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Abstract
Micro diamond tools are indispensable for the efficient machining of microstructured surfaces.
The precision in tool manufacturing and cutting performance directly determines the processing
quality of components. The manufacturing of high-quality micro diamond tools relies on
scientific design methods and appropriate processing techniques. However, there is currently a
lack of systematic review on the design and manufacturing methods of micro diamond tools in
academia. This study systematically summarizes and analyzes modern manufacturing methods
for micro diamond tools, as well as the impact of tool waviness, sharpness, and durability on
machining quality. Subsequently, a design method is proposed based on the theory of cutting
edge strength distribution to enhance tool waviness, sharpness, and durability. Finally, this paper
presents current technical challenges faced by micro diamond tools along with potential future
solutions to guide scientists in this field. The aim of this review is to contribute to the further
development of the current design and manufacturing processes for micro diamond cutting tools.
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1. Introduction

Micro-structured array surfaces with excellent quantities per-
formances have been extended to biomedicine, environmental
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protection, photovoltaics, optics, flexible skin, virtual reality,
military industry, and other high-tech fields [1, 2]. Achieving a
micro-structured array surface with a large area in an efficient
and low-cost way has been a focus in academia and industry.
Mold pressing or roller-to-roller molding technique, andmicro
diamond cutting are recognized as effective methods. Mold
pressing [3] or roller-to-roller molding technique [4] based on
the replication principle transfers the microstructures on the
mold to the surfaces of polymers, glass, and other materials by
heating or ultraviolet light irradiation to achieve mass fabrica-
tion of microstructures. The microstructure molds are usually
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machined with micro diamond cutting technology, in which
micro diamond cutting tools play an irreplaceable role in the
processing of high quality microstructure array surfaces.

Micro diamond cutting, composed of micro diamond
milling [5–7], micro diamond turning [8–10], and micro dia-
mond chiseling [11, 12], which is also performed with a micro
diamond turning tool and similar to the micro diamond turn-
ing except that the spindle keeps stationary. High precision
micro diamond tools are indispensable to fabricate microstruc-
ture arrays on an ultra-precision machine tool. The processing
technology is applicable to the machining of most materi-
als, such as metals, ceramics, polymers, crystals, glass, etc.
Microstructures encapsulated by arbitrary complex shapes can
be machined with micro diamond tools through the interpol-
ation motion of a multi-axis ultra-precision machine tool in
theory, and nanometer surface roughness and sub-micrometer
profile accuracy are achievable. The processed products are
serviced in optics, mold, biomedical, aerospace, and other
high-tech fields. It should be noted that micro diamond tools
used tomachinemetals and other plastic materials are different
from those used to machine ceramics and other brittle materi-
als in tool geometries because the chip formation and material
removal mechanisms are different for plastic and brittle mater-
ials. The differences have to be fully considered in micro dia-
mond tool design to achieve a satisfactory quality of machined
surface and high tool wear resistance.

In diamond turning, the single point cutting edge of
diamond tool contacts the workpiece and realizes material
removal at the nanoscale with the extremely sharp cutting
edge. So diamond turning is often called single point dia-
mond turning (SPDT) [13].Microstructures with complex pro-
files can be turned using rounded micro diamond tools in two
motion modes: (1) servo motion of two linear axes (X-axis and
Z-axis) along the microstructure profile, and (2) servo motion
of two linear axes (X-axis and Z-axis) and a rotation axis (B-
axis) along the microstructure profile. The above two modes
of micro diamond turning are the processes of precision trans-
formation from the machine tool to the machined surface via
a cutting tool [14]. As defined strictly, only the 3-axis turn-
ing belongs to SPDT. In this case, the position of the cutting
edge engaged in cutting keeps unchanged due to the rotary
servo motion of the B-axis. Meanwhile, tool alignment accur-
acymust be high enough, which is challenging to perform. The
position of the cutting edge engaged in cutting changes with
the microstructure profile in the 2-axis turning, while a certain
tool alignment error is allowed, which is conducive to reducing
the tool alignment difficulty and increasing efficiency, so it is
commonly used in microstructure machining. At present, the
position resolution of a commercial ultra-precision machine
tool has been up to nanometer level and even to picometer
level. During the 2-axis turning process, micro diamond tool
cutting edge profile errors (i.e. cutting edge waviness) will be
copied to the microstructure surface [15]. In order to trans-
fer such a high accuracy of the machine tool to the machined
surface, a micro diamond tool with equivalent accuracy is
indispensable [16]. Additionally, high-end optical elements,
such as optical microlens arrays, curved mirrors, and diffract-
ive lenses, are urgently demanded in the industry to improve

the imaging quality and integration of optical systems. The
accuracy of micro diamond tools has to be at least half an order
of magnitude higher than that of the optical elements [14, 17,
18]. According to the form error of optical elements limited
to 1/10 λ, taking red laser optical elements as an example, the
accuracy of micro diamond tools shall be superior to 15 nm.
In summary, a high precision and performance (especially
in the tool edge waviness, sharpness, and wear resistance)
micro diamond tool is essential for ultra-precision machining
of microstructure arrays. Moreover, compared with the com-
mon diamond tools with millimeter dimensions, the cutting
edge length of micro diamond tools with micrometer dimen-
sions is so small that stress concentration and size effect are
more likely to appear due to the extremely small feed during
the cutting process, resulting in serious tool wear as discussed
above. Also, the cutting edge strength and impact resistance
of the micro diamond tools are much weaker than those of the
common diamond tools, leading to the fracture of the tool tip,
so it is difficult to achieve high-precision micro diamond tools
by using the common diamond tool design and manufacturing
methods.

In light of the machining methods outlined above, it can be
concluded that micro diamond turning and milling are essen-
tial technologies to process microstructures. As well known,
high-quality machining must be based on high-precision cut-
ting tools and process technology. However, significant chal-
lenges still remain in manufacturing high-quality micro dia-
mond tools in large quantities, which mainly include cutting
edge waviness control, cutting edge sharpness improvement,
and tool wear suppression. Therefore, this work is focused on
the review of current manufacturingmethods and designmeth-
ods of micro diamond tools, the influences of cutting edge
waviness and sharpness on the machined surface quality and
the improvement methods, as well as the influences of micro
diamond tool wear on the machined surface quality and the
restraining methods. Then, balanced design and manufactur-
ing methods are proposed simultaneously, considering the tool
accuracy or tool life based on the previous work. Finally, pro-
spects and suggestions for the micro diamond tool design and
manufacturing are proposed for further work. The aim of this
review is expected to promote further development of the cur-
rent design and manufacturing processes for micro diamond
cutting tools.

2. Geometric design of micro diamond tools

The design and manufacture of micro diamond tools should
be fulfilled in combination with the advanced manufacturing
process of microstructures [19, 20] in order to efficiently real-
ize the machining of microstructures and promote their wide-
spread application in industry. Micro diamond tool design is
crucial for micro diamond machining processes, as it requires
not only high cutting edge shape accuracy but also high
strength, stiffness, and wear resistance. Due to their small
dimensions, these requirements have become the key issues
limiting the application of micro diamond tools. The design
of micro diamond tools is mainly composed of two aspects:
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Figure 1. Geometric design of a micro diamond tool with a rounded cutting edge: (a) tool geometries, (b) design of tool nose radius and
included angle, (c) design of rake and clearance angles. Reproduced from [35]. CC BY 4.0.

(1) tool geometric design, which is performed by considering
the machined material properties and the shape characteristics
of the microstructures to be processed, and (2) tool perform-
ance design, including manufacturability and usability, which
is performed to obtain an optimal combination of the crys-
tal orientation based on the diamond crystal anisotropy. This
section only introduces the geometric design, and the perform-
ance design will be introduced in the following sections 3.3
and 4.3.

Cutting edge shape and geometries of micro diamond tools
are the key factors that determine the machined surface qual-
ity, form accuracy, cutting force, and tool wear resistance in
microstructure machining [21, 22]. Tool angles, cutting edge
orientation, and flank face shape [23] determine the contact
mode and mechanism of the tool-workpiece [24, 25], affecting
the formation of chip and machined surfaces, as well as cut-
ting force and cutting temperature [26, 27]. In micro diamond
tool design, the geometries and machining process of micro-
structures, as well as the strength, stiffness, wear resistance,
and manufacturing feasibility of the micro diamond tools,
have to be simultaneously taken into account [28]. Besides,
diamond crystal is a typically hard and brittle material and
appears to have severe anisotropy and susceptibility to cleav-
age, which makes the processing of diamond crystal excep-
tionally difficult [29]. Therefore, micro diamond tools cannot
be designed with the same complex shapes as cutting tools
made of metal materials when the mechanical lapping process
is selected as the tool manufacturing method [30]. Therefore,
most micro diamond tools are designed with a round nosed
shape to enhance the cutting edge strength and tip stiffness,
which can also simplify the operation of tool alignment, be
conducive to the discharge of chips, and reduce the cutting
force and tool wear, obtaining excellent surface roughness
[30]. Unlike the commercial standard diamond tools used to
cut flat, spherical, and free form surfaces, most of the micro
diamond tools require a specialized design and customiza-
tion based on the microstructure geometries to be machined,
which increases the difficulty of tool selection for users [31].
Insufficient design of micro diamond tools leads to overcut-
ting and reduces the machining accuracy of microstructures.
However, an excessive design will increase the manufacturing

difficulty and cost of micro diamond tools and reduce their cut-
ting edge accuracy and service life. To fill the aforementioned
gaps, a design method or procedure for micro diamond tools
with rounded cutting edges is reviewed, taking a micro dia-
mond tool used for sinusoidal microstructure machining as an
example, from five aspects: nose radius, included angle, clear-
ance angle, rake angle, and flank face shape. The geometries
of a micro diamond tool with a round nosed cutting edge are
illustrated in figure 1(a).

