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Abstract—Routine inspection inside the water tank, pressure
vessel, penstocks and boiler which present dark and global
positioning system (GPS) denied environment always plays an
important role for the safety storage and transportation. The
conventional inspection conducted by the skilled workers is
highly expensive, time consuming and may cause the safety and
heath problem. Nowadays, the emerging unmanned aerial vehicle
(UAV) based techniques make it possible to replace human to
do the periodical inspection in these environments. However,
how to obtain the reliable, high accuracy and precise position
information of the UAV becomes a challenging issue, as the GPS
is unable to provide the accurate position information in these
environments. In order to resolve this problem, an adaptive
square-root cubature Kalman filter (ASRCKF) based low cost
UAV positioning system is designed. Through the combination of
the inertial measurement unit (IMU), ultra-wideband (UWB),
the cubature rule, the adaptively estimated noise model and
weighting factors, the potential degradation and oscillation for
the system performance which caused by the linearisation pro-
cess, the variation of the measurement noise and the manually
adjusted noise model are solved. Finally, the 0.081m median
localisation error, 0.172m 95th percentile localisation error and
0.045m average standard deviation (STD) can be attained, which
can support the UAV to achieve the autonomous inspection in
dark and GPS-denied environments.

Index Terms—Unmanned aerial vehicle (UAV), ultra-wideband
(UWB), autonomous inspection, GPS-denied environments, adap-
tive Kalman filter (AKF), adaptive square-root cubature Kalman
filter (ASRCKF).

I. INTRODUCTION

IN the industrial practices, the periodical inspection for
the storage or shipping containers such as the water tank,
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the pressure vessel, penstocks and boiler known as dark
and global positioning system (GPS) denied environments,
to inspect if the cracks and corrosion exist is indispensable
[1]–[9]. Currently, the inspection inside these environments is
carried out by the well trained workers, which is inefficient,
laborious, high cost and has the potential safety and heath
problem. Nowadays, with the development of the unmanned
aerial vehicle (UAV) based technique, it becomes possible to
replace human with the UAV to do the periodical inspection in
these environments. However, considering the unavailability of
the satellite signal, the acquisition of the accurate and precise
UAV position information has been turned into the challenging
issue to be resolved [10]–[15].

Currently, the researches have already been carried out for
the high accuracy and precision UAV localisation in dark and
GPS-denied environments to achieve the detailed inspection.
Within these, the vision based techniques, especially for the
visual odometry (VO) are the extensively used localisation
techniques for UAV, on account of the high accuracy and
implementation simplicity characteristics [16], [17]. However,
the performance of the vision based techniques is greatly
limited by the illumination condition and the texture within the
operational environment, which is not suitable for the appli-
cations in dark environment. To tackle this issue, through the
coupling of a nonlinear model predictive control (NMPC) with
a visual processing scheme, Kanellakis et al. [18] achieved the
autonomous navigation of the micro aerial vehicle (MAV) in
the challenging dark environment. Instead of the positioning
of the MAV, the vision based approach is only utilised to
regulate the heading direction of the MAV. However, it is
still difficult for the detailed inspection with the proposed
system, considering the requirement of the precise position
information. Similarly, to limit the performance influence led
by the changing illumination and the light noises, a UAV
and ground guide vehicle cooperation system was proposed
in [19]. With the visual fiducial equipped on the ground guide
vehicle and the dual-source images based visual positioning
approach, the relative localisation of the UAV can be achieved
for the under bridge inspection. Yet, the performance of
their system is greatly influenced and limited, considering
the difficulty to deploy the ground guide vehicle for the
focused application scenarios, and the performance influence
of vision based techniques in completely dark environment.
From different perspectives, a MAV based vessel inspection
system was designed and implemented in [1]. For the accurate
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UAV positioning under different circumstances, three different
sensor suites were offered. The UAV positioning for the first
sensor suit mostly relies on a forward looking camera, which
means that the performance is limited by the illumination
condition of the operational environment. To restrict the impact
coming from the illumination condition or the texture within
the operational environment, the laser scanner is utilised as
the main localisation component for the second sensor suit.
However, the increased cost, size and energy consumption
of the positioning components all make it impossible for
the low cost applications on the small UAV. Meanwhile,
the positioning performance of the system is also restricted
by the “canyoning” effect. To provide a reliable and robust
positioning performance, the combination of the first two
sensor suits is made. Nevertheless, the weight, size, cost and
energy consumption of the system are still not taken into
account. Similarly, authors in [20]–[23] all utilised the laser
scanner or the light detection and ranging (LiDAR) based
localisation system for UAV positioning to overcome the low
illumination condition. Nevertheless, the aforementioned issue
for the LiDAR and laser scanner based system still has the
great impact on the applications with MAV. Moreover, with
the built-in inertial measurement unit (IMU) on the current
UAV platform, the IMU based positioning has also attracted
lots of attentions on the UAV positioning. However, the error
accumulation issue makes it impossible to utilise the single
IMU for high performance positioning. Thus, it often serves
as part of the sensor fusion approach for UAV positioning.
Most recently, the commercial UAV named Elios 2 developed
by Flyability attracts lots of attention, due to the ability for
the inspection inside the constrained space such as the sewers,
mines and oil and gas vessels. However, the skilled engineer is
required to manually control the Elios 2 which will certainly
elevate the potential crash risk and still laborious. Thus, a low
cost localisation technique which is capable for the precise,
accurate and reliable localisation of the UAV is still pressingly
required to support the stable flight in these environments. In
the last couple of years, the researches on the ultra-wideband
(UWB) based UAV positioning technique have been conducted
due to the high accuracy (up to centimetre), low cost, light
weight, high position update rate, no performance impact
regardless of the illumination conditions and robustness to
against the multi-path effect characteristics [24], [25]. These
all make it to be the potential candidate for the focused
applications. Nevertheless, the performance oscillation led by
the unreasonable values and variation of the measurement
noise within the ranging information for the pure UWB based
technique still greatly limits the applications on UAV.

