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Abstract

The paper presents an approach to the modelling of epistemic uncertainty in Conjunction Data Messages (CDM) and the classifica-
tion of conjunction events according to the confidence in the probability of collision. The approach proposed in this paper is based on
Dempster-Shafer Theory (DSt) of evidence and starts from the assumption that the observed CDMs are drawn from a family of
unknown distributions. The Dvoretzky–Kiefer–Wolfowitz (DKW) inequality is used to construct robust bounds on such a family of
unknown distributions starting from a time series of CDMs. A DSt structure is then derived from the probability boxes constructed with
DKW inequality. The DSt structure encapsulates the uncertainty in the CDMs at every point along the time series and allows the com-
putation of the belief and plausibility in the realisation of a given probability of collision. The methodology proposed in this paper is
tested on a number of real events and compared against existing practices in the European and French Space Agencies. We will show
that the classification system proposed in this paper is more conservative than the approach taken by the European Space Agency but
provides an added quantification of uncertainty in the probability of collision.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The close encounter of two space objects, also known as
a conjunction between a chaser and a target, can lead to a
collision if the relative position of the two objects is not
properly controlled. The Probability of Collision (PoC)
to happen depends on the probability that each of the
two objects occupies a given position in space. This proba-
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bility can be derived from the knowledge of the orbit of the
two objects and the associated uncertainty.

It is customary to assume that the distribution of possi-
ble positions of the two objects at the time of closest
encounter follows a multivariate Gaussian with a given
mean and covariance matrix, see Merz et al. (2017, 2019).
This assumption is limited by three sources of uncertainty:
the uncertainty in the dynamic model used to propagate the
orbit from the last available observation to the time of clos-
est approach, the uncertainty in the actual distribution at
the time of closest approach, and the uncertainty in the last
observed state before closest approach. We argue that all
three forms of uncertainty are epistemic in nature since
org/licenses/by/4.0/).
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Nomenclature

AI Artificial Intelligence
Bel Belief
bpa basic probability assignment
CAM Collision Avoidance Manoeuvre
CARA Conjunction Assessment Risk Analysis
CDF Cumulative Distribution Function
CDM Conjunction Data Message
CNES Centre National d’Etudes Spatiales
DKW Dvoretzky–Kiefer–Wolfowitz
DoU Degree of Uncertainty
DSt Dempster-Shafer theory of evidence
eCDF empirical Cumulative Distribution Function
ESA European Space Agency
ESOC European Space Operations Centre
FE Focal Element
FN False Negative
FP False Positive
FPR False Positive Rate
HBR Hard-Body Radius
IDSS Intelligent Decision Support System

JAC Java for Assessment of Conjunctions
KS Kolmogorov–Smirnov
LEO Low Earth Orbit
ML Machine Learning
mWSMmodified Weighted Sum Method
Pl Plausibility
PoC Probability of Collision
ROC Receiver Operating Characteristic
SEM Space Environment Management
SDO Space Debris Office
sPoC scaled Probability of Collision
STM Space Traffic Management
TCA Time of Closest Approach
TN True Negative
TOPSIS Technique for Order of Preference by Similar-

ity to Ideal Solution
TP True Positive
TPR True Positive Rate
WPM Weighted Product Method
WSM Weighted Sum Method

L. Sánchez et al. Advances in Space Research 74 (2024) 5639–5686
they derive from a lack of knowledge of the model, distri-
bution and error in the observations.

The information on a given close encounter is generally
available in the form of a Conjunction Data Message
(CDM), which contains the means and covariances of the
two objects at Time of Closest Approach (TCA), see
CCSDS (2013). Thus, in this paper, we start from the
assumption that the mean and covariance in each CDM
are affected by epistemic uncertainty, which is reflected in
an uncertainty in the correct value of the PoC.

The general attempt to compensate for the uncertainty
in the CDMs is to improve the realism of the covariance
matrix by improving its propagation, Aristoff et al.
(2014), or by some form of updating of the dynamic model,
Cano et al. (2023). These approaches are all very valuable
but require direct access to the post-observation data.
Other methods based solely on the available CDMs tried
to predict the next CDMs using machine learning starting
from an available time series, see Pinto et al. (2020, 2021,
2022, 2023), or increased the last covariance under the
assumption that the series of CDMs should follow a given
distribution, Laporte (2014a,b). This last approach does
not modify the mean value or miss distance.

So far, only a limited number of authors have directly
addressed epistemic uncertainty in conjunction analysis,
see for example Tardioli and Vasile (2015, 2018, 2019,
2021). In Sánchez and Vasile (2021, 2022,) the authors pro-
posed a robust approach to conjunction analysis and colli-
sion avoidance planning based on Dempster-Shafer theory
of evidence (DSt). DSt allows making decisions informed
by the degree of confidence in the correctness of a value
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rather then by the value itself, Helton et al. (2005). How-
ever, the available information to build the frame of dis-
cernment that is needed in DSt is often limited in a
sequence of CDMs. CDMs contain little information on
the three forms of uncertainty listed above and essentially
only provide covariance and mean value of the miss dis-
tance. Thus, one key question is how to translate the time
series of CDMs into the frame of discernment used in DSt.
The underlying assumption in this work is that the CDMs
are observables drawn from an unknown family of distri-
butions defined within some bounds. In fact the actual dis-
tribution of possible states at time of closest approach is
not known and the CDMs can be considered to contain
only an approximation of the first two statistical moments
of that unknown distribution. The actual distribution
depends on the uncertainty in the propagation model, in
the observations and orbit determination process. How-
ever, that uncertainty, which is epistemic in nature, can
only by quantified by observing the time series of CDMs.
Furthermore, we assumed that the CDMs computed from
observations acquired close to the TCA were less affected
by model and distribution uncertainty. This is reasonable
as the propagation time is shorter and thus both nonlinear-
ities and model errors have a lower impact on the propaga-
tion of the distribution of the possible states.

The paper introduces a methodology, based on the
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality,
Dvoretzky et al. (1956), to derive a DSt structure capturing
the epistemic uncertainty in a given sequence of CDMs.
From the DSt structures, one can compute the Belief
(Bel) and Plausibility (Pl) that the value of the PoC is
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correct and an upper and lower bound on its value. The
paper then proposes a classification system that exploits
the use of Bel and Pl to differentiate between events that
are uncertain from events that can lead to a collision.
The overall methodology is tested on a number of real con-
junction scenarios with known sequences of CDMs and
compared against current practices in the European Space
Agency (ESA) and Centre National d’Etudes Spatiales
(CNES).

The rest of the paper is structured as follows. Section 2
briefly introduces a methodology previously presented by
the authors to deal with epistemic uncertainty for risk
assessment in space encounters. Section 3 extends this
methodology to deal with a sequence of CDMs. In Sec-
tion 4, some numerical cases are presented showing the
operation of the proposed method and comparing the
approach with the procedure followed by real operators.
Finally, Section 5 concludes the paper with the final
remarks and future work.

2. Conjunction analysis with Dempster-Shafer structures

This section briefly introduces the basic idea of DSt
applied to Conjunction Assessment Risk Analysis (CARA).
It also includes the DSt-based conjunction classification sys-
tem already introduced by the authors in previous works.
More details on DSt can be found in Shafer (1976), and
more details on its application to space conjunction assess-
ment can be found in Sánchez and Vasile (2021, 2022,).

In this paper, we consider only fast encounters between
two objects: object 1 and object 2. Under the typical mod-
elling assumptions of fast encounters, see Serra et al.
(2016), the PoC can be defined as:

PoC ¼ 1

2p
ffiffiffiffiffiffiffiffiffikRkp Z

B 0;0ð Þ;Rð Þ
e�

1
2 b�lð ÞTR�1 b�lð Þð Þdndf ð1Þ

where, without loss of generality, object 2 is at the centre of
the coordinate system of the impact plane at the time of

closest approach (TCA), b ¼ n; f½ �T is the position vector
of object 1 with respect to object 2 projected onto the
impact plane, R is the 2� 2 combined covariance matrix
of the position of the two objects in the impact plane
(R ¼ R1 þ R2, with R1 and R2 the individual covariance

matrices of object 1 and 2 respectively) and l ¼ ln; lf

� �T
is the expected position vector of object 1 with respect to
object 2 projected onto the impact plane. In the remainder
of the paper l is called miss distance. The integration
region B 0; 0ð Þ;Rð Þ, or Hard-Body Radius (HBR), is a disk
with radius R centred at the origin of the impact plane.