(1) Nose radius. The nose radius of a micro diamond tool
is a critical feature dimension that determines the min-
imum characteristics of machined microstructures, and it
is also a main dimension that determines the manufactur-
ing difficulty. The nose radius shall be designed in view
of the minimum curvature radius (maximum curvature)
of the microstructure to be machined, i.e. that the max-
imum nose radius cannot exceed the minimum curvature
radius, as shown in figure 1(b). Otherwise, an overcut-
ting phenomenon will appear at the position of maximum
curvature. The critical tool nose radius can be expressed
as [32]:

Rc ⩽
λ2

4Aπ 2
(1)

where Rc denotes the tool nose radius, A and λ denote
the amplitude and wavelength of the sinusoidal micro-
structure. Considering the manufacturability and tool nose
strength of micro diamond tools, a large nose radius as
much as possible should be designed while subjecting to
the above constraint.

(2) Included angle. The included angle, to a great extent,
determines the bulk strength of micro diamond tools. A
small included angle means that the micro diamond tool
has a sharp tool tip and weak bulk strength, which makes
it easy to fracture and collapse. It should be properly
designed in terms of the aspect ratio (i.e. the ratio of A
to λ) of the microstructure to be machined, as shown in
figure 1(b). A large aspect ratio corresponds to a small
critical included angle. Otherwise, overcutting phenomena
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will appear at the side edges of the microstructure. The
critical included angle can be calculated as [32]:

εc < 180◦ − 360◦

π
arctan

(
2πA
λ

)
(2)

where εc denotes the critical included angle of a micro dia-
mond tool. Similar to the tool nose radius, the included
angle is also increased as much as possible to improve the
strength of the tool tip and reduce the manufacturing dif-
ficulty in the case of no tool interference.

(3) Clearance angle. In the machining of microstructures,
apart from the interference between the flank face and
microstructures [33], the flank face near the cutting edge
continuously burnishes the machined surface owing to the
material spring back of the machined surface [34], which
has a certain impact on the quality of themachined surface.
Although the interference and burnishing impact on the
machined surface can be avoided and reduced by increas-
ing the clearance angle, it also reduces the wedge angle
of micro diamond tools and further weakens the already
low strength of the tool tip. Currently, from the perspective
of industry practice, it is generally necessary to increase
the clearance angle by 2◦–5◦ on the base of the critical
value without interference, in which the tool nose radius
dependent tool tip strength and the machined surface qual-
ity should be comprehensively considered. The critical
clearance angle is formulated as [35]:

αc ⩾max−
{
arctan

(
g ′
yq (yq,ρ,θ)

)}
(3)

where g ′
yq(yq,ρ,θ) denotes the first derivative of the micro-

structure intersectional profile on the YOZ plane, as shown
in figure 1(c).

(4) Rake angle. The rake angle always affects the stress dis-
tribution and chip formation in the cutting area. A posit-
ive rake angle usually causes stress concentration ahead of
the cutting edge, weakens tool tip strength, and is not con-
ducive to improving tool wear resistance [36]. If a negat-
ive rake angle is used in the machining of microstructures,
compressive stress in the cutting area is dominant, which
is benefit to the ductile removal of brittle materials [37,
38]. However, the cutting force produced by the negative
rake angle tool is larger than that produced by the positive
or zero rake angle tool due to the poor chip discharge [39,
40]. Therefore, in the machining of plastic metal materi-
als, micro diamond tools are usually designed with a 0◦

rake angle to achieve a high strength of the tool tip, reduce
cutting force, and promote shear deformation to remove
the material; in the machining of brittle materials, micro
diamond tools are always designed with a negative rake
angle to achieve the ductile removal mode [41]. However,
an oversized negative rake angle may also cause tool inter-
ference, as demonstrated in figure 1(c). The critical value
of the negative rake angle can be given by [34]:

γc ⩾max
{
arctan

(
g ′

yq (yq,ρ,θ)
)
− π

2

}
(4)

where γc denotes the critical value of the negative rake
angle.

(5) Flank face shape. There are two types of flank face shapes
for micro diamond tools with rounded cutting edges,
namely conical and cylindrical shapes. The clearance
angle of micro diamond tools with a conical flank face is
constant at any point on the rounded cutting edge, which
is the nominal clearance angle. However, most micro dia-
mond tools are designed to have a cylindrical flank face
because a conical flank face results in an extremely lim-
ited width due to the geometric constraint of a small nose
radius, which heavily weakens the tool tip strength. The
limited width of the flank face is not only adverse to lap-
ping in tool manufacturing but also prone to fracture in
microstructure machining, while the cylindrical flank face
is not subject to restriction. Generally, the flank face is
designed to be cylindrical if the tool nose radius is less
than 200 µm.

In addition, the finite element method (FEM) has been
developed into a significant analysis technology in engineer-
ing and scientific research. More and more researches are cur-
rently reporting the use of FEManalysis in tool design [22, 42–
44] to improve tool stiffness and cutting edge strength [43] and
to optimize tool structures [36, 45]. FEM is also a promising
complementary technology in the design and optimization of
micro diamond tools, combining with the cutting simulation
technology in the future.

3. Design of micro diamond tools in terms of
cutting edge waviness and sharpness

3.1. Influence of tool cutting edge waviness on machining
quality

In the case of two or more axes coordinated turning, such
as spherical turning, free-form surface turning, fast/slow tool
servo turning, and so forth, the position of the cutting edge
participating in turning continuously alters, i.e. that the single
point turning cannot be guaranteed, which causes the cutting
edge shape error to be reproduced on the machined surface.
Hence, it is significant to improve the profile accuracy of the
cutting edge of micro diamond tools for improving the micro-
structure profile accuracy [15]. The accuracy of micro dia-
mond tools usually refers to their dimensional accuracy and
shape accuracy. For the micro diamond tools with a round
nose, it refers to the dimensional accuracy of the nose radius
and the profile accuracy of the cutting edge, that is, the cutting
edge waviness. The dimensional accuracy is mainly guaran-
teed by the accuracy of the lapping machine tool for diamond
tool manufacturing, and the cutting edge waviness is guaran-
teed by the lapping process. Cutting edge waviness is defined
as the root mean square value or Peak-Valley (PV) value of
the deviation between the actual tool nose profile and the ideal
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Figure 2. Influence of diamond tool cutting edge waviness on the machined surface topography: (a) parallel milling, (b) overall
morphology, (c) vertical milling. Reproduced from [48], with permission from Springer Nature.

nose profile [46, 47], of which the mathematical formulae are
expressed as:

Wq =

√
1

R0θe

ˆ θe

0
[R(θ)−R0]

2dθ (5)

WPV = R(θ)max −R(θ)min (6)

whereWPV andWq denote the PV value and root mean square
value of the cutting edge waviness; R0 denotes the ideal nose
radius; θe denotes the opening angle of the cutting edge parti-
cipating in waviness evaluation, i.e. the center angle corres-
ponding to the cutting edge arc in evaluation; R(θ) denotes
the actual tool nose radius at the position of θ; R(θ)max and
R(θ)min denote the maximum and minimum radii of the actual
tool nose.

The discrete expression of the root mean square can be
given by:

Ŵq =

√√√√1
n

i=n∑
i=1

[R(θi)−R0]
2 (7)

where Ŵq denotes the discrete root mean square value of the
cutting edgewaviness; n denotes the number of discrete points;
R(θi) denotes the actual tool nose radius at the ith point.

In the machining of microstructure arrays, tool cutting
edge waviness can also deteriorate the machined surface
roughness [16, 30], except for decreasing the microstructure
profile accuracy, as mentioned above. In 2010, Yan et al [48]
examined the differences in surface topography caused by
cutting edge waviness during the micro groove array milling

process with different milling methods. The experimental
results demonstrated that in parallel milling, the milling is a
single point machining process, and the cutting edge waviness
has little influence on the milling surface roughness. However,
in vertical milling, the milling is a form machining process,
and the cutting edge waviness leaves regular scratches on the
machined surface, seriously deteriorating the surface rough-
ness of the micro groove arrays, as shown in figure 2. In 2015,
Sung et al [49, 50] reconstructed the turning surface topo-
graphy by utilizing the actual profile and theoretical profile of
the cutting edge, respectively, based on which they calculated
the roughness (Rt, Ra, and Rq) of the reconstructed surface.
Their evaluation results showed that the cutting edge waviness
leads to an increment of Rt, Ra, and Rq by 40.3%, 26.1%, and
24.5%, respectively.

In optical element machining, the cutting edge waviness of
micro diamond tools may lead to many negative effects on the
performance of the machined optical element, such as indu-
cing unnecessary diffuse reflection or diffraction and redu-
cing reflectivity, etc., which are detrimental to the improve-
ment of imaging quality. In 2016, He et al [34] established
an analytical model to appraise the influence of cutting edge
waviness on surface roughness, and subsequently, they com-
pared the diffraction effects of metal mirrors machined by dia-
mond tools with different waviness [51], in which a compre-
hensive method of theoretical and experimental analyses was
employed. The investigations suggested that the diffraction
effect of the turned metal mirrors gradually increases with the
increment of cutting edge waviness, and diffraction spots of
different orders near the specular light spot (center) gradually
increase, as presented in figure 3, resulting in a serious reduc-
tion of the reflectivity. In 2017, Kurniawan et al [47] used a
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Figure 3. Influence of diamond tool cutting edge waviness on the surface diffraction effect: (a) simulation results, (b) experiment results.
Reproduced from [51]. CC BY 4.0.

similar method to study the influence of cutting edge waviness
on the surface roughness during the dual frequency elliptical
vibration cutting process and established a theoretical predic-
tion model of surface roughness considering the influence of
cutting edge waviness. The above results confirmed that the
cutting edge waviness of a diamond tool is an essential factor
determining surface roughness.