To overcome these limitations, the Kalman filter (KF) based
localisation algorithms which integrated the IMU and the
UWB have been investigated and extensively utilised for UAV
positioning. In [26], to achieve the low cost UAV positioning,
the extended Kalman filter (EKF) was exploited to do the
sensor fusion of IMU and UWB. The additional measurement
calibration and outlier detection methods have been proposed
to resist the performance influence from the unreasonable
values. Similarly, authors in [27] presented a sensor fusion
based localisation system through the EKF algorithm, which

successfully achieved the 80Hz 3D positioning of the MAV
swarm with the utilisation of the IMU and UWB. The same
research has also been carried out by Strohmeier et al. [28],
but differently, excluding the UAV position, the angular rate
was introduced to estimate the precise attitude information.
Whereas, with the utilisation of the first order Taylor expansion
for the EKF, the neglected high order terms still limit its
performance. To remedy this, the advanced KF algorithms
were proposed. Instead of linearising the observation matrix,
the system state can be approximated by the sampling points
for the unscented Kalman filter (UKF). According to the UAV
flight test results in [29], the accuracy of the system is signif-
icantly increased by 70% in comparison with the pure UWB
based system. Yet, considering the operational environments
in this article, it is difficult to collect the UAV after crash,
the priority for the positioning system is to avoid any position
lost of the UAV. Thus, the increased probability for filtering
divergence and computational complexity of the UKF based
approaches restrict the applications in the focused scenarios
[30]. For further improvement, the cubature Kalman filter
(CKF) and square-root cubature Kalman filter (SRCKF) were
proposed [31]. Leveraging the spherical-radial cubature rule,
the approximation for the state posterior mean and covariance
can be achieved [32]. Compared with the EKF and UKF
based approaches, the potential performance degradation led
by the linearisation can be eliminated with slightly increased
computational complexity and stable filtering performance
which is suitable for the focused UAV applications.

On the other hand, for all the KF based sensor fusion
approaches, the process and measurement noise covariance
matrices known as the Q and R matrices have the significantly
impact on the system positioning performance [33]–[35]. The
unsuitable noise covariance in the estimation process can
even lead to the positioning failure [36], [37]. Thus, how
to acquire the appropriate noise covariance matrices should
also be considered, especially for the focused applications,
since it is hard to manually adjust these in dark and GPS-
denied environments. Due to the existing characteristics for the
adaptive Kalman filter (AKF) based approach, including the
implementation simplicity and low computational complexity,
it becomes to one of the ideal candidates to remedy this issue.

In our previous work [38], an adaptive extended Kalman
filter (AEKF) based sensor fusion algorithm was presented to
overcome the UAV localisation performance influence caused
by the unsuitable noise covariance matrices in the same envi-
ronments. The adaptive estimation was successfully achieved
through the recorded offline data and the measurements. Mean-
while, two additional weighting factors were added in the al-
gorithm to further improve the performance and stability of the
algorithm for the UAV applications in the same environments.
Nevertheless, the linearisation error led by the neglected high
order terms still has the great impact on its performance under
certain circumstances. Moreover, the negative estimation of the
measurement noise covariance matrix may exist, which will
lead to the positioning failure. In the previous algorithm, if a
negative estimation is detected, the offline data will be directly
utilised as the noise covariance matrices in this estimation
round. Obviously, the adaptive ability of the algorithm will
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be decreased. Under such circumstance, in order to overcome
all these issues, a new approach is still desired for the
performance improvement.

In order to address all the above issues, in this paper, an
adaptive square-root cubature Kalman filter (ASRCKF) based
low cost UAV localisation system is proposed to support the
autonomous inspection inside dark and GPS-denied environ-
ments. Accordingly, the main contributions of this paper are
highlighted below:

1) An ASRCKF based sensor fusion algorithm is proposed
for the reliable, high accuracy and high precision UAV
positioning in dark and GPS-denied environments. In
contrast with the existing KF approaches, the perfor-
mance degradation, oscillation and potential positioning
failure caused by the linearisation process, the unsuitable
and potential negative estimation of the noise covariance
matrices can be significantly reduced and eliminated.
Furthermore, to avoid the potential positioning failure and
limit the huge variation of the estimated noise covariance
matrices, the additional dynamic weighting factors are
added to keep a more reliable UAV positioning perfor-
mance.

2) Low cost IMU and UWB based sensor fusion UAV
positioning algorithm and system are designed to replace
humans for the detailed autonomous inspection inside
dark and GPS-denied environments.

3) Comprehensive simulations, experiments and actual flight
tests with the inspection task in the laboratory envi-
ronment have been conducted to validate the algorithm
and system performance. According to the results, the
presented system and algorithm are able to attain a
high level localisation performance of the UAV with the
0.081m median localisation error, 0.172m 95th percentile
localisation error and 0.045m average standard deviation
(STD) and achieve the autonomous inspection in dark and
GPS-denied environments.