When the covariance R and miss distance l are not pre-
cisely known the PoC is affected by a degree of uncertainty.
This lack of knowledge translates into an epistemic uncer-
tainty in the exact value of R and l. The epistemic uncer-
tainty in covariance R and miss distance l can come
from incertitude in the sources of information, from poor
knowledge of the measurements or propagation model or
5641
from an approximation of the actual distribution on the
impact plane at TCA. As shown in Sánchez and Vasile
(2021) and Sánchez and Vasile (2022), this epistemic uncer-
tainty can be modelled with DSt.

The idea proposed in Sánchez and Vasile (2021), was to
use DSt to compute the level of confidence in the correct-
ness of the value of the PoC, given the available evidence
on the sources of information. Each component of the
combined covariance matrix in the impact plane,

r2
n; r

2
f ; rnf

� �
, was modelled with one or more intervals and

so was the miss distance ln; lf

� �
. A basic probability

assignment (bpa) was then associated with each interval.
The intervals and the associated bpa can be derived, for
example, directly from the raw observations, Greco et al.
(2021,), or from a time series of CDMs, CCSDS (2013),
as explained later in this paper. Note that in the case in
which raw observation data are available, one could
directly compute the confidence on the miss distance, see
Greco et al. (2021). However, in the following we will con-
sider the CDMs as the observable quantities and the PoC,
computed from the CDMs, to be the quantity of interest.

Given the intervals and associated bpa, one can compute
the cross-product of all the intervals under the assumption
of epistemic independence. Each product of intervals with
non-zero bpa constitutes a Focal Element (FE), ci, whose
joint bpa is the product of the bpas of the individual inter-
vals. When computing the PoC, each FE defines a family of
bi-variate Gaussian distributions on the impact plane. In
the following, the collection of all focal elements forms
the uncertainty space U , and the uncertain parameter vec-

tor is u ¼ ln; lf; r
2
n; r

2
f ; rnf

� �T
so that u 2 U .

Given the set U ¼ PoCjPoC P PoC0f g and
X ¼ u 2 U jPoC uð Þ 2 Uf g the Pl and Bel that the PoC is
larger than a given threshold PoC0 given the available evi-
dence are:

Bel Xð Þ ¼
X
ci�X

bpa cið Þ ð2aÞ

Pl Xð Þ ¼
X

ci\X–£

bpa cið Þ ð2bÞ

For different values PoC0, Eqs. 2a, define two curves (see
the example in Fig. 1). The area between the curves,
APl;Bel, in logarithmic scale, is:

APl;Bel ¼ APl � ABel

¼
Z 0

log PoCð Þ
Pl Xð Þd log PoCð Þð Þ

�
Z 0

log PoCð Þ
Bel Xð Þd log PoCð Þð Þ; ð3Þ

where APl and ABel are the areas below the Pl and Bel

curves, respectively, for PoC 2 PoC; 1½ �.
Bel Xð Þ is a lower bound on the probability that

PoC P PoC0. Its value is computed by adding up all the
FEs fully supporting the hypothesis PoC P PoC0. Pl Xð Þ is



Fig. 1. Support to the value of PoC being greater than a given value: Bel -black solid line; Pl - black dashed line. The dotted purple line represents a
possible PoC0.
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an upper bound on the probability that PoC P PoC0. Its
value is computed by adding up all the FEs only partially
supporting the hypothesis PoC P PoC0. The area APl;Bel

quantifies the amount of uncertainty on the probability
that PoC P PoC0, i.e. if no epistemic uncertainty is present,
both curves would reduced to the same Cumulative Distri-
bution Function (CDF). Thus, for a given value of PoC0, a
large value of Pl associated with a small value of APl;Bel sug-
gests that there is a lot of support to the hypothesis
PoC P PoC0 given the available information. On the con-
trary a large value of Pl associated to a large value of
APl;Bel suggests that the hypothesis PoC P PoC0 is very
plausible to be true but with a high degree of uncertainty.

Sánchez and Vasile (2021)proposed a DSt-based classifi-
cation system to decide whether, for a given conjunction
event, a Collision Avoidance Manoeuvre (CAM) was
required or not. In this paper, we propose a revised version
of the classification approach proposed Sánchez and Vasile
(2021). A given conjunction event is classified according to:
i) the value of the Pl at PoC ¼ PoC0 or Pl PoC0ð Þ, ii) the time
of closest approach t2TCA and iii) the area APl;Bel. We intro-
duced five thresholds: two time thresholds indicating the
proximity of the event, T 1 and T 2, the maximum admissible
PoC, or PoC0, the level of Pl, Pl0, above which there is suf-
ficient support to the hypothesis PoC P PoC0, and the
value of area A0, above which the information is considered
to be uncertain. Three of the five thresholds, T 1; T 2 and
PoC0, are decided by the operators and depend on opera-
tional constraints, the other two Pl0 and A0 need to be
tuned under evidence-based criteria, as it will be explained
in the remainder of the paper.

We then introduce the following six classes, see Table 1,
each defined by a combination of Pl PoC0ð Þ; t2TCA and
APl;Bel:
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� Class 0: there is enough evidence supporting the fact
that PoC P PoC0 is plausible but is accompanied by a
high degree of uncertainty and no time to acquire new
measurements, due to the proximity of the event, hence
a CAM is suggested. In other words, most pieces of evi-
dence are saying that there is a non-zero probability that
the value of the PoC is correct, however the actual prob-
ability that the value of the PoC is correct could be very
low. Given the degree of uncertainty on the correctness
of the PoC and the short time before TCA a CAM is
suggested as a worst case solution.

� Class 1: there is full support to the hypothesis
PoC P PoC0, with limited uncertainty, and short
t2TCA, hence a CAM is required.

� Class 2: there is full support to the hypothesis
PoC P PoC0, with limited uncertainty, preparing a
CAM is recommended, but a CAM is not executed yet
due to the available time before the encounter.

� Class 3: there is enough evidence supporting
PoC P PoC0 but is accompanied by a high degree of
uncertainty with sufficient time to acquire new
measurements, hence more measurements are recom-
mended. Note that the underlying assumption is that
the new measurements are of sufficient quality to reduce
the uncertainty. On the other hand if subsequent mea-
surements do not reduce the uncertainty the class
changes naturally from 3 to 0 as the t2TCA reduces
below T 1.

� Class 4: there is insufficient evidence supporting
PoC P PoC0 and sufficient time to acquire new
measurements.

� Class 5: no action is implemented, since t2TCA is too
short and there is insufficient evidence supporting
PoC P PoC0.



Table 1
Conjunction risk assessment evidence-based classification criterion.

Time to TCA Pl at PoC0 Area between curves Class

t2TCA 6 T 1 Pl PoC0ð Þ < Pl0 - 5
Pl PoC0ð Þ P Pl0 APl;Bel < A0 1

APl;Bel P A0 0
T 1 < t2TCAt2TCA 6 T 2 Pl PoC0ð Þ < Pl0 - 4

Pl PoC0ð Þ P Pl0 APl;Bel < A0 2
APl;Bel P A0 3

t2TCA > T 2 - - 3
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Note that for t2TCA > T 2 all events are classified as
Class 3 because the required action is to acquire more mea-
surements. Also, it has to be noted that the level of confi-
dence that one has in the computed value of the PoC

depends only on Pl0. If Pl0 is set to zero it means that
one accepts even a single piece of partial evidence that
PoC P PoC0 to escalate the Class from 5, to 0 or 1, or from
4 to 2 or 3.

3. Modelling epistemic uncertainty in conjunction data

messages

The use of DSt to model epistemic uncertainty does not
require any assumption on the probability of an event and
also captures rare events with low probability. On the other
hand with no direct information on measurements and
dynamic model, one can only rely on the CDMs to define
the FEs and associated probability masses.

This section presents a methodology to associate one of
the six classes introduced in the previous section to a given
sequence of CDMs. The first step is to derive the FEs from
the time series of miss distances and covariance matrices in
the CDMs. In accordance with DSt, we make no prior
assumption on the underlying distribution of the CDMs
and, instead, we consider that each CDM is drawn from
an unknown set of probability distributions. The assump-
tion is that the value of the uncertain vector u in each
CDMs is a sample drawn from the set of unknown distri-
butions. We make use of the DKW inequality, Dvoretzky
et al. (1956), to build an upper and lower bound to the
set starting from the empirical Cumulative Distribution
Function (eCDF) derived from the sequence of CDMs.