It can be concluded from the reports above that the cutting
edge waviness of micro diamond tools has a significant influ-
ence on the shape accuracy, roughness, integrity, and service
performance of the machined surfaces. In other words, a micro
diamond tool with excellent cutting edgewaviness is one of the
necessary conditions to achieve a high quality surface covered
with microstructure arrays. Therefore, the cutting edge wavi-
ness has to be strictly controlled to achieve super-high cutting
performance in the mechanical lapping of high-precision dia-
mond tools.

3.2. Influence of tool sharpness on machining quality

One of the important reasons why diamond tools are used
in ultra-precision machining is that they have extremely high
sharpness. Currently, the stable level of the edge sharpness
is between 10 nm and 200 nm around the world, which is
closely related to the design method and mechanical lap-
ping process as operated. In general, tool sharpness is another

important technical index to evaluate the quality of diamond
tools [52].

The cutting depth in ultra-precision machining and micro
machining is very small, generally at the micrometer or sub-
micron scale and even at the nanometer scale. In this case, the
chip thickness and cutting edge radius are in the same order
of magnitude, leading to some experimental phenomena dif-
ferent from the traditional machining process, which is well
known as the size effect of ultra-precisionmachining. It affects
not only the machining process but also the machined surface
quality [53–55], so many theoretical and experimental invest-
igations on the size effect have been performed around the
world. Ikawa et al [56, 57] examined the relationship between
the minimum chip thickness and the cutting edge radius in
diamond turning using the molecular dynamics (MD) simula-
tion method, and they found that the minimum thickness was
approximately 1/10 of the cutting edge radius. Subsequently,
Yuan et al [58] established a quantitative formula for express-
ing the relationship between the minimum chip thickness, cut-
ting edge radius, and cutting forces during the diamond cutting
process. According to the formula, the minimum chip thick-
ness is proportional to the cutting edge radius, with a propor-
tion coefficient of about 1/4–1/3, depending on the friction
coefficient between the machined material and the diamond
tool. Son et al [59] investigated the influence of cutting edge
radius on the minimum chip thickness based on force analysis
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Figure 4. Formation instant of the chip with minimum thickness and residual stress formation principle: (a) minimum thickness chip
formation. Reprinted from [62], © 2018 Elsevier Ltd All rights reserved. (b) Surface residual stress formation. Reproduced from [63].
CC BY 4.0.

in diamond turning with a micro diamond tool. They found
that the minimum chip thickness has a negative correlation to
the friction coefficient in the case of a constant cutting edge
radius. Liu et al [60] discussed the influence of cutting edge
radius on the minimum chip thickness and proposed a crit-
ical condition of cutting edge radius for the transition from
cutting to plowing in diamond cutting based on the theory of
friction molecular mechanics. They also captured a moment
of the transition from cutting to plowing in the experiments,
that is, the moment of minimum thickness chip formation, as
shown in figure 4(a). Due to the minimum chip thickness phe-
nomenon, the materials ahead of the active cutting edge can-
not be completely removed, resulting in the uncut materials
remaining on the machined surface under the extrusion, burn-
ishing, and friction of the cutting edge, which makes the strain
of the surface be different from that of the substrate material.
Therefore, residual stress is generated on themachined surface
and subsurface, as demonstrated in figure 4(b). On this topic,
Nasr et al [53] studied the relationship between the residual
stress on the machined surface and the cutting edge radius by
using a combined method of theoretical modeling and experi-
mental observations. Their findings suggested that the residual
tensile stress on the machined surface and the residual com-
pressive stress in the subsurface increase gradually with the
increment of the cutting edge radius, and the affected depth of
the residual stress also increases. Tao et al [61] analyzed the
influence of the cutting edge radius on the residual stress left
on themachined surface or in the subsurface with the finite ele-
ment simulation method. The simulation results also demon-
strated that the residual stress and its influence depth are pos-
itively related to the cutting edge radius.

In 2008, Childs et al [64] found that the dependence of the
surface roughness Rz on the cutting edge radius (re) became
more and more obvious with the decrease in feed rate in dia-
mond turning of aluminum alloy. Once the feed rate was less
than 10 µm r−1, Rz is completely determined by the cutting
edge radius, and Rz = (0.01–0.02) re. In the same year, Woon

et al [65] studied the influence of cutting edge radius and cut-
ting depth (a) on the stress distribution around the cutting edge
based on finite element simulation technology. The simulation
results demonstrated that: in the case of a/re →∞, shearing is
mainly concentrated in front of the sharp cutting edge, around
the chip root, and the region around the transition point of the
chip free boundary, as presented in figure 5(a); in the case of
a/re = 3, shearing region rapidly expands to the surroundings,
as presented in figure 5(b); in the case of a/re = 0.6, shear-
ing region expands further, resulting in a transfixion to form a
non-parallel shearing zone, as presented in figure 5(c); in the
case of a/re = 0.262 5, shearing becomes highly localized and
increasingly intense ahead of the cutting edge, as presented in
figure 5(d).

In 2015, de Oliveira et al [54] examined the size effect in
the micro machining process and concluded that the specific
cutting force rises sharply, reaching the magnitude in grind-
ing (70 GPa) if the cutting depth is small enough (less than 0.1
re).Meanwhile, the cutting process degenerates into squeezing
and plowing processes without chip formation. Finally, they
confirmed that the minimum chip thickness is about 1/4–1/3
of the cutting edge radius in the experiment. In 2016, He et al
[34] studied the influence of the cutting edge radius on the
stress distribution in the cutting area during diamond turning
and found that a tool cutting edge with a large rounded radius
has an obvious extrusion effect on the uncut material before
the formation of the machined surface. They also investigated
the influence of cutting edge radius on the elastic recovery of
the machined surface, of which the results showed that the
elastic recovery has a positive correlation to the cutting edge
radius, meaning that the larger the cutting edge radius is, the
more unfavorable to improve the machined surface quality. In
2017, Rahman et al [66] established a quantitative formula to
reveal the relation between the relative sharpness (a/re) and
the material removal mechanism in ultra-precision machining,
and they predicted the transition process from cutting to plow-
ing and further to squeezing or friction in theory. In 2021,
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Figure 5. Influence of cutting edge radius on the stress distribution in the cutting region: (a) a/re →∞, (b) a/re = 3, (c) a/re = 0.6, (b)
a/re = 0.262 5. Reprinted from [65], Copyright © 2007 Elsevier B.V. All rights reserved.

Yu et al [67] disclosed the influence of relative sharpness on
the chip formation mechanism and surface roughness based on
Ni-P alloy cutting experiments. They observed that with the
decrease in relative sharpness, the chip shape changes from
the initial continuous strip to the intermittent serration, and
the cutting force appears periodically undulate. Moreover, the
surface roughness increases gradually. They believed that the
above experimental phenomena were caused by the periodic
extrusion and elastic recovery of the uncut material when the
cutting process degenerates into the plowing process. In 2022,
Li and Chang [68] tracked the change process of the shear
angle, cutting force, and stress distribution with the variation
of the cutting edge radius by utilizing the FEM. They pointed
out that the shear angle decreases, the cutting force increases
and the stress concentration area gradually expands to the sub-
surface with the increase in the cutting edge radius.

It can be concluded from the above reviews that the cut-
ting edge radius not only affects the minimum chip thick-
ness, stress state in the cutting area, material removal mechan-
ism, and cutting force, but also influences the surface rough-
ness and machined surface integrity. According to the above
analyses, the chip is formed mainly under the shear stress in
the primary shear zone without consideration of the cutting
edge radius. Meanwhile, the removal of all the material in
the uncut chip layer is conducted via chip formation by dis-
location motion under the extrusion effect of the cutting edge
[69]. In this case, the spring back and plastic side flow effects
are absent, so the machined surface morphology consists of
only the feed marks [34]. However, the actual cutting edge
radius is about 10–50 nm, and only the material in the uncut
chip layer larger than the minimum chip thickness is removed
from the workpiece surface to form chips. The material in the
uncut chip layer smaller than the minimum chip thickness is
squeezed by the cutting edge onto the machined surface, dur-
ing which the unremoved material generates spring back and

plastic side flow and finally remains on the topmost surface to
form the machined surface. Moreover, the microscopic defects
on the cutting edge will be copied onto the machined surface,
which is not deductive to improve the machined surface finish
and integrity. Therefore, during the lapping of high-precision
micro diamond tools, it is of great significance to sharpen the
cutting edge to improve the machined surface quality.