This article is organised as follows. Firstly, the structure
for the proposed system is introduced in Section II. Followed
by, the description for the proposed ASRCKF based IMU
and UWB sensor fusion localisation algorithm is given in
Section III. In order to do the comprehensive verification of the
proposed ASRCKF algorithm and UAV positioning system,
the analysis and discussion for the simulation and experiment
results are presented in Section IV. Finally, the conclusion for
the whole article is made in Section V.

II. SYSTEM DIAGRAM

For the purpose of the low cost UAV positioning to
support the autonomous inspection inside dark and GPS-
denied environments, the following system as shown in Fig.
1 is designed. Clearly, the system consists of six modules
including the central module (ground station), UAV module,
IMU module, UWB based localisation module, recording
module and reference module, according to the function of
each module. As seen from the system diagram, the central
module known as a Linux laptop is responsible for all the
calculations and control related functions. The UAV module

known as a commercial low cost quadcopter named Bebop2 is
responsible for the autonomous inspection. The IMU module,
which is integrated within the UWB tag node (the UWB sensor
node to be located), is leveraged to get the acceleration and
attitude information for the position and attitude control of
the UAV. The UWB based localisation module including the
tag node (mounted on the UAV) and the anchor nodes (the
position information is known) is responsible for providing
the ranging information for UAV position estimation. For the
purpose of providing the high quality images and videos for
the detailed inspection, an additional recording module the
commercial Insta 360 Go2 is utilised in the system. This is
under the consideration of the size, price, weight, image and
video quality (2560x1440, 50fps), and the exiting FlowState
stabilisation function which is significant for the UAV based
applications. Finally, the reference module known as the
V120:Trio designed by OptiTrack is responsible for providing
the ground truth of the UAV position information during the
experiments. The total price for the system is around £1200,
including the UAV (Bebop2), one IMU, UWB tag and UWB
listener node, four UWB anchor nodes and the Insta 360 Go2.
It needs to note that the reference module is only responsible
to get the ground truth, therefore, the price for this module is
not included.

III. IMU AND UWB BASED UAV POSITIONING

Accordingly, considering the issues for the pure UWB and
the traditional KF sensor fusion techniques, including the
degradation and oscillation for the localisation performance
led by the linearisation of the observation matrix, the variation
of the measurement noise, the unreasonable values within the
measured ranging information and the potential filtering diver-
gence results from the unsuitable noise covariance matrices,
an ASRCKF based sensor fusion algorithm is presented and
introduced in this section to overcome all these issues.

A. Mathematical model

With the existing kinematic model of the UAV [39], the
matrix form for the motion equation can be derived

γ̂k/k−1 = F kγk−1 +Bka
L
k−1, (1)

where, γ = [x, vx, y, vy, z, vz]
T denotes the state vector

composed by the UAV position and velocity in three directions,
aL = [aLx , a

L
y , a

L
z ]

T is supposed as the acceleration in local
navigation coordinate system in three directions measured by
the IMU, k is the round number of the estimation process,
F and B represent the state transition matrix and the control
matrix respectively, which can be written as

F =


1 ∆T 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆T 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆T
0 0 0 0 0 1

 , (2)
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Fig. 1. System structure.

B =



∆T 2

2 0 0
∆T 0 0

0 ∆T 2

2 0
0 ∆T 0

0 0 ∆T 2

2
0 0 ∆T


, (3)

∆T is the time interval.
With the measured ranging information between the UWB

sensor nodes, the correction for the predicted state information
can be made as follows

Zk = Hkγ̂k/k−1 + ωk, (4)

where, Z = [d1, d2, ..., dn]
T represents the measurement

matrix, dn denotes the ranging information between the tag
node and anchor node n, ω ∼ N(0,R) is assumed as the
measurement noise for the ranging information measured by
the UWB nodes, R denotes the measurement noise covariance
matrix and H is supposed as the observation matrix. Obvi-
ously, the ranging information cannot be linearly represented
by the predicted state vector γ̂k/k−1. Thus, the first order
Taylor expansion is exploited by the EKF based approach to
linearise the observation matrix H . However, this is at the
expense of neglecting the high order terms, which are linked
to the positioning performance of the algorithm and system.

B. SRCKF algorithm

To remedy the performance influence from the linearisation
of the observation matrix, the cubature rule is utilised by SR-
CKF to approximate the state posterior mean and covariance
[31], [32]. Here, the estimation process of the SRCKF is given
as follows.

1) State prediction: Firstly, the cubature points are evalu-
ated through the state vector γk−1 and Sk−1 from the k − 1
round.

γi,k−1 = Sk−1ξi + γk−1, i = 1, 2, ..., 2m, (5)

where, m represents the number of the state variables to be
estimated in the state vector, Sk−1 denotes the square root of
the covariance matrix P k−1 which can be calculated by the
Cholesky decomposition

P k−1 = Sk−1S
T
k−1, (6)

ξi can be represented as

ξi =

{√
mIm,i, i = 1, 2...,m

−
√
mIm,i−m, i = m+ 1,m+ 2, ..., 2m

, (7)

Im,i is supposed as the ith column of the m × m identity
matrix.

Accordingly, the propagated cubature points can be calcu-
lated through (1) and (5) and represented as

γ∗
i,k/k−1 = F kγi,k−1 +Bka

L
k−1, i = 1, 2, ..., 2m. (8)

Then, the predicted state vector and the square root of the
covariance matrix can be derived as

γ̂k/k−1 =
1

2m

2m∑
i=1

γ∗
i,k/k−1, (9)

Sk/k−1 = Tria([Γ∗
k/k−1,SQ,k−1]), (10)

where, Tria(·) denotes the QR decomposition, SQ is supposed
as the square root of the process noise covariance matrix Q,
Γ∗
k/k−1 can be represented as

Γ∗
k/k−1 =

1√
2m

[γ∗
1,k/k−1 − γ̂k/k−1,γ

∗
2,k/k−1 − γ̂k/k−1,

...,γ∗
2m,k/k−1 − γ̂k/k−1]

.