Given a sequence of CDMs and the eCDF of each of the
components of the uncertain vector u, the DKW inequality
defines the following upper and a lower bounds

F n xð Þ �
ffiffiffiffiffiffiffi
ln 2

d

2n

s
6 F xð Þ 6 F n xð Þ þ

ffiffiffiffiffiffiffi
ln 2

d

2n

s
ð4Þ

around the eCDF F n xð Þ (dashed green lines in Fig. 2b),
given n CDMs and the confidence level 1� d that the exact

distribution F xð Þ 2 F n xð Þ � e, where e ¼
ffiffiffiffi
ln2d
2n

q
.

Note that expression Eq. (4) implies that for an infinite
number of observations F xð Þ ¼ F n xð Þ. However, in the
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following, we will show that in real sequences not all
CDMs follow the same distribution. Convergence to a sin-
gle distribution is, therefore, plausible for a single sequence
with consistent measurements and propagation model.
Furthermore, F n xð Þ would converge to a delta function if
each observation returned the same mean and covariance
and the propagation model would not introduce any vari-
ability or nonlinearity.

From the confidence region defined by the DKW bands,
it is possible to build a probability box, or p-box, Ferson
et al. (2023, 2007, 2017), for each of the components of
u. A p-box is a set of all CDFs compatible with the data,
that is, the bounded region containing all distributions
from where the set of samples may have been drawn,
Ferson et al. (2007). The upper and lower bounds of the
p-box are monotonic non-decreasing functions, ranging

from 0 and 1, so that F xð Þ 6 F xð Þ 6 F xð Þ, with F xð Þ
and F xð Þ the upper and lower bounds of the p-box for a
given variable x, Ferson et al. (2023).

In this work, the p-box bounds are computed from the
CDF of a weighted sum of univariate Gaussians, each
one centred at one of the samples. More formally the
assumption is that F xð Þ can be approximated by:

F xð Þ � P xð Þ ¼
Z inf

� inf

Xn

i

wiN xi; rið Þ xð Þdx; ð5Þ

with xi the realisations of the uncertain variable x;wi a
weight associated with each sample, and ri the variance
of the Gaussian distribution associated with the ith-
sample. See Fig. 2a for an illustrative example. Implicitly,
it implies that each sample presents some uncertainty which
is modelled with a Gaussian distribution (grey lines in
Fig. 2a). This distribution represents the confidence in the
sample’s value. By doing so, we admit that when we
observe a sequence of CDM we cannot tell from which
exact distribution that sequence is drawn. This is consistent
with the available sequences of real CDMs and the
approach adopted by CNES to model the uncertainty in
the covariance realism (see Section 4.2.2).

In order to define the limits of the p-box, the two free
parameters on each Gaussian distribution on the weighted
sum, wi and ri, must be computed by solving the optimisa-
tion problems:



Fig. 2. Example of intervals derivation form the eCDF. (a) eCDF (solid blue), individual sample’s Gaussian pdf distributions (solid grey), pdf of the sum
of Gaussians distributions for the eCDF fit (solid orange) (b) eCDF (solid blue), DKW bands (dashed green), fitted eCDF with weighted sum of Gaussian
distributions (dashed-pointed orange). (c) eCDF (solid blue), DKW bands (dashed green), p-box optimising the weighted sum of Gaussian distributions
(dashed-pointed red), 1% and 99% percentiles (vertical pointed black lines). (d) eCDF (solid blue), p-box (dashed-pointed red), 1 a-cut 2 intervals’ Pl and
Bel (dashed blue), 7 a-cuts 8 intervals’ Pl and Bel (dashed black). Dotted thin horizontal lines for the a-cuts: light blue at 0.5 for the 2 intervals partition,
grey lines spaced 0.125 for the 8 intervals partition. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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P xð Þ ¼ max
wi;ri

P x;wi; rið Þ
P xð Þ ¼ min

wi ;ri
P x;wi; rið Þ

8<
: s:t:

P xð Þ 6 min 1; F n xð Þ þ eð Þ
P xð Þ P max 0; F n xð Þ � �ð Þ

(
;

ð6Þ
where P xð Þ;P xð Þ are the upper and lower bounds of the p-
box, respectively (red dashed-pointed line in Fig. 2c). An

approximation to P xð Þ;P xð Þ can be computed by finding
the values of wi and ri in Eq. (5) that best fit the upper
and lower DKW bands:

P xð Þ 	 P xð Þ ¼ fitwi ;ri F n xð Þ þ �ð Þ
P xð Þ 	 P xð Þ ¼ fitwi ;ri F n xð Þ � �ð Þ

(
: ð7Þ

Eq. (7) gives the upper and lower bounds on the probabil-
ity of realising a particular value of the uncertain vector u
but the definition of a set of intervals for each component
of u requires first the definition of the range of each com-
ponent. Eq. (5) suggests that each p-box has infinite sup-
port. However, this would lead to an inconvenient
infinite range for variance and miss distance. Instead, in
the following we define the more practical interval x; x½ �
such that:Z 1

x
w1N x1; r1; xð Þdx ¼ 0:99;

Z x

�1
wnN xn; ri; xð Þdx

¼ 0:99: ð8Þ
Note that this confidence interval is independent of the d
introduced above and is used to define the range of vari-
ability of x when constructing the focal elements.

It is important to note that the assumption is that the
miss distance and each component of the covariance can
be treated independently. This is generally not the case,
but the independence assumption in this paper leads to a
5644
more conservative set of focal elements that covers the
space of realisations of the uncertainty vector. Although
this can lead to over-conservative decisions, it is deemed
to be acceptable in the case of high-risk events with little
available information. However, in order to reduce the
number of collision avoidance manoeuvres without com-
promising the quantification of the uncertainty in the prob-
ability of a collision, dependencies should be properly
accounted for. This will be the subject of future
developments.

3.1. Scaling of the CDMs

The approach described in previous sections assumes
that every CDM has the same relative importance and no
additional source of information is available to qualify
each individual CDM. However, as the t2TCA decreases,
so does the effect of the uncertainty on the true shape of
the distribution on the impact plane and the effect of model
uncertainty in the propagation. Fig. 3a shows the nor-
malised determinant of multiple sequences of covariance
matrices taken from the database of the ESA’s Collision
Avoidance Kelvins Challenge, ESA (2019, 2022). The data-
base contains 13,152 sequences of CDMs of some of the
Low Earth Orbit (LEO) satellites monitored by the ESA
Space Debris Office (SDO). The figure shows that one
can fit the simple exponential law y0 ¼ e�3t0 to the magni-
tude of the determinant (red line in the figure). However,
one cannot simply trust later CDMs due to large uncer-
tainty in each individual sequence. Thus, we propose the
following fit for each individual sequence:

y0 ¼ kRk
max
CDMs

kRkð Þ ð9aÞ



Fig. 3. Fitting law: (a) y0 ¼ e�3t0 (thick red line) and the dimensionless covariance determinant for a number of sequences of CDMs (thinner lines), (b)
Fitted law (dashed-pointed red) of a single CDM sequence (dashed-pointed black). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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y0 ¼ CeAt0 þ BA;B;C P 0; ð9bÞ

t0 ¼
1�max

CDMs
t2TCAð Þ

� �

min
CDMs

t2TCAð Þ �maxCDMst2TCA
� � ð9cÞ

, where kRk is the determinant of the combined covariance
matrix.

Once the parameters A;B and C are fitted to the samples
from a given sequence, the following weight is associated
with each CDM in that sequence:

wCDMi ¼
1

y0 t2TCACDMið Þ ð10Þ

The weight is applied to each sample in the eCDF used to
compute the DKW bounds: the probability mass associ-
ated with each sample is re-scaled by a factor wCDMi . See
Fig. 4 where the eCDF of ln for an example with 5 obser-
Fig. 4. eCDF for ln weighing the samples (blue) and with samples equally
weighted (dashed red). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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vations is shown both with samples equally weighted
(dashed red) or having applied the weighting law described
above (blue). This approach results in a scaling of the prob-
ability mass associated with the CDMs but still allows the
quantification of highly uncertain CDMs since there is no
filtering process. The reason is that, with no information
on trusted sources or individual CDMs, one cannot make
any assumption on which CDM is more credible.

3.2. a-cuts and DSt Structures

Once a p-box is defined, the intervals for each compo-
nent of u are derived from a series of equally spaced a-
cuts, light blue and grey dotted horizontal thin lines in
Fig. 2d. Each a-cut creates interval, He et al. (2015, 2007):

xa; xa½ � ¼ x j F xð Þ P af g: ð11Þ
The intersection with the upper bounds in the p-box defines
the lower limit of the interval, and the intersections with
the lower bound define the upper limit of the interval.
The number of intervals is equal to the number of cuts plus
one, and the bpa associated with each interval, assuming
the cuts are evenly spaced, is equal to the inverse of the
number of cuts. The intervals and their bpa will define an
envelope around the p-box (blue and black dashed lines
in Fig. 2d). The greater the number of a-cuts, the closer
the envelope will be to the p-box, but the more computa-
tionally expensive is the computation of Bel and Pl. From
the intervals associated with each component of u one can
compute the FE ci and their associated bpa cið Þ by perform-
ing the Cartesian product of all the intervals and associated
bpas. Once the FE and bpas are computed, the Pl, Bel of
PoC P PoC0 are computed with Eq. (2) (see Fig. 5) and
the conjunction event is classified according to Table 1.