3.3. Design method for improving cutting edge waviness
and sharpness

The machinability of the diamond crystal varies dramatically
with the crystal plane and orientation due to the strong aniso-
tropy of diamond crystal, which leads to the heavy depend-
ence on cutting edge waviness and sharpness on the crystal
plane and orientation in the mechanical lapping of diamond
tools. In this regard, Liu and Zong [70] established a cutting
edge strength distribution model, which was validated with
MD simulations, to reveal the influence of diamond aniso-
tropy on the cutting edge waviness and sharpness achieved in
the mechanical lapping of micro diamond tools. They found a
significant difference in the spatial distribution of micro dia-
mond tool cutting edge strength with different crystal orient-
ations, as shown in figure 6(a). In the region with high cut-
ting edge strength, the material removal rate is obviously low,
and the cutting edge profile at the corresponding region pro-
trudes outward beyond the mean profile; on the contrary, the
material removal rate is high in the region with low cutting
edge strength, and the cutting edge at the corresponding region
is inward concave, which leads to the cutting edge profile
appearing serrate, forming the cutting edge waviness error, as
shown in figure 6(b). The findings also proved that in the same
lapping condition, tool sharpness is dependent on the cutting
edge strength because the impact resistance of the cutting edge
is related to its strength, which means that chipping defects
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Figure 6. Spatial distribution of cutting edge strength, cutting edge waviness, cutting edge morphology, and radius of the micro diamond
tools with different crystal orientation configurations: (a) cutting edge strength (θ denotes the arc angle along the cutting edge profile on the
rake face and φ denotes the arc angle along the cutting edge profile on the cross section.), (b) cutting edge waviness, (c) cutting edge
morphology, (d) cutting edge radius. Reprinted from [70], © 2021 Elsevier B.V. All rights reserved.

and secondary passivation can be effectively suppressed in the
lapping process. Likewise, it is conducive to improving tool
sharpness if the cutting edge has high strength. Cutting edge
morphologies and radii of the sharpened micro diamond tools
with different crystal orientation combinations are shown in
figures 6(c) and (d).

In summary, the above analyses suggest that the design
of the crystal orientation combination provides an effect-
ive method for controlling the waviness and sharpness of
micro diamond tools to meet the various application require-
ments. In orientation design, the crystal orientation config-
uration with uniform cutting edge strength on the flank face
should be selected preferentially as the oriented configura-
tion of micro diamond tools requiring excellent waviness,
for example, Aγ(100)Aα(110) or Aγ(110)Aα(110). The crystal

orientation configuration with high cutting edge strength
should be selected preferentially as the oriented configura-
tion of micro diamond tools requiring excellent sharpness, for
example, Aγ(100)Aα(100) or Aγ(110)Aα(100). Here, Aγ and
Aα denote the rake face and flank face; (100) and (110) denote
the (100) and (110) crystal planes; Aγ(100)Aα(110) denotes
that the rake face is oriented as the (100) crystal plane and the
flank face is oriented as the (110) crystal plane. Although the
difference in the spatial distribution of cutting edge strength is
one of the main origins for the variety of cutting edge wavi-
ness and sharpness of micro diamond tools, the waviness and
sharpness are also closely related to the lapping parameters,
such as the flatness of the iron scaife, the dynamic balance
state of the spindle, the grain size of the abrasive and lapping
pressure. Cheng [71] found that the differences in the cutting
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edge waviness and sharpness of micro diamond tools with dif-
ferent crystal orientations can be weakened by changing the
lapping parameters.

Therefore, a specific process and optimized lapping para-
meters should be adopted to fabricate high-performance micro
diamond tools under these extremely severe requirements.
Taking the micro diamond tools applied in the ultra-precision
machining of micro optical lens molds as an example, it is
necessary to give priority to ensuring the cutting edge wavi-
ness and then improve the sharpness as much as possible by
optimizing the lapping parameters. Whereas for the micro dia-
mond tools applied in the ultrathin cutting, it needs to give pri-
ority to ensuring the cutting edge radius and then try the best to
improve the waviness by optimizing the lapping parameters.

4. Design of micro diamond tools in terms of
improving tool wear resistance

4.1. Influence of tool wear on machining quality

Tool wear resistance is another critical factor determining the
cutting performance and machined surface quality, in addition
to the cutting edge waviness and sharpness. Tool wear not only
induces edge defects that will be copied on the machined sur-
face, leading to a deterioration of the surface roughness and
integrity, but also reduces the original accuracy of the cut-
ting edge profile, resulting in the shape and dimension errors
of the machined microstructure. The cutting depths used for
both micro diamond tools and conventional diamond tools are
usually in the range of 2–5 µm in micro diamond machining.
Although the feed ofmicro diamond tools ismuch smaller than
that of conventional diamond tools, the ratio of the active cut-
ting edge to the whole cutting edge of micro diamond tools
is still much higher than that of conventional diamond tools.
Compared with conventional diamond tools, it is easy to gen-
erate stress concentration and wear on the round nosed cutting
edge of micro diamond tools. Therefore, the wear suppres-
sion of diamond tools has always been a technical difficulty
in the field of ultra-precision and micro machining, especially
for micro diamond tools.

In 2012, Park et al [72] examined the wear characterist-
ics of the 90◦ V-shaped micro diamond tool and its influence
on the shape accuracy of microstructures in the machining of
light guide plate molds. The experiment results illustrate that
side edge wear and nosed edge wear are the main origins of
the shape and dimension errors of the shaped light guiding
microstructures. Moreover, the side edge wear also leads to
burrs on the sidewall of the shaped microstructures, and the
nosed edge wear leads to fillet errors on the bottom of the
shaped microstructures. Subsequently, Yoshino et al [73] and
Cui et al [74] reported a similar phenomenon in machining
micro groove arrays on the quartz glass andAl 6061 substrates,
respectively, with a V-shaped micro diamond tool. They also
reported that tool wear leads to the intensification of the plastic
side flow of the workpiece material so that a large amount
of material accumulation appears on the groove sidewall, as
shown in figure 7(a). In 2015, Zhang and To [75] found that
tool wear marks copied on the machined surface and chip

surface directly determine the machined surface integrity and
chip morphology in ultra-precision raster milling, and they
finally proposed a tool wear identification method to in-situ
evaluate the achieved surface roughness. Zareena andVeldhuis
[76] also found that the chip morphology is closely related
to the tool wear condition when turning the titanium alloys
with a diamond tool, i.e. the chip generated by a sharp tool
appears smooth ribbon, while the chip generated by a worn
tool appears rough crimp. They pointed out that tool wear
impedes the timely discharge of chips, and the plastic side
flow induced material accumulation on the machined surface
becomes more and more prevalent, resulting in a rapid deteri-
oration of the machined surface quality. In 2016, Mir et al [77]
found that the material removal mode gradually changes from
ductile removal to brittle fracture removal with the gradual
flank face wear of the diamond tool during the ultra-precision
turning process of monocrystalline silicon, resulting in serious
damage to the surface finish and integrity. In 2017, Mukaida
and Yan [78] observed the experimental phenomenon that the
material removal mechanism changes and the machined sur-
face roughness deteriorates due to the flank face wear and
micro chipping wear of the micro diamond tool when turning
the microlens array on the monocrystalline silicon substrate,
as shown in figure 7(b). In 2019, Wu et al [79] examined the
influence of micro diamond tool wear on the machined surface
morphology and optical performance in the ultra-precision
turning of large scale optical molds. They concluded that tool
wear and micro cleavage of the cutting edge lead to the intens-
ification of plastic side flow and the increment of scratches on
the machined surface, both of which cause an increase in peri-
odic residual height and unnecessary optical diffraction effects
on the machined surface, resulting in a decrease in optical per-
formance. In 2020, Sharma et al [80] monitored the change
of principal cutting force and thrust cutting force with the
gradual tool wear process when diamond turning oxygen free
high conductivity copper. The results indicated that the cutting
forces, especially the thrust force, increase rapidly with the
diamond tool wearing, as presented in figure 7(c), which is not
conducive to the smooth progress of ultra-precision turning.

The cutting edge and nose shapes of micro diamond tools
engaged in the machining of microstructure arrays are spe-
cially designed according to the microstructure shape, as dis-
cussed in section 2. In the process of ultra-precision machin-
ing, micro diamond tool wear inevitably leads to not only the
decrease in size and shape accuracy of the machined micro-
structures, but also the serious deterioration of surface rough-
ness and integrity, which finally produces a sharp decline in
the performance of themicrostructure array surface. Currently,
severe wear of micro diamond tools has become an intract-
able technical difficulty that restricts the improvement of
the machining accuracy of large scale microstructure array
surfaces [79].

4.2. Restraining methods for tool wear

Multitudinous studies on the diamond tool wear mechan-
ism have been performed, and different wear mechanisms
have been put forward for different processing conditions and
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Figure 7. Micro diamond tool wear and its influence on the surface quality and cutting forces: (a) influences of tool wear on the
microstructure shape. Reprinted from [72], Copyright © 2012 The Nonferrous Metals Society of China. Published by Elsevier Ltd All rights
reserved. Reprinted from [74], © 2021 Elsevier B.V. All rights reserved. (b) Influences of tool wear on the material removal mode.
Reprinted from [78], © 2016 Elsevier Ltd All rights reserved. (c) Influences of tool wear on the cutting force. Reprinted from [80],
© 2020 The Society of Manufacturing Engineers. Published by Elsevier Ltd All rights reserved.

materials. Currently, the widely accepted wear mechanisms
are summarized as follows: (a) mechanical wear, including
fracture wear [75, 81], abrasive wear [82–85], and micro-
cleavage wear [78, 84]; (b) chemical wear, including amorph-
ous wear [86, 87], graphitized wear [88, 89], and oxidative
wear [90, 91]; (c) thermal wear, including adhesive wear [92,
93] and diffusion wear [89, 90].

