNtic

= 0,

k = 1, 2, ..., Ntic − 1.

(23)

So far, 1+(Nct−1)Ntic rows have been filled in (14), and
the remaining Ntic − 1 rows can be filled by considering (23)
as follows.[

Mcae

]
1+(Nct−1)Ntic+k,l

=


1, l = k + jNtic, ∀j = 0, 1, ..., Nct − 1

−1, l = k + 1 + jNtic, ∀j = 0, 1, ..., Nct − 1

0, otherwise
,

(24a)[
Pcae

]
1+(Nct−1)Ntic+k

= 0, (24b)

k = 1, 2, ..., Ntic − 1.

APPENDIX B
Mc AND Pc

This appendix explains the details of entries of Mc and Pc

in (17). Mc and Pc are filled by considering the two sets of

constraints in Section III-B.

A. First set of constraints

The first set of constraints, i.e., (15) for i = 1, 2, ..., Nct,
can be rewritten(

∂ϕ

∂z

)
d

−
(
∂ϕ

∂z

)
d+1

= 0,

d = [d]k, k = 1, 2, ..., (Ntic − 1)Nct,

(25)

where

d = [1, 2, ..., Ntic − 1,
Ntic + 1, Ntic + 2, ..., Ntic +Ntic − 1,
2Ntic + 1, 2Ntic + 2, ..., 2Ntic +Ntic − 1,
...
(Nct − 1)Ntic + 1, ... , (Nct − 1)Ntic +Ntic − 1 ]

(26)
Therefore, (25) can be implemented as

[
Mc

]
k,l

=


1, l = [d]k

−1, l = [d]k + 1

0, otherwise
(27a)

[
Pc

]
k
= 0 (27b)

k = 1, 2, ..., (Ntic − 1)Nct.

B. Second set of constraints

Let vector g be a function of k, g(k) = [(k − 1)Ntic +
1, (k − 1)Ntic + 2, (k − 1)Ntic + 3, ..., (k − 1)Ntic + Ntic].
Then, (16) is

∑
∀g∈g İg = İset, which can be rewritten as

−
Nt∑
j=1

(∂ϕ(t)

∂z

)
j

∑
∀g∈g

1

µ0

∫
Ωg

∫
Ωj

Q−1(r, r′) d2r′ d2r


= İset(t)−

∑
∀g∈g

∫
Ωg

s(r, t) d2r.

(28)

So far, (Ntic−1)Nct rows have been filled in (17), and the
remaining rows can be filled with the Nct equations of (16),
considering the form (28) above:[

Mc

]
(Ntic−1)Nct+k,j

=
∑

∀g∈g(k)

[
LQinvL

T
]
g,j

∆x∆y (29a)

[
Pc

]
(Ntic−1)Nct+k

= İset −
∑

∀g∈g(k)

[
LQinv(E + Ȧa)

]
g
∆x∆y (29b)

k = 1, 2, ..., Nct
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