Even in this case, we implicitly maintained the assump-
tion that variables are independent, although it is not true
that the components of the miss distance and of the covari-
ance are all independent. Approaches to address dependen-



Fig. 5. Plausibility and Belief of PoC P PoC0. Black: 1 a-cut (two intervals) per variable, 32 FEs. Blue: 7 a-cut (eight intervals) per variable, 32768 FEs.
Solid lines: belief. Dashed lines: plausibility. Dotted purple vertical line: PoC0. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 2
Definition of TP, TN, FP and FP.

Class 1/2 Class 0/3 Class 4/5

Collision TP Unc. FN
No Collision FP Unc. TN
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cies already exist in the literature, see Ferson et al. (2004),
and will be considered in future works. The independence
assumption has two implications: i) the uncertainty space
U is an outer approximation of the space of all distribu-
tions of u and ii) some focal elements might not contain
any sample of u. The combination of the two generally
leads to over-conservative results. Thus, in order to par-
tially recover the interdependence between uncertain quan-
tities, yet coherent with DSt, a bpa ¼ 0 is assigned to all
empty FEs and their bpa, coming from the Cartesian pro-
duct, is evenly distributed to the rest of FEs so thatP

ibpa cið Þ ¼ 1.

4. Numerical experiments

In this section, some numerical tests are presented. The
aim is to show the applicability of the methodology pre-
sented in previous sections and compare its outcome to
the decisions made in past real cases by actual satellite
operators: European Space Operations Centre (ESOC)
and CNES.

4.1. Parameter Tuning

The methodology proposed in this paper requires the
prior definition of the values of two thresholds: Pl0 and
A0. These two thresholds should be tuned by analysing a
large dataset of conjunction events with known outcomes.
However, in every database of CDMs available to the
authors, the number of provable Class 1 and 2 conjunc-
tions is very small or zero.

Since A0 does not affect Class 4 and 5, which depend
only on Pl0, but influences the number of True Positives
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(TPs) (actual collisions) and False Positives (FPs) (no-
collisions believed to be collisions), one can define Pl0 first
and then use A0 to quantify the degree of uncertainty in the
class associated to an event. According to the classification
in Table 1, the expected outcome is that low values of Pl0
would increase the number of events classified as Class 1

or 2, reducing, at the same time, the number of False Nega-
tives (FNs) (collisions believed to be no-collisions) and
increasing the amount of TPs (detected real collision or
high-risk events). If this is combined with high values of
A0, the chances of detecting all high-risk events are high,
but at the cost of increasing the number of FPs (low-risk
encounters wrongly classified as high-risk). If instead, A0

is low, more events will be classified as uncertain (Class 0
and 3). On the contrary, a higher value of Pl0 would reduce
the false alerts, FPs, but at the risk of increasing the num-
ber of FNs. Table 2 contains the definition of TPs, True
Negatives (TNs), FPs and FNs.

This paper used the DSt structure to set a value for Pl0.
If there is at least one FE supporting PoC > PoC0, it means
that there exists at least one piece of evidence suggesting
that the PoC can be correct. This piece of evidence may
correspond to an extreme event with low probability. Fol-
lowing this idea, we propose the value Pl0 ¼ mini bpa cið Þð Þ.
This implies that even a PoC that corresponds to a rare
event in the generation of a CDM is considered to be plau-
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sible. The value of A0 is selected by balancing the number
of TPs and FPs. The idea is to try to reduce the number
of FPs by reclassifying them as uncertain cases and present-
ing the level of such uncertainty to the operator. A low
value of A0 implies that the operator accepts very little
uncertainty in the sequence of CDM, which reduces the
number of FPs but potentially classifies some TPs as uncer-
tain. On the other hand, a greater value of A0 implies that
the operator is very conservative and accepts to treat a
number of FPs as TPs. Thus, the decision to execute a
CAM is related to the confidence of the operator in the
quality of the CDMs. For highly uncertain sequences of
CDMs, a low A0 is recommended, but if the quality of
the CDMs is high, a higher A0 should be used.

In the following, rather than selecting the value of the
area threshold A0, we select the value of the normalised
area A


0 ¼ 0; 0:05; 0:1; 0:15; . . . ; 0:95; 1f g, where A

0 is the

fraction of the maximum possible area between the Bel

and Pl curves, that is, when Bel drops to zero at the mini-
mum value of PoC, PoC, and Pl remains equal to one until
PoC ¼ 1. In this tuning exercise the area is computed by

taking the lower limit PoC ¼ 10�30 for the PoC as this is
the lowest value computed from all the sequences of CDMs
in our database. For all the first four tests in this paper, we
will use a value of A


0 ¼ 0:1 that allows one to clearly differ-
entiate Event 1 from Events 3 and 4 in the following sec-
tion. In the last test, we will present the sensitivity of the
number of recommended CAMs to the value of A


0.

4.2. Comparison Against SDO and CNES

The results in this section will show a comparison
between the CARA performed with the proposed
evidence-based method and the decisions made by real
operators in a selected number of real cases. The two oper-
ators considered in this study are the ESA’s SDO and
CNES. Each of them has a different approach to conjunc-
tion analysis. Four real conjunction events are analysed
and the different operational approaches are compared.

For all examples the values of the thresholds are
reported in Table 3. The evolution of the normalised area
gap between the Pl and Bel curves, or APl;Brel, over time,
for all four cases can be found in Fig. 6, where
A

Pl;Bel ¼ APl;Bel=max APl;Belð Þ is the normalised area between

curves, APl;Bel, defined in Eq. (3). The Figure confirms that
an A


0 ¼ 0:1 is appropriate to differentiate between cases
Table 3
Threshold values.

Threshold Units Value

T 1 days 3
T 2 days 5
PoC0 - 10�4

Pl0 - 1=#FE
A

0 - 0:1

PoC - 10�30
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like Event 1 from cases like Event 3 and 4. All four cases
are presented in more detail in the following subsections.

4.2.1. Space debris office conjunction risk assessment

The approach followed by the ESA SDO is probability-
based, relying mainly on the value of the PoC computed
with the information from the CDMs, or the PoC included
in the CDM. The following quote may summarise the con-
junction risk assessment process adopted by the SDO: ”For
a given close approach the last obtained CDM, including
the computed risk, can be assumed to be the best knowl-
edge we have about the potential collision and the state
of the two objects in question. In most cases, the Space
Debris Office will alarm control teams and start thinking
about a potential avoidance manoeuvre 2 days prior to
the close approach in order to avoid the risk of collision,
to then make a final decision 1 day prior”, ESA (2019).
Nevertheless, each mission monitored by the SDO has
specific operational constraints (i.e. the time needed to pre-
pare and execute the manoeuvre) and will have its own risk
and time thresholds, PoC0 and T 1. The time threshold T 1 is
generally 2 or 3 days away from TCA. At that point the
mission team is informed about the possible collision,
and a final decision is usually made (when possible) 1 day
from TCA, ESA (2019). The risk threshold PoC0 is deter-
mined statistically based on the overall collision risk and
the annual frequency of close approaches, trading off the
ignored risk and the avoided risk by selecting the risk
threshold at the cost of an expected number of annual
manoeuvres, see Merz et al. (2017). Generally, for missions

in the LEO regime, a threshold of PoC0 ¼ 10�4 leads to a
risk reduction of around 90% at the expense of 1 to 3
manoeuvres per year, with current levels of traffic. How-

ever, a lower threshold, around 10�5, may be considered
to ensure sufficient time to prepare a collision avoidance
manoeuvre in the case of escalated events, Merz et al.
(2017).

Following this approach, the SDO escalates an event
when the PoC of the last CDM is bigger than the threshold.
Escalating an event means that further and more detailed
analyses are required. If the risk is still above the threshold
at the decision time, a CAM is designed in cooperation
with the mission team, whose final decision will be made
based on the value of PoC included in the last CDM
received before the go/no-go decision time. More detailed
information on the CARA process of the SDO can be
found in Merz et al. (2017). For the first three events in this
subsection, only CDMss from the MiniCat database were
considered.