Different suppressing methods, as listed in table 1, were
proposed for the corresponding wear mechanisms to mitigate
the negative influences of diamond tool wear on the machin-
ing process and surface quality. In the aspect of the machining
process, Zhou and his co-workers [32] optimized the machin-
ing parameters to slow down the wear rate of micro dia-
mond tools when turning sinusoidal microstructures. Chon
et al [85] achieved the goal of suppressing diamond tool
notch wear with a method of dual feed rate. Song et al [94]
and Brinksmeier et al [95] alleviated the chemical wear and
thermal wear of diamond tools effectively by increasing the
milling speed and flying cutting speed to reduce the contact

time of the tool-workpiece. In the aspect of cooling and lubric-
ating, Durazo–Cardenas et al [96] andYoshino et al [73] found
that adding cutting fluid could significantly reduce friction
wear and thermal wear, prolonging tool life in the diamond
turning of monocrystalline silicon and quartz glass. Zhuang
et al [97] reported that minimum quantity lubrication (MQL)
is an effective way to reduce the cutting temperature and tool
wear. In addition, MQL technology is more conducive to sus-
tainable development than flood fluid lubrication. Evans and
Bryan [98] and Brinksmeier et al [99] respectively pointed
out that the ultra-low temperature could effectively suppress
the graphitized wear, thermal diffusion wear, and adhesive
wear of diamond tools based on their cryogenic diamond turn-
ing experiments. Shimada et al [100] declared that the oxid-
ation wear of diamond tools could be alleviated to a certain
extent by continuously inpouring high-pressure nitrogen into
the cutting area to reduce the oxygen concentration around the
tool tip in diamond turning of oxygen free high conductivity
copper. In the aspect of ultrasonic vibration cutting (UVC),
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Table 1. Diamond tool wear mechanisms and suppressing methods.

Wear mechanism Suppressing method References

Fracture wear UVC, electrochemical softening [101, 105, 109, 111, 112]
Abrasive wear Adding cutting fluid, increasing cutting speed, UVC, laser assisted

cutting, magnetic assisted cutting, tool surface treatment, adopting dual
feed rate, tool surface treatment

[73, 85, 95, 96, 102, 103, 106, 107, 113]

Microcleavage wear Optimizing feed rate [32]
Amorphous wear Increasing cutting speed [95]
Graphitized wear Increasing cutting speed, inpouring liquid nitrogen, UVC, implanting

Ga+
[94, 98, 99, 101, 114–116]

Oxidative wear Increasing cutting speed, inpouring high-pressure nitrogen, electric
assisted cutting, nitriding treatment

[93, 94, 100, 108, 110]

Adhesive wear Inpouring liquid nitrogen, UVC [98, 99, 104]
Diffusion wear Increasing cutting speed, inpouring liquid nitrogen, UVC [98, 99, 101, 104]

Zou et al [101] carried out numerous diamond turning exper-
iments for die steel materials by utilizing the uniaxial UVC
technology, based on which they pointed out that diamond tool
wear can be effectively restrained because the lubrication and
heat dissipation conditions in the cutting area are improved
due to the introduction of ultrasonic vibration. In addition, the
contact time between the diamond tool and the chip could be
shortened by introducing ultrasonic vibration, which is signi-
ficant for suppressing chemical and thermal wear. Nath et al
[102, 103] introduced elliptical ultrasonic vibration into the
ultra-precision turning of tungsten carbide (WC) and realized
the ultra-precision cutting of WC in a ductile regime and sup-
pression of mechanical wear to a certain extent. Zhang et al
[104] found that elliptical vibration cutting can significantly
reduce the adhesion between the diamond tool and the work-
piece material in the machining of WC, which is conducive
to reducing thermal and chemical wear. Wang et al [105] put
forward a method of multi axis ultrasonic vibration turning,
which is capable of improving the effective sharpness of dia-
mond tools in turning, and suppressing mechanical wear. In
the aspect of multi physical field assisted cutting, Shahinian
et al [106] adopted micro laser assisted cutting technology to
heat the monocrystalline silicon surface in a localized area to
increase its plasticity and reduce hardness, followed by SPDT,
which is conducive to reducing mechanical wear. They exten-
ded tool life by 1.5 times and achieved ultra-precision turn-
ing of monocrystalline silicon without brittle fracture. Yip and
To [107] reported that they improved the wear resistance of
diamond tools in the turning of difficult-to-machine mater-
ials with the magnetic field assisted turning method. Zhang
[108] invented a method of using an electric field to restrain
the chemical wear in the machining of materials that chemic-
ally react with diamond. In the aspect of processed material
modification, Zhang et al [109] modified the WC surface with
electrochemical methods to decrease the hardness and brittle-
ness of the surface to bemachined, realizing the suppression of
mechanical wear. Brinksmeier et al [93] and Wang et al [110]
passivated the catalytic effect of die steel on the chemical wear
of diamond tools by nitriding the surface to be machined and
achieved the goal of inhibiting the graphitized wear and diffu-
sion wear of diamond tools. All the methods reviewed above
belong to indirect methods by changing the external cutting

environment or conditions to achieve the purpose of restrain-
ing diamond tool wear.

Recently, more and more attention has been paid to the
wear resistance of micro diamond tools by improving the
mechanical properties of the tool surface and changing the
external cutting environment or conditions. For example, Lee
et al [114] and Du et al [115, 116] implanted gallium (Ga)
ions into the diamond tool surface through FIB technology
to change the surface energy, friction coefficient, and other
properties of the diamond material. Their wear experiments
indicated that the existence of Ga ions increases the graph-
itization temperature of diamond by 40%, and the friction
and cutting temperature of the modified tool decrease greatly,
which is conducive to improving the friction wear resistance
and graphitized wear resistance. Chen et al [117–119] modi-
fied the diamond tool surface by laser induced graphitization
to strengthen the wear resistance, and the experiments showed
that their approach was effective. Kawasegi et al [111] and
Wang et al [112] texturedmicrostructures on the rake face with
FIB micro milling and femtosecond laser ablation to modify
the contact state between the diamond tool and the chip. Their
cutting experiments showed that microstructures on the rake
face can effectively reduce tool-chip friction, cutting force,
and cutting temperature, which also relieves mechanical and
thermal wear. Zong et al [113, 120] repaired the subsurface
damage to the tool surface that is induced by mechanical lap-
ping with a thermo-chemical treatment method to improve
the strength and hardness of the rake and flank faces of the
diamond tool. Cutting experiments proved that the treatment
method can also extend the life of diamond tools. Zhuang et al
[121] suppressed the wear of micro diamond tools by select-
ing the material type of diamond crystal, and they found that
micro tools made of type Ia natural diamond have a higher
wear resistance than other types of diamond crystal. The above
methods directly strengthen the cutting performances of dia-
mond tools and effectively inhibit tool wear, and they can be
collectively called direct suppression methods.

In addition, advanced polishing methods, e.g. chemical
polishing [122], plasma assisted polishing [123], ultraviolet
light assisted polishing [124], and so on, also have access
to lessen the subsurface damage of micro diamond tools for
improving their service life. In fact, how to efficiently remove
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Figure 8. Tool nose strength distribution and wear morphology of the micro diamond tools with different orientations, and the machined
microstructure arrays: (a) tool strength in the cutting area, (b) tool wear morphology, (c) microstructure morphology machined by micro
diamond tools with different orientations, (d) microstructure profiles extracted from the corresponding surfaces in (c). Reprinted from [133],
© 2022 Elsevier B.V. All rights reserved.

subsurface damage with those advanced polishing methods is
an important development direction for the diamond tool man-
ufacturing industry.

4.3. Design of micro diamond tools by utilizing diamond
crystal anisotropy

A large number of simulations and cutting experiments [92,
125–132] proved that diamond tool wear resistance is closely
related to the crystal orientation configurations on the rake and
flank faces, but the conclusions drawn by different scholars
are different [92, 128]. Except for ferrous metal machining,
mechanical wear is the dominant wear mechanism, which is
determined by the mechanical and physical properties of dia-
mond tools, such as the strength of the active cutting edge
and tool-chip friction property, etc. In order to improve the
wear resistance, Liu et al [133] established a nosed cutting
edge strength model of micro diamond tools with different

crystal orientation configurations, and subsequently, they ana-
lyzed the spatial distribution characteristics of cutting edge
strength in relation to the actual cutting area, as presented in
figure 8(a). It can be seen from figure 8(a) that the strength
distribution in response to the active cutting area of the cut-
ting edge varies sharply with the crystal orientation changing,
meaning that the nosed cutting edge strength has a strong
anisotropy. The experimental results demonstrated that the
wear morphologies, as presented in figure 8(b), are consistent
with the strength distribution characteristics. That is to say,
the active cutting area with large strength corresponds to high
wear resistance, and the cutting area with small strength cor-
responds to low wear resistance. Therefore, they proposed a
crystal orientation design method to improve the wear resist-
ance of micro diamond tools, considering the strengths of the
rake face, flank face, and cutting edge. In brief, the hard ori-
entation of the flank face, i.e. the direction with high strength,
should be configured along the cutting direction as much as

13



Int. J. Extrem. Manuf. 6 (2024) 062008 Topical Review

possible through a reasonable orientation design by taking
advantage of the diamond anisotropy. The wear experiments
proved that the service life of micro diamond tools designed
with this newmethod is three times longer than that of the tools
designed by the traditional method. The microstructure mor-
phologies machined with micro diamond tools with different
orientations after cutting 30 km are presented in figures 8(c)
and (d), of which the profile error variations further validate
that the orientation dependent design method is effective in
improving the wear resistance of micro diamond tools.

5. Manufacturing of micro diamond tools

Diamond crystal materials with super-high hardness, high
thermal conductivity, high wear resistance, ultra-low friction,
and other excellent properties are widely engaged in industry
and high-tech fields. Therefore, numerous processing meth-
ods for diamond crystals have been developed, such as mech-
anical lapping [134], chemical assisted polishing [135], ther-
mochemical polishing [136], laser processing [137], plasma
etching [138], FIB etching [139], oxidative etching [140], and
other methods [141]. However, only three of them are applic-
able to the manufacturing of micro diamond tools, namely
laser processing, FIB etching, and mechanical lapping, and the
comprehensive comparisons of these three methods are sum-
marized in table 2. The rest of the processing methods are
mostly utilized as an assistant means to improve the machined
surface roughness, so this section is mainly focused on the
three methods.