(11)
2) Correction process: During the correction process for

the SRCKF algorithm, firstly, the cubature points can be
calculated through the predicted state vector and the square
root of the covariance matrix from the prediction process and
represented as

γi,k/k−1 = Sk/k−1ξi + γ̂k/k−1, i = 1, 2, ..., 2m. (12)
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Followed by, the propagated cubature points can be derived
through the calculated cubature points

Zi,k/k−1 = h(k,γi,k/k−1), i = 1, 2, ..., 2m, (13)

where, h(·) is supposed as the observation function.
Then, the predicted measurement matrix can be expressed

as

Ẑk/k−1 =
1

2m

2m∑
i=1

Zi,k/k−1. (14)

Throughout these, the square root of the innovation co-
variance matrix SZZ,k/k−1 and the cross covariance matrix
SγZ,k/k−1 can be calculated as follows

SZZ,k/k−1 = Tria([ζk/k−1,SR,k]), (15)

SγZ,k/k−1 = Γk/k−1ζ
T
k/k−1, (16)

where, SR is assumed as the square root of the measurement
noise covariance matrix R, ζk/k−1 can be calculated by the
propagated cubature points and the predicted measurement
matrix

ζk/k−1 =
1√
2m

[Z1,k/k−1 − Ẑk/k−1,Z2,k/k−1 − Ẑk/k−1,

...,Z2m,k/k−1 − Ẑk/k−1]

,

(17)
Γk/k−1 can be represented as

Γk/k−1 =
1√
2m

[γ1,k/k−1 − γ̂k/k−1,γ2,k/k−1 − γ̂k/k−1,

...,γ2m,k/k−1 − γ̂k/k−1]
.

(18)
Finally, the Kalman gain Kk,gain, corrected state vector γ̂k

and the square root of the covariance matrix Ŝk can be
calculated and estimated as

Kk,gain = (SγZ,k/k−1/S
T
ZZ,k/k−1)/SZZ,k/k−1, (19)

γ̂k = γ̂k/k−1 +Kk,gain(Zk − Ẑk/k−1), (20)

Ŝk = Tria([Γk/k−1−Kk,gainζk/k−1,Kk,gainSR,k]). (21)

C. ASRCKF algorithm

Apparently from the SRCKF algorithm, the potential perfor-
mance degradation and oscillation results from the linearisa-
tion process can be limited. However, owing to the variation of
the process and measurement noise model, when with the man-
ually adjusted and constant Q and R matrices for the SRCKF,
the performance degradation or even the positioning failure
may appear [36]. Furthermore, the difficulty to manually
adjust the noise covariance matrices in dark and GPS-denied
environments should also be taken into account. Therefore,
to overcome this, the ASRCKF algorithm is investigated and
proposed in this subsection.

1) Q and R matrices estimation: Firstly, the estimation
of the R matrix is discussed. Traditionally, it can be esti-
mated through the innovation sequence calculated through the
difference between the predicted measurement matrix from
(14) and the measurement matrix Zk in the current round
[34]. Nevertheless, the negative estimation may exist, which
will directly lead to the filtering divergence. To remedy this
issue, inspired by the approach in [40], the measurement
filtering residual Z ′

k is calculated and exploited to estimate
the measurement noise covariance matrix R to prevent the
negative estimation issue.

With the corrected state vector γ̂k in (20) and the mea-
surement matrix Zk in the current round, the measurement
filtering residual can be calculated and represented as

Z ′
k = Zk − h(k, γ̂k). (22)

Then, the R matrix in the current round can be obtained

Rk = Q̂Z′
k
+ Ẑk/k−1Ẑ

T

k/k−1, (23)

where, Q̂Z′
k

represents the residual covariance matrix which
is calculated by the residual Z ′

k from M rounds,

Q̂Z′
k
=

1

M

k∑
i=k−M+1

Z ′
iZ

′
i
T
, (24)

in which M denotes the size of the window. In the estimation
process, if a smaller M is utilised, it means that the adaptive
ability of the algorithm can be increased to catch up the
changes in the current estimation process. But it is at the
expense of the stability of the algorithm. On the other hand,
larger M means the estimation of the residual covariance
matrix will become stable and smooth, however, the adaptive
ability will be greatly reduced and the computational complex-
ity will be increased.

Through the mathematical model of the sensor fusion ap-
proach, it can be observed that the process noise η coming
from the bias and measurement noise of the acceleration
information can be expressed as

ηk−1 = γ̂k − γ̂k/k−1, (25)

where,

γ̂k − γ̂k/k−1 = Kk,gain(Zk − Ẑk/k−1). (26)

Accordingly, the Q matrix can be obtained

Qk−1 = Kk,gainĈZ′′
k
KT

k,gain, (27)

where, ĈZ′′
k

represents the innovation covariance matrix

ĈZ′′
k
=

1

M

k∑
i=k−M+1

Z ′′
i Z

′′
i
T
, (28)

in which Z ′′
i denotes the innovation sequence in i round can

be calculated through

Z ′′
i = Zi − Ẑi/i−1. (29)

Obviously, the system is able to catch up the noise changes
for performance improvement together with the aforemen-
tioned calculated Q and R matrices. Nevertheless, the huge
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variation of these matrices in the actual process may lead
to the instability of the filter and even cause the positioning
failure. This is unacceptable for the focused applications. Thus,
an additional approach is still required to avoid the potential
filtering divergence and positioning failure.