4.2.1.1. Event #1. This event represents a high-risk sce-
nario provided by the ESA SDO. The uncertain geometry
in the impact plane, with the whole sequence of CDMs
and the PoC evolution are displayed in Fig. 7. Events with
PoC above the threshold for times to TCA greater than T 1

make the event escalate, that is, they are further analysed



Fig. 6. Evolution of the normalised APl;Bel over time, for Events 1 to 4.

Fig. 7. CDM information for example in Event #1: High-risk event. (a) Uncertain ellipses in the sequence of CDMs. Green ellipses correspond to earlier
CDMs, and red ellipses to later CDMs. (b) Evolution of the PoC in the CDMs with the time to the TCA. Blue solid line: PoC; orange dashed line: PoC
threshold. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and possible alerts to the mission’s team can be triggered,
while high-risk CDMs received in the last 72 h trigger a
CAM procedure.

From Fig. 7b, one can see that the PoC remains high
along the whole sequence. Even if at the beginning it was
below the threshold, its proximity to PoC0 along with the
upward trend made the operator escalate the event. The
PoC threshold was violated within the last few days before
TCA, which led to a CAM execution to reduce the risk of
the event.

We applied our evidence-based methodology to this case
by following the approach presented in Section 3. The
DKW bands were computed assuming a confidence inter-
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val d ¼ 0:5. This value was chosen after some tests as a
compromise between the confidence in the sequence of
CDMs and their variability. Indeed the choice of this
parameter, as the choice of the number of a-cuts later on,
defines how conservative a decision maker wants to be.
In this and the following cases, it was found that a smaller
d, down to 0.1, is only marginally changing the size of the
focal elements and thus is not significantly affecting the
decision.The CDMs were weighted according to the
exponential law in Eq. (9). Fig. 8 shows the fitting law after
having received all the CDMs (red) along with the value of
the combined covariance matrix determinant, for the whole
sequence (black). For the fitting law in Fig. 8b, the value of



Fig. 8. Fitting law to weight the CDMs after having received the whole sequence in Event #1: High-risk event. (a) Solid black line: value of the
determinant from the CDMs, dashed red line: fitting law of the covariance matrix determinant. (b) Weight of the CDMs as a function of the time to the
TCA.
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the dimensionless parameters in Eq. (9b) after having
received the whole sequence are: A ¼ 1:0752;B ¼ 0:9811;
C ¼ 0:001716. Note that the value of the parameters varies
with the number of CDMs received to better fit the covari-
ance determinant evolution up to that time.

We repeated the same analysis with different numbers of
a-cuts per uncertain variable: #a� cuts ¼ 1; 2; 3; 4; 5; 7f g.
These cuts led to a number of intervals per variable equal
to #intervals ¼ 2; 3; 4; 5; 6; 8f g, which translated into a
number of FEs #FE ¼ 32; 243; 1024; 3125; 7776; 16807f g,
respectively. The Pl and Bel curves for the PoC, for each
number of cuts, is presented in Fig. 9, after having received
the whole sequence of CDMs.

Fig. 9 shows that, although the increasing number of a-
cuts provides a more refined set of curves, their shape and
Fig. 9. Pl and Bel of the PoC after having received the whole sequence of CDM
sequence, dashed vertical grey line: PoC of last CDM, pointed purple line: PoC
dashed lines. Black: 1 a-cut per variable (2 intervals per variable, 32 FEs), blu
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values varies only slightly. In this case, the Bel and Pl

curves overlap for most values of PoC except for a small
interval around the PoC0, as it could be expected both,
from the uncertainty geometry in Fig. 7a and the values
of the PoC in Fig. 7b. Since the information in the CDM
is coherent across the whole sequence, the gap between
the Pl and Bel curves is small.

Fig. 10 shows the classification, purple solid line, as a
function of the time to the TCA from the last received
CDM. The figure shows also the PoC directly computed
from the CDM.

Initially, the event is classified as Class 4 and rapidly
falls to Class 5, since there is little evidence supporting a
higher PoC. However, at 2.5 days from TCA, the PoC con-
sistently grows above the threshold. Given the little uncer-
s Event #1: High-risk event. Solid vertical grey line: maximum PoC in the
threshold. For the rest of the colours: Belief in solid lines and Plausibility in
e: 2 a-cuts, red: 3 a-cuts, green: 4 a-cuts, purple: 5 a-cuts, yellow: 7a-cuts.



Fig. 10. Collision risk assessment for Event #1: High-risk event. Solid narrow lines: evidence-based classification with different number of a-cuts:
#a� cuts ¼ 1; 2; 3; 4; 5; 7f g (note that they overlap each other, so only #a� cuts ¼ 7 is visible in solind purple). Crossed-solid line: PoC in the CDMs
used by SDO for assessment. Horizontal thick lines: evidence approach safety bands: green, low risk-uncertain boundary; yellow, uncertain–high risk
boundary; red, mid term high risk-long term high risk boundary. Dashed black line: Risk threshold (overlapping evidence-based high-risk boundary).
Vertical black line: decision time threshold T 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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tainty in the sequence of CDMs the event is reclassified as
Class 1 and a CAM is recommended.

This is the same decision finally taken by the SDO. As
seen in Fig. 9, the support for a high value of PoC is high
and the gap between the curves (level of uncertainty) is very
small. Thus, the recommended action in the last days prior
to the encounter would be to implement a manoeuvre to
reduce the risk of a collision.

4.2.1.2. Event #2. A similar analysis was done for the
Low-risk conjunction event illustrated in Fig. 11, also pro-
vided by the ESA SDO. Opposite to the previous event, in
this case, the PoC remains well below the threshold, so no
alert is required to be triggered and no CAM is required to
be designed or executed.
Fig. 11. CDM information for example in Event #2: Low-risk event. (a) Uncer
CDMs, and red ellipses to later CDMs. (b) Evolution of the PoC in the CDM
threshold.
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The evidence-based analysis was performed using the
same parameters as before: d ¼ 0:5 for the DKW bands,
with a different number of a-cuts: #a� cuts ¼ 1; 2; 3;f
4; 5; 7g per variable. The final set of CDMs was weighted
with the exponential fitting law Eq. (9b) using the following
parameters: A ¼ 0:6049;B ¼ 5:0896;C ¼ 0:4518. The fit-
ting law (red) and the combined covariance matrix determi-
nant in the CDMs (black) appear in Fig. 12. Note the
convergence in the second half of the sequence.

In Fig. 13, the corresponding Pl and Bel curves on the
value of PoC after having received all the CDMs of the
event are shown. Again, increasing the number of a-cuts
makes the curves smoother and shows a converging trend,
but does not change the overall confidence in the value
PoC. The maximum value of PoC with some supporting
tain ellipses in the sequence of CDMs. Green ellipses correspond to earlier
s with the time to the TCA. Blue solid line: PoC; orange dashed line: PoC



Fig. 12. Fitting law to weight the CDMs after having received the whole sequence in Event #2: Low-risk event. (a) Solid black line: value of the
determinant from the CDMs, dashed red line: fitting law of the covariance matrix determinant. (b) Weight of the CDMs as a function of the time to the
TCA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Pl and Bel of the PoC after having received the whole sequence of CDMs Event #2: Low-risk event. Solid vertical grey line: maximum PoC in the
sequence, dashed vertical grey line: PoC of last CDM, pointed purple line: PoC threshold. For the rest of the colours: Belief in solid lines and Plausibility in
dashed lines. Black: 1 a-cut per variable (2 intervals per variable, 32 FEs), blue: 2 a-cuts, red: 3 a-cuts, green: 4 a-cuts, purple: 5 a-cuts, yellow: 7a-cuts. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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evidence is well below the threshold, indicating that the
event can be deemed to be safe. However, the left-most part
of the Bel and Pl curves shows a significant gap. This can
be explained by the fact that the ellipses are not too differ-
ent from each other (Fig. 13, and they tend to converge to a
single ellipse for the later CDMs, as shown in Fig. 11b.
Thus, the initial information content in each CDMtends
to support lower values of PoC, which explains the lower
value of Bel on the left of the graph. However, due to
the concentration of information around the later CDMs,

the big drop both in Pl and Bel occurs at PoC� 10�7.
Finally, the conjunction assessment for the whole

sequence is shown in Fig. 14. This event displays a greater
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uncertainty with respect to the previous scenario, but val-

ues of the PoC greater than 10�7 have no supporting evi-
dence and Pl ¼ Bel ¼ 0. Thus, the event is initially
classified as Class 4 (t2TCA > T 1) and then dropped to
Class 5 (t2TCA 6 T 1) for the whole sequence, meaning that
no further action should be taken by the operator. This is
the same decision made by the SDO.