5.1. Laser processing

Laser processing is based on a laser beam with an extremely
high energy density irradiating the diamond surface. When
using a long pulse laser, the laser beam irradiating gener-
ates a localized instantaneous high temperature, which makes
the material ablate, melt, vaporize, oxidize, graphitization,
amorphization, and cavitate to achieve rapid removal of dia-
mond material. When using an ultra-short pulse laser, the irra-
diating makes the diamond surface atoms absorb the photon
energy of the high energy laser to escape from the surface
and achieve slow material removal [165]. According to the
length of the pulse width, lasers are generally categorized into
nanosecond lasers, picosecond lasers, and femtosecond lasers.
Laser processing is an essential technology in micro machin-
ing, especially for difficult-to-machine materials [166, 167]
and micro cutting tools [168]. Suzuki et al [144] produced a
diamond milling tool with 10 edges using a nanosecond laser
to machine binderless tungsten carbide molds. Afterwards,
they also tried to process several types of micro diamond
milling tools with 20 cutting edges using the same method to
realize the ultra-precision milling of SiC micro lens molds.
However, the experiment results suggested that the cutting
edge quality of the milling tool processed with a nanosecond
laser is unsatisfied because of the obvious collapses on the
cutting edge, and the sharpness was blocked at the micro-
meter level. The error averaging effect of the multi edge tools

allows the micro grinding tools and milling tools above with
insufficient shape accuracy to be applied in ultra-precision
machining or to obtain a machined surface with high accur-
acy. However, single edge tools, for instance, single bladed
milling tools and turning tools, are impotent in ultra-precision
machining due to the copying effect of defects on the tool cut-
ting edge. Consequently, Xia et al and Zhao et al [145, 169]
tried to manufacture a single edge micro diamond milling tool
with a picosecond laser by optimizing the laser energy dens-
ity, pulse wavelength, scanning spacing, and other parameters
to improve the cutting edge sharpness and accuracy. Although
the surface quality of picosecond laser machining is improved
compared with nanosecond laser machining, obvious ablation
marks still exist on the flank face, and the cutting edge sharp-
ness of 1.9 µm is inferior to the 100 nm generally required for
ultra-precision machining. As reported by Dold et al [146], the
same ablation marks also existed on the polycrystalline dia-
mond turning tool fabricated with a picosecond laser. Oliaei
et al [26] decreased the laser pulse width to a femtosecond
scale, by which they processed a ball end diamond milling
tool with a single edge. They declared that the shape accur-
acy (i.e. tool cutting edge waviness) and sharpness of the cut-
ting edge were greatly improved, reaching 0.7 µm and 0.8 µm,
respectively, which remains difficult to meet the precision
requirements of the tools for ultra-precision machining.

In order to ameliorate the cutting edge accuracy and sharp-
ness, Takayama et al [148] used a picosecond laser to pro-
cess a sub-cutting-edge array on the straight cutting edge of
a diamond tool by optimizing the laser pulse width, repeti-
tion rate, and energy density, which was prepared for the turn-
ing of microstructures to improve the processing efficiency.
Their experiment results showed that the consistency of the
sub-cutting-edges processed by picosecond laser needs to be
further improved, and obvious fractures are also present on
the cutting edges, as presented in figure 9(a). Zhao et al [147]
used a femtosecond laser, belonging to the ultra-short pulse
laser, to fabricate a micro diamond forming tool with arrayed
edges and different shapes, as demonstrated in figure 9(b),
and they optimized the laser ablation strategy in an effort to
improve the cutting edge quality. The experimental observa-
tions proved that laser beam processing has a high flexibility
in the preparation of micro arrayed diamond forming tools,
and the shape accuracy and sharpness of the sub-cutting-edges
processed by femtosecond laser are obviously enhanced com-
pared with nanosecond and picosecond laser beams. Chen
et al and Jin et al [170, 171] proposed a method to process
super-hard cutting tools by precision shaping and polishing the
rough tools fabricated with femtosecond laser forming with
FIB technology. In such a way, they achieved a micro turn-
ing tool with a nose radius of 13.8 µm and a sharpness of
60 nm. Furthermore, they also manufactured a diamond turn-
ing tool by directly optimizing the laser scanning path, which
has a cutting edge waviness of 15 µm in an opening angle
of 66◦ and a sharpness of 0.47 µm, as shown in figure 9(c).
The instantaneously high temperature generated in the subsur-
face of micro diamond tools after laser irradiation and energy
absorption reaches up to 1800 K, which is much higher than
the temperature of diamond graphitization (1050 K) [172].
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Table 2. Comparison of micro diamond tool manufacturing methods.

Method Advantages Disadvantages Applications References

Laser High efficiency, free of mechanical
force, achievable for sub edges

Poor surface quality and shape
accuracy

Rough forming [26, 137, 142–148]

FIB Free of mechanical force, high
precision, achievable for sub edges

Extremely low efficiency, poor edge
waviness

Laboratory research [149–152]

Lapping High efficiency, high precision Existence of mechanical force,
impossible for sub edges

Industrial production [14, 70, 134, 136, 153–164]

Figure 9. Micro diamond turning tools machined with laser: (a) sub-cutting-edge array. Reprinted from [148], © 2018 Elsevier Inc. All
rights reserved., (b) micro diamond forming tool Reprinted from [147], © 2021 Elsevier Ltd All rights reserved., (c) micro turning tool.
Reprinted from [171], © 2021 Elsevier B.V. All rights reserved.

Diamond graphitization occurs subsequently and reacts with
oxygen in the air to generate carbon oxides, which are partially
removed.Meanwhile, the instantaneous high temperature gen-
erates an uneven temperature field in the diamond subsurface,
causing severe thermal stress and resulting in cracks on the
surface of micro diamond cutting tools. Some materials are
removed in the form of brittle fractures, leading to a signific-
ant decrease in cutting edge accuracy and tool surface quality.
In addition, due to the interference between the incident laser
and the scattering wave, periodic ripple structures with sub-
micron dimensions usually form on the cutting tool surface,
which is detrimental to the surface quality of micro diamond
cutting tools and the control of cutting edge waviness [173].
Moreover, the heat affected zone (HAZ) depth of laser pro-
cessed diamond can reach 40 µm. The HAZ is mainly com-
posed of graphite, amorphous carbon, and oxidized deposited
metamorphics, of which the hardness and strength are much
lower than those of diamond matrix. Therefore, the micro dia-
mond cutting tools processed by laser have the disadvantage
of seriously insufficient lifespan.

In light of the above review on laser ablation of micro dia-
mond tools, reducing pulse width [26] or optimizing ablation
strategy [174–176] might lessen the HAZ and improve the

processing accuracy, but the laser processing efficiency goes
down sharply with the reduction of laser pulse width. So, the
advantages of processing efficiency will be weakened or even
disappear. And cutting edge sharpness and waviness of micro
diamond tools fabricated by laser processing are just reaching
micrometer or submicron levels, which are currently unable to
meet ultra-precision cutting requirements. In addition, a con-
clusion might be drawn from the above results of laser pro-
cessing with different pulse widths, i.e. the diamond tools pro-
cessedwith laser are hard to be directly used for ultra-precision
machining, and generally, they need to be further shaped and
polished by other precisionmethods [172], such as mechanical
lapping, and FIB shaping.

5.2. FIB processing

FIB processing of micro diamond tools is achieved via the
high speed bombardment of the focused gallium (or xenon)
ion beam upon the diamond crystal surface, during which
the kinetic energy of the high velocity moving ions trans-
fers to carbon atoms on the diamond crystal surface through
inelastic collision, leading to carbon atoms sputtering away
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Figure 10. Different micro tools fabricated by FIB technology and their application in the machining of micro structured arrays: (a) micro
cemented carbide turning tool and the machined microloops. Reprinted from [179], Copyright © 2000 Elsevier Science Inc. All rights
reserved. (b) Micro diamond turning tool and the machined grooves. Reprinted from [149], Copyright © 2002 Elsevier Science Inc. All
rights reserved. (c) Rectangular micro diamond turning tools and the machined microstructures and chip. Reproduced from [150]. © IOP
Publishing Ltd All rights reserved. (d) Round nosed micro diamond turning tools and the machined Fresnel microstructures. Reproduced
from [151]. CC BY 4.0.

from the binding of the diamond lattice and realizing mater-
ial removal at the atomic scale [177]. FIB processing, with
a very high resolution owing to the unique material removal
mechanism, is available to realize material removal of sev-
eral atom layers in a single processing operation, so the pro-
cessing method is often applied in fabricating micro tools.
Two decades ago, the first micro milling tool with a nose
radius of 24µmwas successfully fabricated by using FIB tech-
nology at Sandia National Laboratory (SNL) in the United
States for the machining of polymethyl methacrylate (PMMA)
[178]. Subsequently, the cemented carbide [179] and diamond
micro turning tools [149], which have a minimum charac-
teristic dimension of 13 µm and a cutting edge radius of
40 nm, were also fabricated in SNL with the FIB processing
method. The morphologies of the micro tools and the corres-
ponding machined structures on the PMMA were illustrated
in figures 10(a) and (b). Since then, FIB processing techno-
logy has been gradually promoted in the manufacturing of
micro diamond tools. Singapore Institute of Manufacturing
Technology [150] and Tianjin University [151] successively
processed rectangular micro diamond turning tools and round

nosed micro diamond turning tools by utilizing FIB techno-
logy, achieving a cutting edge radius of 30 nm. The micro dia-
mond tools and the machined micro structure arrays are shown
in figures 10(c) and (d). Sun et al [152] adopted FIB techno-
logy to prepare sub-micron cutting edge arrays on the cutting
edge of a diamond tool, which was used to machine nano grat-
ings efficiently.