2) Additional weighting factors: Furthermore, to deal with
the potential filtering divergence of the algorithm and the posi-
tion lost of the UAV, two additional weighting factors α and β,
and the recorded offline matrices Roffline and Qoffline are
introduced in the proposed algorithm. The offline data for these
noise covariance matrices are estimated through the recorded
multi-rounds sensor data with UAV statically at the original
point before its flight. As the sensor data volume is directly
relevant to the estimation accuracy and stability for the offline
noise covariance matrices, thus, the number of the estimation
rounds for this process should be carefully decided. With more
estimation rounds, the initialization time for the positioning
system will be increased, which may have the influence on the
application scenarios of the system. Otherwise, the accidental
errors may have the great impact on the accuracy of the offline
noise covariance matrices. Therefore, in order to avoid all
these problems, multi-round simulations and experiments have
been conducted, and finally the 50 rounds is selected for this
system which can achieve the less initialization time with an
acceptable accuracy of the offline noise covariance matrices.

Firstly, the R matrix estimation is considered. Throughout
α and Roffline, the limited measurement noise covariance
matrix R∗ in the current round can be derived as

R∗
k = (1− α)Roffline + αRk. (30)

Similarly, the limited process noise covariance matrix Q∗

can be calculated by β and Qoffline,

Q∗
k−1 = (1− β)Qoffline + βQk−1. (31)

Obviously from (30) and (31), with the reduction of the
weighting factors, the calculation for the limited noise co-
variance matrices will more rely on the offline data estimated
during the offline phase. It means that the estimation results
will become relatively stable and smooth. The probability
for the filtering divergence or position lost can be decreased.
Nevertheless, this will cause the adaptive ability loss. On the
contrary, with the augment of the weighting factors, more
changes for the estimation of these matrices will be brought
in to catch up the variation of the process and measurement
noise in the current round. This means that the localisation
accuracy of the algorithm can be increased. Yet, its stability
will be influenced and may even cause the filtering divergence
and position loss. Clearly, the value of the additional weighting
factors greatly influences the performance and stability of the
proposed algorithm.

In order to find the suitable weighting factors, an adaptive
estimation approach for these weighting factors is presented
and given as follows. In the estimation process, α is utilised
to limit the variation of the estimated measurement noise
covariance matrix. It means that α has the relationship with

the measurement noise in the current round. Therefore, the
following equation is given to help for its estimation

α′ =
1
n

∑n
i=1[Z

′′
k ]i1

Z ′′
in

αin, (32)

where, n is supposed to be the amount of the fixed anchor
nodes, Z ′′

in denotes the calculated and recorded innovation
sequence in the offline phase and αin is the initial value of
α, which is set to be 0.2. The adaptively estimated α′ is set
within [0,0.2]. All these parameters are selected under the
consideration of the stability of the algorithm. The principle
for selecting the initial value of α and the range of α′ is
provided in Section IV-A.

Apparently from (32), along with increasing the innovation
sequence Z ′′

k , which means larger difference between the
predicted measurements and the observation information in
the current round, the α′ will become larger. Otherwise, the α′

will become smaller to keep the stable and smooth estimation
of the measurement noise covariance matrix.

Similarly, the estimation of the weighting factor β can also
be set up, according to the relationship with the process noise.
Considering the time interval ∆T between the two rounds
acceleration measurements has the impact on the prediction
process, where with the larger ∆T , the influence of the process
noise on the prediction process will become larger, otherwise,
the influence can be reduced. Thus, the relationship between
the time interval in the current round and the average time
interval ∆Tavg calculated in the offline phase is utilised to
estimate β. The calculation equation can be derived as follows

β′ =
∆T

∆Tavg
βin, (33)

where, βin = 0.2 is the initial value of the weighting factor,
the range of the β′ is set within [0,0.2]. Similarly, these values
are selected under the consideration of the stability of the
algorithm, and the principle for selecting the initial value and
the determination for the range of β′ is given in Section IV-A.

Apparently, with a larger ∆T which exceeds the ∆Tavg,
the process noise will have more impact on the prediction
performance. Thus, a larger β′ will be estimated to give more
trust to the current estimation results. On the contrary, a
smaller ∆T means a smaller impact for the process noise on
the prediction performance. Therefore, a smaller β′ will be
provided to keep a stable estimation. Finally, the structure of
the proposed ASRCKF algorithm is provided in Fig.2 to give a
clear view about it in comparison with the traditional SRCKF
algorithm.

3) Computational complexity analysis: In addition to the
accuracy and precision of the algorithm, the computational
complexity also has the huge impact on its performance, es-
pecially for the UAV positioning algorithm. For computational
complexity analysis, the floating point operations (flops) and
big O notation will be applied. Firstly, for the calculation
of the γi,k−1, clearly, m flops will be required. Then for
the propagated cubature points γ∗

i,k/k−1, the value of flops
will be 2m2 − m. Accordingly, the value of flops for the
predicted state vector γ̂k/k−1 and the square root of the
covariance matrix Sk/k−1 will be 2m2 and 8m3+4m2+2m,
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Fig. 2. Algorithm structure.

respectively. Then for the correction process, the value of
flops for the cubature points γi,k/k−1 is m. The flops for
the propagated cubature points Zi,k/k−1 and the predicted
measurement matrix Ẑk/k−1 in correction process will be
2mn − n and 2mn, respectively. Then, the flops value for
the Kalman gain Kk,gain, corrected state vector γ̂k and the
square root of the covariance matrix Ŝk can be known as
2n3 + 4mn2 − 2mn, 2mn + n and 8m3 + 4m2 + 2m,
respectively. Finally, for the noise model estimation process,
through the calculation process, it can be known that the flops
value for the R matrix, Q matrix and weighting factors are
all below n3. In conclusion, with all the flops for the variables
within the algorithm, it can be obtained that the computational
complexity for the proposed ASRCKF algorithm is within
O(m3) and O(n3) level.