4.2.1.3. Event #3. This last event is affected by a signifi-
cant level of uncertainty. The encounter geometry and
the evolution of the PoC in the CDMs are shown in
Fig. 15. Despite the initial high risk, with values of PoC
close to the threshold, the final decision of the SDO was



Fig. 14. Collision risk assessment for Event #2: Low-risk event. Solid narrow lines: evidence-based classification with different number of a-cuts:
#a� cuts ¼ 1; 2; 3; 4; 5; 7f g (note that they overlap each other, so only #a� cuts ¼ 7 is visible in solid purple). Crossed-solid line: PoC in the CDMs used
by SDO for assessment. Horizontal thick lines: evidence approach safety bands: green, low risk-uncertain boundary; yellow, uncertain–high risk
boundary; red, mid term high risk-long term high risk boundary. Dashed black line: Risk threshold (overlapping evidence-based high-risk boundary).
Vertical black line: decision time threshold.

Fig. 15. CDM information for example in Event #3: Uncertain event. (a) Uncertain ellipses in the sequence of CDMs. Green ellipses correspond to earlier
CDMs, and red ellipses to later CDMs. (b) Evolution of the PoC in the CDMs with the time to the TCA. Blue solid line: PoC; orange dashed line: PoC
threshold, vertical dashed grey line: TCA. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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not to take any further action. This decision was dictated
by the later values of the PoC, that were all consistently
lower than the initial ones, and considerably below PoC0.
Section A include figures for the whole sequence, no only
for the last CDM.

The evidence-based analysis was performed with the
same parameters as before: d ¼ 0:5 for the DKW bands.
The exponential fitting law Eq. (9b) to weight the CDMs,
after having received the whole sequence, had the following
parameters A ¼ 0:7917;B ¼ 7:1471;C ¼ 0:1858 and is
shown in Fig. 16 (red line) along with the covariance
matrix determinant (black line).
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The Pl and Bel curves for the PoC were computed for
different a-cuts: #a� cuts ¼ 1; 2; 3; 4; 5; 7f g. The curves
are shown in Fig. 17. In this case, there is a significant
gap between Pl and Bel for all the values of PoC for which
Pl > 0. This uncertainty (or level of disagreement between
CDMs) can be seen in Fig. 15a, which shows the variety of
the uncertainty ellipses from the beginning of the sequence
to the last CDMs. In this case the supporting evidence that
a value of PoC > PoC0 is plausible does not go to zero but
the gap between the Pl and Bel curves suggests that a fur-
ther analysis is required although the value of Pl is low and
Bel is zero.



Fig. 16. Fitting law to weight the CDMs after having received the whole sequence in Event #3: Uncertain event. (a) Solid black line: value of the
determinant from the CDMs, dashed red line: fitting law of the covariance matrix determinant. Vertical dashed grey line: TCA. (b) Weight of the CDMs as
a function of the time to the TCA. Vertical dashed grey line: TCA.

Fig. 17. Pl and Bel of the PoC after having received the whole sequence of CDMs Event #3: Uncertain event. Solid vertical grey line: maximum PoC in the
sequence, dashed vertical grey line: PoC of last CDM, pointed purple line: PoC threshold. For the rest of the colours: Belief in solid lines and Plausibility in
dashed lines. Black: 1 a-cut per variable (2 intervals per variable, 32 FEs), blue: 2 a-cuts, red: 3 a-cuts, green: 4 a-cuts, purple: 5 a-cuts, yellow: 7a-cuts. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18 shows the result of the classification: the event
starts at Class 2, given the potential high risk suggested
by the initial CDMs but quickly drops to Class 3

(t2TCA > T 1) because of the level of uncertainty and is
finally classified as Class 0(for t2TCA 6 T 1). In this case,
our approach would suggest a further analysis due to the
non-zero plausibility of a high PoC and a high difference
between Pl and Bel, while the decision made by the SDO
was to take no further action. The more prudent recom-
mendation coming from our classification system would
lead to a further inspection of the Pl curve with the realisa-
tion that the supporting evidence is small, albeit not zero.
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4.2.2. CNES conjunction risk assessment

In order to compensate for the possible lack of realism
of the covariance matrix at TCA, CNES re-scales both
the covariance matrix of the primary and secondary body
with two factors, respectively kp 2 KP and ks 2 KS . A scaled
PoC, called scaled Probability of Collision (sPoC), is
obtained by solving the following PoC maximisation prob-
lem (see Laporte (2014a,b)):

sPoC ¼ max
kp2KP ;ks2KS

PoC Rð Þ

s:t:R ¼ k2pRp þ k2sRs

8<
: ; ð12Þ



Fig. 18. Collision risk assessment for Event #3: Uncertain event. Solid narrow lines: evidence-based classification with different number of a-cuts:
#a� cuts ¼ 1; 2; 3; 4; 5; 7f g (note that they overlap each other, so only #a� cuts ¼ 7 is visible for all t2TCA in solid purple; #a� cuts ¼ 1 in solid blue
and#a� cuts ¼ 2 in solid orange are visible at one t2TCA each). Crossed-solid line: PoC in the CDMs used by SDO for assessment. Horizontal thick lines:
evidence approach safety bands: green, low risk-uncertain boundary; yellow, uncertain–high risk boundary; red, mid term high risk-long term high risk
boundary. Dashed black line: Risk threshold (overlapping evidence-based high-risk boundary). Vertical black line: decision time threshold T 1. Vertical
dashed grey line: TCA.
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where Rp and Rs are, respectively, the primary and sec-
ondary covariance matrices in a given CDM associated
to the conjunction event under consideration.

The two sets KP and KS are derived, for each sequence of
CDMs, under the assumption that CDMs are samples
drawn from an underlying distribution, and the last
CDM contains the most reliable estimation of the position
of the two objects. Thus, by using the last CDMs as a ref-
erence, it is possible to compute the Mahalanobis distance
of all previous CDMs from the last one. If one assumes
that the uncertainty in position is Gaussian, the Maha-

lanobis distance should follow a X 2 distribution with 3
degrees of freedom. By performing a Kolmogorov–Smir-
nov (KS) test between the distribution of the computed
Mahalanobis distances and the theoretical one, and setting
a desired level of realism, one can define the sets KP and KS .
More details can be found in Stroe et al. (2021).

CNES decision-making is based on both the value of
sPoC and a number of geometric considerations. Events

with values of sPoC > 5 � 10�4 are classified as High-

Interest Event, the more risky classification level (red level).

For values of 10�4 < sPoC < 5 � 10�4, the event is classified
as an Interest Event, the second level of risk (orange level).
If the value of the sPoC is below those thresholds, caution
geometric criteria are applied: miss distance below 1 km or
radial distance below 200 m. Note that these threshold val-
ues are the default ones and may differ from mission to mis-
sion. If the CDMs are received 4–5 days before the
encounter or earlier, no alerts are raised independently of
the value of sPoC, although the event is placed under study
5654
if some of the above criteria are violated. For later CDMs,
alerts may be raised according to the value of sPoC.
Finally, if the high risk continues after the decision time
(usually 2 days before the encounter), a final decision is
made before the TCA.

In the following, we will test our approach on a real
close encounter faced by CNES and compare our classifica-
tion against the one of CNES.

4.2.2.1. Event #4. This scenario presents a high-risk colli-
sion case for a real close encounter where CNES had to
implement a manoeuvre to reduce the risk.

Fig. 19a shows the geometry of the event, where the ear-
lier CDMs (green ellipses) suggested a low PoC, while later
CDMs (red and amber ellipses) suggest a high PoC.
Fig. 19b shows the PoC and the sPoC. The latter is above

the threshold 10�4 from the start and progressively
increases while the PoC displays a large variability till
about a day before TCA. CNES classified the event as
High-Interest Event, meaning that careful monitoring was
required, starting from the 12th CDM (2.96 days before
the TCA). The final decision to perform a manoeuvre
was taken 30 h before the encounter. Note that the CDM
received about a 1.2 days from TCA indicates a

PoC< 10�5, well below the risk threshold, while the sPoC

indicates a risk above 10�3, which aligns better with the last
three CDMs received between the decision time and the
CAM execution time).