FIB processing technology has flexible micro operabil-
ity and is capable of fixed-point material removal, resulting
in the convenience of preparing special-shaped micro tools
or structured tools, that is, shaping the micro structures on
tool cutting edges to form sub cutting edges or cutting edge
arrays, as presented in figure 10(b). Compared with laser pro-
cessing technology, the accuracy of arrayed micro diamond
tools machined by FIB is greatly improved. However, the
extremely insufficient material removal rate of FIB processing
seriously restricts industrial applications [180]. In addition,
due to the channeling effect [181] of FIB processing, obvious
stripes remain on the micro diamond tool surface machined,
as shown in figures 10(b)–(d), leading to a serious reduction
of the tool surface finish and the cutting edge waviness. The
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Figure 11. Surface texture of micro diamond tools induced by the channeling effect of FIB technology: (a) pre-optimized, (b) optimized.
Reproduced from [150]. © IOP Publishing Ltd All rights reserved.

cutting edge sharpness and profile accuracy of the micro dia-
mond tools are sharply reduced, and the cutting edge waviness
increases correspondingly [182].

Imperfect cutting edge shape is duplicated onto the
machined surface during the cutting process, forming the
irregular tool marks and leading to an increase in machined
surface roughness, as shown in the close-up view presen-
ted in figures 10(a) and (c). Although the channeling effect
may be alleviated to some extent by optimizing the ion beam
parameters, which yields the cost of further reducing the
processing efficiency, the effect may not be removed com-
pletely, as shown in figure 11. For this reason, the poor
consistency of cutting edges induced by FIB processing is
another probable difficulty that restricts the industrial applica-
tions of FIB technology in micro diamond tool manufactur-
ing. Moreover, limited by the principle of FIB processing,
massive impurity atoms are implanted into the topmost sur-
face of a diamond tool while high-velocity moving ions bom-
bard the diamond surface, which distorts the lattice structure
and forms amorphous defects. As a result, tool life shortens
radically [183, 184].

5.3. Mechanical lapping

In the 16th century, mechanical lapping technology for dia-
mond crystals was developed to process gems and jewelry
for royal nobles. In 1901, a diamond crystal was made into
a cutting tool with the mechanical lapping method to fin-
ish the optical components in ZEISS Co., Ltd [153]. From
then on, a precedent was set for using diamond tools for
machining. In the 1920s, Dr Tolkowsky treated the mech-
anical lapping of diamond crystals as a branch of science
for deep investigation [185]. Because of the backward tech-
nique of machine tools, the performance advantages of dia-
mond tools could not be perfectly utilized, and the mechan-
ical lapping technology of diamond tools developed slowly
at that time. Until the SPDT technology was invented and a
classic ultra-precision machine tool, namely the hemispher-
ical lathe, was successfully developed by Union Carbide Co.,
Ltd in 1962, diamond tools were gradually applied in the
field of ultra-precision machining. After that, the industrially

developed countries, including Europe, America, and Japan,
vigorously developed the mechanical lapping technology of
diamond tools [134, 154, 156]. In 1980, Wilks [186] analyzed
the influence of diamond crystal anisotropy on the quality of
mechanically lapped diamond tools and pointed out several
technical issues and suggestions that should be paid atten-
tion to when designing and lapping diamond tools. Even now,
those suggestions are still adopted as an important technical
reference for diamond tool manufacturing engineers. In the
1990s, Yuan and Zhang were also engaged in the development
of mechanical lapping technology for diamond tools in China
[157–159]. Thereafter, themechanical lapping technologywas
inherited and developed by Sun and Zong et al [70, 157, 160,
161] until now.

Mechanical lapping technology is the oldest and most
mature processing method for diamond tool manufacturing.
Up to now, it is also the only processing method that gives
consideration to both efficiency and quality. Therefore, mech-
anical lapping technology is the most popular processing
method for the current industrial production of diamond tools.
Mechanical lapping of diamond tools is a compound pro-
cess coupled with chemical, thermal, and mechanical effects,
which adopts a high-speed rotating cast iron disc coated with
diamond abrasive to ceaselessly grind the diamond tool faces
to remove the material precisely. During the lapping pro-
cess, the material of the topmost diamond surface undergoes
squeezing, scratching, friction, thermal corrosion, and chem-
ical diffusion [141, 187], which cause elastic deformation and
lattice distortion on the topmost surface of the diamond tool
to store the deformation energy. When the stored deformation
energy of the C–C covalent bond reaches up to 5.5 eV [188],
the breakage of C–C bonds takes place, causing a single C
atom or cluster to separate from the surrounding C atoms. In
such a way, the single C atom or cluster is plastically removed
by the mechanical effect of the diamond abrasive to form
chip fragments that remain on the iron disc surface or diffuse
into the iron disc. In addition, the graphitization removal of
diamond tool surfaces also occurs due to the shearing stress
induced by squeezing and friction [189]. The above removal
processes will continue until smooth tool surfaces and sharp
cutting edges are prepared.
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Xie and Bhushan [190] experimentally examined the
dependence of material removal rate and surface quality on the
grain size of diamond powder, lapping parameters, and prop-
erties of scaife in mechanical lapping of diamond crystals in
1996. Their experiment results demonstrated that the mater-
ial removal rate and surface roughness are positively correl-
ated with the grain size of diamond powder, lapping pressure,
and the hardness of the scaife, while they are negatively cor-
related with the elastic modulus of the scaife. According to
the experimental findings, they finally optimized the mech-
anical lapping process of diamond crystals. Field et al [134,
191, 192] summarized the development history of diamond
crystal mechanical lapping technology over half a century and
proposed a modern operation process for the mechanical lap-
ping method in 2000. To date, all the process technologies for
mechanical lapping of diamond tools widely used in industry
are almost developed from the modern mechanical lapping
method. In 2006, Higuchi et al [136, 162] replaced the tra-
ditional cast iron disc with a pure copper disc and conducted
a series of mechanical lapping experiments to investigate the
influence of lapping time on the diamond tool surface qual-
ity with the assistance of a heat source. Their experimental
results proved that the improved lapping method is able to
effectively diminish the micro chipping defects on the cutting
edge that are induced by mechanical lapping. In 2008, Yasuo
[163] achieved a rounded diamond turning tool with a nose
radius of 3.9 µm and a cutting edge waviness of 50 nm on a
special machine tool, according to his extensive experiences
in mechanical lapping. In 2016, A.L.M.T. Corp. [14] repor-
ted that they were capable of machining micro diamond tools
with different cutting edge shapes by utilizing mechanical lap-
ping technology. The cutting edge sharpness of different tools
for optical molds is superior to 50 nm, and the minimum nose
radius of rounded tools is as small as 0.2 µm. Ultrahigh preci-
sion on-line measurement and calibration of the rotary center
while manufacturing the rounded tool with a 0.2 µm radius
are mandatory with the assistance of a special optical meas-
urement system. In addition, the variation of ambient temper-
ature has to be controlled superior to ±0.03 ◦C, which is a
rigorous condition and difficult to achieve. It should be noted
that the rounded diamond tools with a nose radius of less than
1 µm are usually used as a V-shaped forming tool to fabric-
ate the pyramid microstructures, V-shaped micro-groves, and
cubic microstructures. Therefore, the tool feeding motions are
usually intermittent, responding to the microstructure periods.
The shaping of a rounded cutting edge is to improve the cut-
ting edge strength and wear resistance. Besides, Yan et al [15,
48] used the micro diamond tools fabricated by the mech-
anical lapping method, as shown in figures 12(a) and (b), to
manufacture microspheres and V-groove arrays on the oxygen
free copper and NiP alloy, as shown in figures 12(c) and (d).
Brinksmeier et al [12] also adoptedmechanically lappedmicro
diamond tools with a nose radius of 1–10 µm to chisel cubic
micro retroreflective mirror arrays on the 10mm× 10mmNiP
alloy substrate. The reported investigations reviewed above
confirmed the feasibility of the mechanical lapping method to
process diamond tools for microstructure mold manufacturing
and application.

Figure 12. Micro diamond tools fabricated with the mechanical
lapping method and the corresponding machined microstructured
arrays: (a) micro milling tool. Reproduced from [48], with
permission from Springer Nature. (b) Micro cutting tool. Reprinted
from [193], Copyright © 2009 Elsevier B.V. All rights reserved (c)
Microsphere arrays. Reproduced from [48], with permission from
Springer Nature. (d) V-groove arrays. Reprinted from [193],
Copyright © 2009 Elsevier B.V. All rights reserved.