IV. SIMULATION AND EXPERIMENT

For the purpose of providing the comprehensive and quan-
titative validation of the proposed ASRCKF localisation al-
gorithm and the UAV system, the simulations in the Gazebo
environment [41] and the experiments in laboratory environ-
ment have been conducted.

A. Simulation

Under the consideration of the safety reason for the ac-
tual flight tests, the simulations for the proposed localisation
algorithm on the UAV have been conducted. In order to
mock the actual focused application scenarios and verify the
performance of the presented algorithm, the operational space
is set as 1.95 × 3.0 × 2.3 (m) with no GPS signals avaiable.
The entrance of the working space for the UAV is supposed on

the X-Z plane. It needs to declare that even the performance
of the algorithm and the system can be improved with more
anchor nodes or with the geometry configuration of the anchor
nodes can cover the whole localisation area, however, as
aforementioned, for the focused applications in this paper, it
is difficult for the engineer to get into such space to deploy
the anchor nodes. Therefore, in order to mock the situation
that there is no requirement for the engineer to get into the
space to deploy the fixed anchor nodes, all the anchor nodes
are disposed on the X-Z plane near the entrance. The detailed
X, Y, Z coordinates of all the anchor nodes are given in Table
I.

The UAV flight path in the simulation is set as a reverse
“S”, which is to provide a more comprehensive evaluation for
the performance of the proposed algorithm. The STD for the
measurement noise is supposed to be a randomly changing
value from 0m to 0.2m, which is to mock the changing
measurement noise caused by the communication condition
variation between the sensor nodes in actual environment. In
the simulation, six algorithms including the pure UWB based
localisation algorithm, EKF, SRCKF, ASRCKF with constant
weighting factors and the AEKF proposed in our previous
work [38] have been tested and compared to comprehensively
verify the effectiveness of the proposed algorithm before
the actual flight tests. The simulation results, e.g. the flight
trajectories of each algorithm, the flight trajectories in X, Y,
Z directions, the ground truth for the flight trajectories of
each algorithm, the ground truth for the flight trajectories
in X, Y, Z directions, the root mean square error (RMSE)
of each algorithm in X, Y, Z directions and the empirical
cumulative distribution function (eCDF) of each have been
depicted in Fig. 3. Furthermore, in order to provide a clear
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TABLE I
COORDINATES OF THE ANCHOR NODES.

Coordinates Fixed Anchor Node 1 Fixed Anchor Node 2 Fixed Anchor Node 3 Fixed Anchor Node 4

X 0.00m 1.95m 0.00m 1.95m
Y 0.00m 0.00m 0.00m 0.00m
Z 0.00m 0.00m 2.30m 2.30m
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Fig. 3. Flight test results in the simulation environment. (a) UAV 3D trajectories in the simulation. (b) X direction trajectories for the UAV. (c) Y direction
trajectories for the UAV. (d) Z direction trajectories for the UAV. (e) Ground truth for UAV 3D trajectories in the simulation. (f) Ground truth for X direction
trajectories. (g) Ground truth for Y direction trajectories. (h) Ground truth for Z direction trajectories. (i) X direction RMSE (m) calculated through ground
truth. (j) Y direction RMSE (k) calculated through ground truth. (l) RMSE (m) in Z direction calculated through ground truth. (m) eCDF.

view for the performance of each algorithm, the detailed
performance information including the median localisation
error, 95th percentile localisation error and the average STD
of the RMSE has also been provided in Table II.

Obviously, the pure UWB based localisation algorithm has
the worst localisation performance due to the large measure-
ment noise and the unreasonable value within the ranging
information. With the integration of the IMU for the sensor
fusion approaches such as the EKF, this performance influence
is greatly reduced with 0.082m median localisation error,
0.227m 95th percentile localisation error and 0.063m average
STD. However, the localisation performance is still limited by
the neglected high order terms within the observation matrix
and the unknown noise covariance matrices. To overcome

these, leveraging the cubature rule, the state posterior mean
and covariance can be approximated by the SRCKF for
performance improvement, which successfully reduced the
median localisation error, 95th percentile localisation error and
average STD to 0.069m, 0.208m and 0.054m. Nevertheless,
the SRCKF is still suffer from the performance influence
led by the unknown noise covariance matrices. To remedy
this, the adaptive sensor fusion based approach can be an
ideal candidate. Here, two different adaptive sensor fusion
approaches including the ASRCKF with constant weighting
factors and the AEKF with the estimated weighting factors
in [38] are tested and compared with the proposed algorithm.
Obviously, with the estimated noise covariance matrices for
these adaptive sensor fusion based approaches, the localisation
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TABLE II
DETAILED SIMULATION RESULTS

Median Error Improved 95th Percentile Error Improved Average STD Improved

Pure UWB based localisation algorithm 0.129m N/A 0.380m N/A 0.116m N/A
EKF 0.082m 36.4% 0.227m 40.2% 0.063m 45.7%