The evidence-based analysis was performed following
the same approach as for the SDO cases, with



Fig. 19. CDM information for example in Event #4. (a) Uncertain ellipses in the sequence of CDMs. Green ellipses correspond to earlier CDMs, and red
ellipses to later CDMs. (b) Evolution of the PoC in the CDMs with the time to the TCA. Blue solid line: PoC; dashed-dotted line: sPoC; orange dashed
line: PoC threshold. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Fitting law to weight the CDMs after having received the whole sequence in Event #4. (a) Solid black line: value of the determinant from the
CDMs, dashed red line: fitting law of the covariance matrix determinant. (b) Weight of the CDMs as a function of the time to the TCA.

L. Sánchez et al. Advances in Space Research 74 (2024) 5639–5686
#intervals ¼ 2; 3; 4; 5; 6; 8f g intervals per variable and
CDM weighted according to the exponential law in Fig. 20.

The Pl and Bel corresponding to the whole sequence of
CDM are shown in Fig. 21, and the classification sequence
for different numbers of intervals is shown in Fig. 22. In
Fig. 21 one can see that Pl PoC0ð Þ is nearly 1, and
Pl sPoCð Þ > 0 along the whole time series. In fact, Pl ¼ 0

at PoC � 10�2, while max sPoCð Þ ¼ 5 � 10�3. However, the
gap between the Pl and Bel curves is very high, indicating
a degree of uncertainty in the sequence of CDMs. This is
due to the variability in the CDMs. Thus the event is clas-
sified as Class 0.

Although this event is placed in the same class as Event
3, the supporting evidence is quite different. Event 4 has a
Pl 	 1 and Bel different from zero at PoC0 while Event 3
has Bel ¼ 0 and Pl < 0:2 at PoC0. This means that,
although in this paper we opted for a very conservative
classification of the events such that both Events 3 and 4
fall in the same uncertainty class, a simple analysis of the
Bel and Pl curves would suggests that the available evi-
dence for Event 4 supports a high probability of collision,
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up to 10�2 in fact, while for Event 3 the supporting evi-
dence at PoC0 is quite low.

4.3. Statistical analysis of CAM executions

After having compared the proposed evidence-based
conjunction assessment approach against real operations
on specific cases, in this section we compare the number
CAMs that our evidence-based approach would recom-
mend over a large number of real conjunctions experienced
by a single mission.

The selected mission is the ESA SWARM-A satellite,
orbiting in the LEO regime (circular polar orbit of
87.7 deg at 511 km of altitude), dedicated to studying the
Earth’s magnetic field as part of a constellation of three
satellites. The mission thresholds to trigger conjunction

alerts are PoC0 ¼ 10�4 and T 1 ¼ 72 hours. Thus, any satel-
lite with a PoC above the threshold in the last 3 days would
escalate and would require further analysis, and eventually,
a possible CAM design or execution. Nevertheless, encoun-
ters presenting a higher risk or an increasing trend before



Fig. 21. Pl and Bel of the PoC after having received the whole sequence of CDMs Event #4. Solid vertical grey line: maximum PoC in the sequence,
dashed vertical grey line: PoC of last CDM, pointed purple line: PoC threshold. For the rest of the colours: Belief in solid lines and Plausibility in dashed
lines. Black: 1 a-cut per variable (2 intervals per variable, 32 FEs), blue: 2 a-cuts, red: 3 a-cuts, green: 4 a-cuts, purple: 5 a-cuts, yellow: 7a-cuts. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 22. Collision risk assessment for Event #4. Solid narrow lines: evidence-based classification with different number of a-cuts:
#a� cuts ¼ 1; 2; 3; 4; 5; 7f g (note that they overlap each other, so only #a� cuts ¼ 7 is visible in solid purple). Crossed-solid line: PoC in the CDMs
used by SDO for assessment. Horizontal thick lines: evidence approach safety bands: green, low risk-uncertain boundary; yellow, uncertain–high risk
boundary; red, mid-term high risk-long term high risk boundary. Dashed black line: Risk threshold (overlapping evidence-based high-risk boundary).
Vertical black line: decision time threshold T 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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T 1 may be escalated if the operator considers that there is a
potential risk for the mission. Finally, the go/no-go deci-
sion is subject to operational constraints: the time required
to design a CAM after receiving the triggering manoeuvre,
the possibility to upload and check the design manoeuvre
and the ground station availability.
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The database of CDMs includes alerts from 2015 to
2022, with a total of 36,072 events. Overall, most of the
events in the database did not represent a threat to the
satellite, with only 20 representing escalated events. As
explained before, an escalated event is an encounter where
the PoC, or the PoC trend, suggests that the conjunction
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may be high risk. From those escalated events, only 2
required a CAM to be executed.

The evidence-based analysis was performed with the
same thresholds as the previous study cases (Table 3):

PoC0 ¼ 10�4; T 1 ¼ 3 days, T 2 ¼ 5 days,

Pl0 ¼ 1=243;A

0 ¼ 0:1, with PoC ¼ 10�30, and A0 ¼ 3. The

DKW bands were obtained assuming a confidence interval
of d ¼ 0:5. As shown before, a higher number of a-cuts
would refine the Pl and Bel curves, providing closer curves
that better represent the actual epistemic uncertainty.
However, this is at the expense of increasing the computa-
tional cost and with limited impact on the final classifica-
tion. Thus 2 a-cuts (3 intervals) per variable, with a total
of 243 FEs per analysis were used.

Since the evidence-based analysis lacks the real informa-
tion available in the actual operation of the satellite that
may have affected the operator decision (for example, the
ground station availability or the mission constraints),
the statistics were computed at four decision times:
T d ¼ 3 days to the TCA, corresponding with the mission
time threshold, T 1; T d ¼ 2 days to the TCA, allowing for
more data to arrive; T d ¼ 1 day to the encounter, the usual
go-no go decision time in ESA’s missions, Merz et al.
(2017); and the epoch of the last CDM in the sequence,
T d ¼ 0. For simplicity, we assume that there is no opera-
tional constraint that prevents or modifies the final decision
and all information is, thus, available.

Table 4 includes the results from the analysis, compared
with the actual statistics provided by the SDO. It is impor-
tant to bear in mind the differences between the
approaches. An event classified as Class 3 or Class 0 (la-
belled as Uncertain), with the evidence-based approach,
would not correspond, necessarily, to an escalated event,
since the meaning is different: while an escalated event
assumes a certain level of risk, a Class 0 or 3, suggests a
degree of uncertainty that requires further investigation
before making a final decision. This further investigation
might be simply limited to an inspection of the Bel and
Pl curves as in cases 3 and 4 above or might require addi-
tional observations. On the other hand, for all Class 1

events, the recommendation is to perform a CAM.
From the upper tier in Table 4 (with A


0 ¼ 0:1), one can
observe that: i) the total number of events increases with
Table 4
Results from the statistical analysis on the SWARM-A mission, with
PoC0 ¼ 10�4; T 1 ¼ 3 days, T 2 ¼ 5 days, Pl0 ¼ 1=243. Partition with 2 a-cuts p
lower tier: A


0 ¼ 0:8 (A0 ¼ 24).

SDO

# events A

0 # events

Total 36,072 Total
Escalated 20 0.1 Unc.
CAM 2 CAM

0.5 Unc.
CAM

0.8 Unc.
CAM
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the delay in the decision time because more CDMs are
available for a decision; ii) the number of manoeuvres pro-
posed by the evidence-based approach is similar to the
number of CAMs proposed by the SDO operators; iii)
the evidence-based classification system found many more
uncertain cases than the SDO. The Table shows also the
number of CAMs and uncertain events for A


0 equal to
0.5 and 0.8. As expected, an increase in the values of A


0

increases the number of CAMs and reduces the number
of uncertain cases because a good portion of all uncertain
cases is now Class 1.