Yuan et al [125, 158] proposed an optimized crystal ori-
entation design method for diamond tools based on the aniso-
tropy of the friction coefficient between diamond and different
materials as well as the material removal rate in the mechan-
ical lapping of diamond tools. Zhang et al [159, 164] examined
the influence of lapping parameters on the diamond tool qual-
ity experimentally and found that the rotation accuracy of
the spindle-scaife system is the essential factor affecting the
lapping quality. As indicated by the findings, they invented
a precision hydrodynamic spindle for mechanical lapping of
diamond tools and performed an optimization of lapping para-
meters. Since the new millennium, research and production
establishments ranging from colleges to factories have been
involved in developing mechanical lapping technology, owing
to the increasing demands for ultra-precision machining tech-
nology in different high-tech fields [194–198]. In 2010, Huang
et al [199] carried out copious mechanical lapping experi-
ments of diamond crystals on the reactive metal disc. The
experimental results suggested that diamond crystals are more
likely to react with titanium metal activated by the lapping
heat, which is enormously conducive to improving mechan-
ical lapping efficiency. However, the reactive metal disc was
applied only to the rough lapping of diamond tools because
of their underperforming surface quality. In 2019, inspired by
the mechanical polishing process of single crystal silicon, Lu
et al [200, 201] replaced the cast iron disc with a gel bonded
disc, realizing the flexible consolidation of diamond powders
to polish diamond crystal. The lapping experiments performed
with the gel bonded disc demonstrated that flexible consolid-
ation effectively reduces the subsurface damage of diamond
crystal. Gel bonded disc polishing can be treated as a post-
processing technology for mechanically lapped diamond tools
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Figure 13. Research progress on mechanical lapping of diamond tools: (a) conventional diamond turning tool. Reprinted from [206],
Copyright © 2006 Elsevier Ltd All rights reserved. (b) Pyramid diamond indenters. Reprinted from [207], Copyright © 2015 Elsevier Ltd
All rights reserved. Reproduced with permission from [208]. Reprinted from [213], © 2017 Elsevier Ltd All rights reserved. (c) Micro
diamond milling tool. Reproduced with permission from [71]. (d) Conical and spherical tipped conical diamond indenters. Reprinted from
[212], © 2022 Elsevier B.V. All rights reserved. (e) Micro diamond turning tool.

to further improve tool surface quality. Recently, Zheng et al
[202] carried out relevant research on the subsurface dam-
age during the lapping process of diamond crystal with the
high-speed dynamic friction lapping method. They found that
the cleavage induced damage depth in the subsurface is up to
10 µm, which means their method can also be applied to the
rough lapping of diamond tools.

In addition, systematic research on the mechanical lap-
ping of diamond tools has also been performed in China. For
example, the research groups of Sun and Zong developed a
thermo-mechanical lapping method for diamond tools based
on steel scaife to improve the lapping accuracy and efficiency
[203] and proposed a generating method for complex lap-
ping trajectory to improve the roughness of rake and flank

surfaces [204]. They optimized the crystal orientation con-
figuration scheme of diamond tools to increase the cutting
edge sharpness and achieved the manufacturing of large nose
radius diamond turning tools (nose radius: 0.5–2 mm) with a
sharpness superior to 10 nm by adopting an extremely harsh
lapping condition [205, 206], as presented in figure 13(a).
Subsequently, they developed a semi quantitative control tech-
nology to improve the cutting edge of large nose radius dia-
mond turning tools, which can be further used to regulate the
cutting edge radius to restrain the severe tool wear. According
to the theoretical calculations and mechanical lapping exper-
iments, they disclosed the dependency of diamond material
removal rate on the crystal plane and lapping direction dur-
ing the mechanical lapping process and built a design method
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for diamond indenters, with which the Berkovich indenter
[207] with an edge radius less than 25 nm and the Vickers
indenter [208] with an intersection edge length less than 60 nm
were shaped by utilizing the mechanical lapping method, as
shown in figure 13(b). The Berkovich and Vickers indenters
can be used for nanomachining [209, 210]. Besides, they have
been capable of fabricating micro ball end diamond milling
tools [71], conical diamond indenter used to manufacture nano
arrays [211], and spherical tipped conical indenters [212], as
demonstrated in figures 13(c) and (d). Recently, two kinds
of components have been needed to realize specific phys-
ics experiments. One is a sphere component covered with an
arrayed spherical dimple with a radius of less than 10 µm. The
other is a planar component covered with sinusoidal grids with
a wavelength of less than 50 µm and an amplitude larger than
3 µm. Both components have to be fabricated by a micro dia-
mond tool with a radius of less than 10 µm. In response to this
demand, the research groups of Zong have been able to man-
ufacture the micro diamond turning tools with a sharpness of
20–40 nm and a cutting edge waviness of 10 nm over an open-
ing angle of 117◦ by using the mechanical lapping technology,
as presented in figure 13(e).

It should be noted that mechanical force (or grinding force)
always goes with the material removal process in mechan-
ical lapping. Therefore, subsurface damage to the cutting edge
and tool surface is inevitable, such as micro-cracks or micro-
cleavage and amorphization or graphitization, which is harm-
ful to the improvement of tool wear resistance. Moreover,
the grinding force is to the detriment of the tool tip integrity
because tool tips, especially thosewith a large aspect ratio, will
fracture in the action of the grinding force. In addition, during
the mechanical lapping of micro diamond tools, lapping heat
is generated due to the friction between the scaife and diamond
tools, resulting in the amorphization and graphitization on the
micro diamond tool surface and decreasing the tool wear res-
istance. Therefore, coolant has to be used to reduce the thermal
effects of the mechanical lapping.

6. Conclusions and future directions

6.1. Conclusions

In summary, the manufacturing methods of micro diamond
tools mainly include laser processing, FIB milling, and mech-
anical lapping. Laser processing with high efficiency can be
used for the preparation of sub cutting edges and submicron
cutting edges owing to the absence of mechanical force, but
the tool edge quality is not good enough for ultra-precision
machining. Therefore, laser processing is usually used as a
rough forming method. FIB milling is free of mechanical
force, so it can also be employed for the fabrication of sub
cutting edges and submicron cutting edges. As compared to
the laser processing method, the cutting edge quality produced
by FIB milling is greatly improved. Unfortunately, the cut-
ting edge consistency is poor because of the channeling effect.
What’s worse, the processing efficiency is so low that it is dif-
ficult to promote industrial applications. The mechanical lap-
ping method has satisfactory quality and efficiency, and it is

currently the most popular solution for the manufacturing of
micro diamond tools in industry. However, mechanical lap-
ping also has some shortcomings, such as the appearance of
tool tip fracture and qualification rate reduction, due to the
negative effect ofmechanical force as the characteristic dimen-
sion decreases, resulting in an increment in lapping difficulty,
whichmay be solved by the force feedback sharpening techno-
logy. In addition, it is also difficult to acquire multi sub cutting
edges.

The design of micro diamond tools has to consider the
application backgrounds, which have different requirements
for tool geometries and performances. Tool geometry design
shall comprehensively consider the shape of the microstruc-
tures to be processed and the properties of the workpiece
material. Under the condition without tool interference, tool
geometric parameters that are conducive to improving tool
edge strength should be selected in order to increase tool dur-
ability. Tool performance design is relatively complex. In the
case of micro diamond tools used for large size component
machining, such as roller molds, tool wear resistance is more
crucial for the consistency of machining quality. The orient-
ation configuration should ensure that the hard direction of
the diamond crystal is parallel to the cutting direction over
the whole cutting edge, in order to achieve the best wear res-
istance. Moreover, the cutting edge waviness and sharpness
should be improved as much as possible by optimizing the lap-
ping process. In the case of micro diamond tools used for small
size component machining, such as mold inserts for mobile
phones, the negative influence of tool wear on the machined
surface quality can be ignored due to the limited cutting dis-
tance. In this case, the cutting edge waviness is more important
than the wear resistance to meet the high requirement for form
accuracy of the machined inserts. In addition, the orientation
configuration of micro diamond tools should ensure that the
whole cutting edge has a uniform strength distribution along
the lapping direction to achieve excellent cutting edge wavi-
ness. In the case of micro diamond tools used for ultrathin cut-
ting, the utmost attention should be paid to the cutting edge
radius, because the minimum undeformed chip thickness is
proportional to the cutting edge radius. The orientation con-
figuration should ensure that the whole cutting edge has the
highest strength in the lapping direction to obtain an extremely
sharp cutting edge. The summary of the work is expounded in
figure 14.

6.2. Future directions

Currently, suppression for the heavy wear of micro diamond
tools is an urgent technical difficulty, which seriously limits
the development of large-scale microstructure surfaces. In the
future, more efforts need to be made in this field. The authors
believe that the following aspects are worth concerning:

(a) Tool orientation design. The existing tool orientation
design method is mainly based on several typical crystal
orientations, which means that the current design method
is a locally optimal solution. However, in order to fur-
ther improve the performance of micro diamond tools,
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Figure 14. Summary and future development directions for the design and manufacturing of micro diamond cutting tools. Reprinted from
[147], © 2021 Elsevier Ltd All rights reserved. Reproduced from [214]. CC BY 4.0. Reprinted from [215], © 2020 The Society of
Manufacturing Engineers. Published by Elsevier Ltd All rights reserved. Reprinted from [216], © 2016 Elsevier Inc. All rights reserved.
Reproduced with permission from [217].© IMechE 2022. Reprinted from [218], © 2021 The Society of Manufacturing Engineers.
Published by Elsevier Ltd All rights reserved.

numerous theoretical calculations are required for general
crystal orientations to search for the global optimal solu-
tion. In such a way, the purpose of both goodmachinability
and wear resistance may be achieved.

(b) Suppression of damage. Damages and defects are inevit-
ably generated in the tool subsurface due to the mechan-
ical force of diamond grit in the lapping process, which
should be suppressed as much as possible. Compound
polishing may be an effective solution, such as chem-
ical assisted polishing, thermo-chemical assisted polish-
ing, plasma assisted polishing, and oxidative assisted pol-
ishing, in order to remove damages and defects.

(c) Tool strengthening treatment. The damages and defects
in the tool subsurface that formed in the lapping pro-
cess can be repaired with some post processing techno-
logies, such as thermo-chemical refinement, by providing
an environment for weak oxidation and physical anneal-
ing of damaged diamond carbons. Tool surface modifica-
tion with ion implantation technology, through which the

atomic density of the lattice can be increased to improve
the surface strength and reduce the surface energy and fric-
tion, is another effective approach to strengthening micro
diamond tools.
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