SRCKF 0.069m 46.5% 0.208m 45.3% 0.054m 53.4%
ASRCKF (α = β = 0.1) 0.052m 59.7% 0.173m 54.5% 0.045m 61.2%
ASRCKF (α = β = 0.2) 0.050m 61.2% 0.160m 57.9% 0.042m 63.8%

AEKF [38] 0.055m 57.4% 0.144m 62.1% 0.041m 64.7%
Proposed algorithm 0.047m 63.6% 0.110m 71.1% 0.028m 75.9%

performance is significantly improved with the median local-
isation error around 0.05m, the 95th percentile localisation
error around 0.160m and the average STD around 0.040m.
Especially for the proposed algorithm, with the ability to deal
with the linearisation issue for the observation matrix, the
adaptively estimated noise model and the estimated weighting
factors, the best performance can be obtained by the proposed
algorithm with the median localisation error, 95th percentile
localisation error and average STD to be 0.047m, 0.110m
and 0.028m, respectively. Compared with the pure UWB
based localisation algorithm, these three indexes are improved
63.6%, 71.1% and 75.9%, respectively. However, it still needs
to declare that only the smaller constant weighting factors
(0.1 and 0.2) selected here is under the consideration for the
stability of the algorithm. Larger weighting factors means the
estimation results for the noise covariance matrices will more
rely on the current estimation results, which will lead to more
variations of the noise covariance matrices and may cause the
filtering divergence. According to the simulation results, with
the ASRCKF algorithm, when the weighting factors exceed
0.5, the probability for filtering divergence will be increased
significantly. Even with the relatively smaller weighting fac-
tors (0.3 or 0.4), the filtering divergence still exists under
certain circumstances. Since the primary objective for the
UAV localisation system in dark and GPS-denied environment
is to prevent any positioning failure, the relatively smaller
weighting factors (0.1 and 0.2) are selected, the estimation
results for the weighting factors of the proposed algorithm are
limited within [0,0.2] and the initial value of these are set as
0.2.

B. Experiment

1) Experiment configuration: For the purpose of further
evaluating the performance of the proposed algorithm and
UAV positioning system, the actual experiments in the labora-
tory environment have been conducted. Similarly, the localisa-
tion area for the actual experiments has the same size as in the
simulation environment 1.95 × 3.0 × 2.3 (m), and the GPS is
unavailable in such environment, in order to comprehensively
verify the effectiveness of the proposed system and algorithm.
The geometry configuration for the anchor nodes is also kept
as the same. The clear view about the laboratory experiment
environment, geometry configuration of the anchor nodes and
the components utilised in the system are shown in Fig. 4 and
Fig. 5.

Fig. 4. Experiment environment.

Fig. 5. System components.

2) Performance evaluation and comparison: In the perfor-
mance evaluation and comparison experiments, the markers
are attached on the UAV to help the reference system to
get the sub-millimeter accuracy position information for the
UAV to provide the ground truth. The planned path for the
UAV in the experiments is the same as it in the simulations.
All the algorithms including the pure UWB, EKF, SRCKF,
ASRCKF with constant weighting factors (α and β equal to
0.1 and 0.2), the AEKF proposed in our previous work [38]
and the proposed algorithm have been tested and evaluated.
The trajectories, ground truth, RMSE results and the detailed
localisation error for each algorithm have been given in Fig.
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Fig. 6. Flight test results of performance evaluation tests. (a) UAV 3D trajectories in the performance evaluation tests. (b) X direction trajectories for the
UAV. (c) Y direction trajectories for the UAV. (d) Z direction trajectories for the UAV. (e) Ground truth for UAV 3D trajectories in the performance evaluation
tests. (f) Ground truth for X direction trajectories. (g) Ground truth for Y direction trajectories. (h) Ground truth for Z direction trajectories. (i) X direction
RMSE (m) calculated through ground truth. (j) Y direction RMSE (m) calculated through ground truth. (k) RMSE (m) in Z direction calculated through
ground truth. (l) eCDF.

TABLE III
DETAILED EXPERIMENT RESULTS

Median Error Improved 95th Percentile Error Improved Average STD Improved Update Rate

Pure UWB based localisation algorithm 0.163m N/A 0.342m N/A 0.083m N/A 25Hz
EKF 0.143m 12.3% 0.287m 16.1% 0.080m 3.6% 90Hz

SRCKF 0.121m 25.8% 0.223m 34.8% 0.060m 27.7% 70Hz
ASRCKF (α = β = 0.1) 0.095m 41.7% 0.198m 42.1% 0.048m 42.2% 68Hz
ASRCKF (α = β = 0.2) 0.092m 43.6% 0.194m 43.3% 0.049m 41.0% 68Hz

AEKF [38] 0.102m 37.4% 0.176m 48.5% 0.046m 44.6% 88Hz
Proposed algorithm 0.081m 50.3% 0.172m 49.7% 0.045m 45.8% 66Hz

6 and Table III.