Even if the Pl0 threshold is quite low, for A

0 low, the

number of events escalating to Class 1 remains small. Thus,
in this test case, the system is robust enough to remove FN
(collision/high-risk collision scenarios overlooked) without
introducing false alerts (no collision/low-risk encounters
wrongly identified as dangerous or FP). Also, the number
of CAMs remains roughly constant independently of the
decision time, for A


0 ¼ 0:1. On the other hand, the number
of Class 0 events is between 6 and 15 times higher than the
number of escalated events proposed by ESOC. It is here
where the evidence-based system differentiates from the
probabilistic approach used by ESOC. Class 0 events are
those with Pl PoC0ð Þ > Pl0, but are still deemed uncertain
because APl;Bel > A0. Pl captures all realisations, within
each Focal Element, that correspond to extreme cases,
extreme low or extreme high PoC, compatible with the
observed sequence of CDMs. Hence, a large APl;Bel with
high Pl signifies that there is the evidence that a high
PoC event can occur but is uncertain. As in the case of
Event 3, many of these cases display a low Pl and zero
Bel. Others present conflicting CDM, that cannot be
resolved without further observations, or a high Pl for high
PoC values, as in Event 4 but with a low Bel. An example
can be seen in Fig. 23. The evolution of the combined
covariance shows a radical rotation of nearly 90 degrees
at �4 days from TCA. The evolution of the PoC does
not provide any evidence that the covariance had a step
change, but remains close to the threshold limit. The
evidence-based approach, instead. shows quite some uncer-
tainty and maintains a high Pl till the end of the sequence,
suggesting that the event cannot be discarded and requires
further analysis.
the SDO approach and the evidence-based approach. Threshold:
er variable. Upper tier: A


0 ¼ 0:1 (A0 ¼ 3); middle tier: A

0 ¼ 0:5 (A0 ¼ 15);

Evidence-based

T d ¼ 3 T d ¼ 2 T d ¼ 2 T d ¼ 0

24,296 27,918 32,108 36,072
120 130 172 293
1 2 3 2
102 98 107 154
19 34 68 141
95 83 77 75
26 49 98 220



Fig. 23. Conjunction event with conflicting CDMs: (a) evolution of the relative position distribution on the impact place, (b) evolution of the PoC, (c) Pl
and Bel curves of the whole CDMs sequence.
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Note that the percentage of events in this category
increases when delaying the decision. This indicates a
growing disagreement among CDMs in the sequence as
the time approaches TCA, an aspect usually overlooked
by probabilistic-based approaches.

4.4. Treatment of uncertain cases

The approach proposed in this paper provides operators
with a quantification of the uncertainty on the value of the
PoC. In doing so it enables the operators to make decisions
under uncertainty rather than under complete ignorance or
false confidence in the correctness of the PoC. On the other
hand the two uncertain cases, class 0 and 3, require addi-
tional information to lead to an action by the operator.

For class 3 the recommended course of action is to
acquire additional information. If the sequence of CDMs
so far has led to a class 3 the new information would need
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to be of better quality to reduce the level of uncertainty. If
the additional CDMs do not reduce the uncertainty the
class escalates to 0. If in both class 0 and 3 additional infor-
mation is not available one can rely on a trade-off between
CAM cost and consequences of a collision. In Hejduk
(2017) a methodology is suggested to quantify the possible
consequences. This trade-off should include operational
constraints and availability of new observations. An
approach to come to an optimal decision with multi-
criteria decision making (MCDM) was proposed in
Sánchez and Vasile (2021) and can be applied in cascade
to the approach proposed in this paper to come to a final
decision in all uncertain cases.

Furthermore, as noted in one of the test cases presented
in this paper, for both class 0 and 3 the Pl PoC0ð Þ can be sig-
nificantly higher than Pl0 and reach 1 with a non-zero Bel,
albeit with a large APl;Bel. Both class 0 and 3 do not differ-
entiate between cases in which Pl PoC0ð Þ is marginally
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above Pl0 and cases in which Pl PoC0ð Þ ¼ 1. Hence, in all
uncertain cases, operators are advised to check the degree
of supporting evidence by inspecting the Pl/Bel curves.
Furthermore, the value of Pl PoC0ð Þ and Bel PoC0ð Þ can be
included in the MCDM approach mentioned above. This
point will be the subject of future developments.

5. Conclusions

This work presented a methodology to model and quan-
tify the epistemic uncertainty in a sequence of CDMs, and
exploit this quantification to make robust decisions about
conjunction events. The method was tested against real
operations on a number of real scenarios. The key working
assumption was that the value of the miss distance and
covariance matrix in each CDM were drawn from a set
of unknown distributions. The DKW inequality was used
to build bounds on this set and derive a set of focal ele-
ments, with associated probability mass supporting a given
value of the probability of collision.

The collection of focal elements was used to compute
the Pl and Bel on a given value of the PoC. The Pl at
PoC0, or Pl0 was proposed as a further criterion to make
a decision on the actual severity of a conjunction event,
while the difference between Pl and Bel, or APl;Bel, was pro-
posed as a measure of the uncertainty in the quantification
of the PoC.

It was found that when the set of CDMs contains coher-
ent information over the whole time series, the proposed
classification system suggests the same decisions normally
made by the ESA SDO. When the sequence of CDMs pre-
sents a higher degree of variability or a degree of inconsis-
tency the proposed evidence-based approach recommends
more conservative decisions compared to the SDO but also
provides the operator with a quantification of the related
uncertainty.

A comparison with the approach used at CNES, based
on the concept of sPoC, showed that the proposed
evidence-based approach returns decisions that are less
conservative but, at the same time, provides a higher level
of information on the uncertainty in the decision. By com-
paring the ESA and CNES uncertain cases, it was also
found that a further inspection of the Pl and Bel curves
offers a way to disambiguate the events as the different evo-
lution of PoC over time is reflected in a lower or higher
value of Pl and Bel.

Finally, a statistical analysis on a database of real
encounters of an ESA mission showed that the number
of recommended CAMs is similar but the evidence-based
approach tends to detect a higher number of uncertain
cases that require further analysis.

Although in our analysis no operational constraints were
considered, the number of detected uncertain cases suggests
that relying only on the last CDM may be too optimistic
while the scaled PoC approach might be too pessimistic
without a further uncertainty quantification. In relation to
the uncertain cases, different situations can be found which
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may lead the operator to take different actions. Further
analysis on the treatment of these scenarios should be taken
and a threshold tuning analysis using virtual datasets or a
mixed dataset of real and virtual CDMs may help with this
task. The approach proposed in this paper assumes that no
additional information on the CDMs is available nor that
information on the uncertainty in the propagation model
or individual observations can be used. However, if addi-
tional information was available one could improve the
quantification of uncertainty of each CDMs and build bet-
ter defined p-boxes with tighter bounds.

Future work will need to consider the correlation and
interdependence among variables during the construction
of the focal elements and build a more refined model. Fur-
thermore, the current databases of real CDMs do not rep-
resent a controlled set of events, because the actual
outcome is unknown. A representative synthetic database
would greatly help in improving the classification system.
Last but not least, machine learning can be used to directly
classify events from the time series of CDMs. This
approach represents an extension of what was already pro-
posed by the authors and would improve on current efforts
to predict the last CDM with machine learning as it would
embed a quantification of uncertainty in the prediction.
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Appendix A. Appendix

This appendix includes the sequence of CDMs for Event
#3. It includes the geometry, the covariance determinant
evolution and fit, the intervals weighting law and the Pl

and Bel curves for 3, 4 and 5 a-cuts (or intervals per
dimension).
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Fig. 24: Sequence for Event #3. Number of CDM 4. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue), 4 (black),and 5 (red) intervals.
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Fig. 25: Sequence for Event #3. Number of CDM 5. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue), 4 (black),and 5 (red) intervals.
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Fig. 26: Sequence for Event #3. Number of CDM 6. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 27: Sequence for Event #3. Number of CDM 7. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 28: Sequence for Event #3. Number of CDM 8. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 29: Sequence for Event #3. Number of CDM 9. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
5665



L. Sánchez et al. Advances in Space Research 74 (2024) 5639–5686
Fig. 30: Sequence for Event #3. Number of CDM 10. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 31: Sequence for Event #3. Number of CDM 11. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 32: Sequence for Event #3. Number of CDM 12. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 33: Sequence for Event #3. Number of CDM 13. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 34: Sequence for Event #3. Number of CDM 14. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 35: Sequence for Event #3. Number of CDM 15. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 36: Sequence for Event #3. Number of CDM 16. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 37: Sequence for Event #3. Number of CDM 17. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 38: Sequence for Event #3. Number of CDM 18. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
5674



L. Sánchez et al. Advances in Space Research 74 (2024) 5639–5686
Fig. 39: Sequence for Event #3. Number of CDM 19. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 40: Sequence for Event #3. Number of CDM 20. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 41: Sequence for Event #3. Number of CDM 21. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 42: Sequence for Event #3. Number of CDM 22. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 43: Sequence for Event #3. Number of CDM 23. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 44: Sequence for Event #3. Number of CDM 27. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 45: Sequence for Event #3. Number of CDM 29. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 46: Sequence for Event #3. Number of CDM 30. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 47: Sequence for Event #3. Number of CDM 31. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 48: Sequence for Event #3. Number of CDM 32. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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Fig. 49: Sequence for Event #3. Number of CDM 33. (a) Encounter geometry, (b) Covariance determinant (CDM in
black, fit in red), (c) Weighting law, (d) Bel (solid) and Pl (dashed) curve for 3 (blue),4 (black),and 5 (red) intervals.
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