Throughout the analysis of the RMSE results in Fig. 6, it
can be known that the largest performance oscillation can be
found for the pure UWB based algorithm, which is caused by
the unreasonable value and the measurement noise within the
observation information from the UWB sensor nodes. This
phenomenon can also be shown by the detailed localisation
results in Table III, where the worst localisation performance
with 0.163m median localisation error, 0.342m 95th percentile
localisation error and 0.083m average STD was recorded for

the pure UWB based localisation algorithm. With the intro-
duction of the additional IMU, this performance degradation
led by the unreasonable value and the measurement noise
can be limited. Clearly, for all the IMU and UWB based
sensor fusion approaches, the median localisation error, 95th

percentile localisation error and average STD are all limited
within 0.15m, 0.29m and 0.08m, respectively. However, same
as the simulations, the performance influence still exists for the
EKF, due to the linearisation of the observation matrix and the
unsuitable noise covariance matrices. Even, this influence can
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be successfully eliminated by the SRCKF with the cubature
rule which attained the 0.121m median localisation error,
0.223m 95th percentile localisation error and 0.06m average
STD. Yet, the influence from the unsuitable noise covariance
matrices exists as before.

To further improve the localisation performance of the
system under such circumstance, the AKF based methods
can be an ideal candidate. Leveraging the adaptive ability of
the AEKF in [38], ASRCKF with constant weighting factors
and the proposed algorithm, the Q and R matrices can be
adaptively estimated to catch up the changes for the process
and measurement noise within the system. According to the
experiment results, the localisation performance for the system
can be significantly improved with the median localisation
error, 95th percentile localisation error and average STD
around 0.1m, 0.18m and 0.047m, when in comparison with
the EKF and SRCKF with constant and manually adjusted
noise covariance matrices. Then, for the comparison within
the adaptive approaches. When with the ability to deal with
the influence from the linearisation of the observation matrix,
and the adaptively estimated weighting factors to limit the
estimation of the noise covariance matrices to get rid of any
potential filtering divergence and eliminate the performance
oscillation, the best performance can be obtained by the
proposed algorithm. It can be observed that the proposed
algorithm can attain 0.081m median localisation error, 0.172m
95th percentile localisation error and 0.045m average STD.

On the other hand, in addition to the localisation accuracy
and precision, the position update rate for the algorithm also
has a close link with the stability of the UAV in our focused
environments. The update rate for the position information is
directly related to the complexity of the algorithm when it is
with the same measurement frequency of IMU and UWB sen-
sors. Clearly from Table III, the pure UWB based localisation
algorithm can only achieve the 25Hz update rate, due to the
ranging frequency of the UWB. The EKF based algorithm
which has the lowest complexity can attain 90Hz position
update rate with the participation of the IMU measurements.
For the proposed algorithm, even it can only obtain the 66Hz
position update rate with the highest algorithm complexity,
however, it is only a slight increase compared with the AEKF
algorithm in our previous work. Furthermore, considering the
response speed of the UAV controller, the 66Hz update rate is
already enough for the UAV to maintain its stability in focused
environments. Therefore, even the algorithm complexity of the
proposed algorithm is slightly increased, nevertheless, with the
highest positioning performance, it is still the best option for
the UAV localisation in the focused environments.

3) Actual application in laboratory environment: Consid-
ering the focused applications are the autonomous inspection
inside dark and GPS-denied environments. Thus, in order to
comprehensively verify the practicality for focused applica-
tions, the detailed inspection experiment has been carried out.
The inspection area is set the same as in the experiment flight
test. For this flight test, the purpose is to verify inspection
ability of the designed system and the algorithm. Therefore,
different from the previous experiments, the path of the UAV
is calculated to cover the entire localisation area for detailed
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Fig. 7. Flight trajectory for ASRCKF based autonomous inspection. (a)
Trajectory in X(m) direction in the autonomous inspection flight test. (b)
Trajectory in Y(m) direction in the autonomous inspection flight test. (c)
Trajectory in Z(m) direction in the autonomous inspection flight test.

inspection. The video for this flight test can be found in the
link 1. The UAV trajectories for the test have been given and
depicted in Fig. 7. Due to the complexity of the calculated
path, the measured position information from the current
reference system may be significantly influenced as only three
cameras are available for the motion capture. Therefore, the
ground truth for this test is not provided.

V. CONCLUSION

In this article, an ASRCKF based UAV positioning algo-
rithm and a low cost UAV positioning system have been
proposed and designed to achieve the detailed UAV assisted
inspection inside dark and GPS-denied environments to substi-
tute humans. At the beginning, the review on the existing UAV
localisation techniques was conducted to identify the potential
issues and requirements for inspection applications inside such
environment. Then, the detailed description for the system dia-
gram was made to give the clear view about the designed sys-
tem and its main characteristics. Afterwards, the introduction
for the proposed ASRCKF based UAV positioning algorithm
was given. Due to the drawbacks of UWB techniques and the
traditional KF algorithms, such as the performance influence
caused by the measurement noise variation and unreasonable
values for the observation information, the linearisation of the
observation matrix, the unknown noise model and the potential
negative estimation for these noise matrices, the ASRCKF
based algorithm was proposed. Leveraging the integration
with IMU, the cubature rule, the adaptively estimated noise
model and weighting factors, all the aforementioned issues
can be solved for reliable, high precision and accuracy UAV

1https://youtu.be/KNKibl3Lqog

https://youtu.be/KNKibl3Lqog
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localisation in dark and GPS-denied environments. Finally,
numerical simulations and experiments were conducted to
evaluate the performance and validate the effectiveness of the
proposed system and algorithm. Evidenced from the simula-
tion and experiment results, the presented algorithm in this
paper is able to resolve the aforementioned problems and attain
high accuracy and precision positioning performance, which
is capable for the detailed autonomous inspection in such
environment to substitute humans. For further confirmation,
the autonomous inspection experiment was also conducted.
In summary, the proposed algorithm and system are able to
achieve the low cost UAV autonomous inspection in dark and
GPS-denied environments.
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