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A B S T R A C T

This study explores the elastic and viscoelastic behaviour of ice using the Non-Ordinary State-Based Peridynamic
(NOSBPD) framework. A primary objective is to extend and validate the applicability of NOSBPD in modelling
the complex responses of ice under various conditions. The study employs the Peridynamic Computational
Homogenization Theory (PDCHT) to determine the critical threshold of grain count necessary to induce an
effectively isotropic response in polycrystalline S2 ice. Results are consistent with previous findings from Finite
Element Method (FEM) and Bond-Based Peridynamics (BBPD) studies.
Furthermore, the viscoelastic response of ice is investigated by integrating a viscoelastic constitutive model

into the NOSBPD framework. A benchmark problem of a viscoelastic ice sample subjected to tensile stress is
simulated, with results compared against FEM simulations conducted in ANSYS Mechanical. The findings show
good agreement, validating the NOSBPD framework’s capability to capture time-dependent viscoelastic behav-
iour of ice accurately.
The study contributes to the field of ice mechanics by demonstrating the robustness and versatility of NOSBPD

in modelling both elastic and viscoelastic responses of ice. These advancements enhance the credibility and
applicability of peridynamics (PD) as a powerful tool for simulating complex material behaviours, paving the
way for further research and practical applications in ice engineering.

1. Introduction

The study of the mechanics of ice is crucial for a wide range of en-
gineering and environmental applications. Understanding the mechan-
ical behaviour of ice is essential for designing andmaintaining structures
in cold regions, such as icebreakers, offshore platforms, and bridges.
Additionally, it is vital for predicting the impact of climate change on
polar ice masses and sea levels. Traditional methods of analysing ice
behaviour have predominantly relied on classical continuum mechanics
(CCM). While CCM is well-established, it often faces challenges in
modelling complex phenomena, such as simulating discontinuous
damage mechanisms like the formation and propagation of cracks, and
damage mechanisms like strain-softening due to distributed
microcracking.

One of the primary limitations of CCM is that the partial derivatives
characterizing its field equations break down in the face of discontin-
uous material responses such as fractures. However, the nucleation and
accumulation of microcracks is known to significantly impact the

response of ice, which can be nonlinear, elastic, or viscoelastic
depending on the loading condition (Duddu et al., 2013). Any candidate
theory of mechanics that seeks to be successful in modelling ice and its
complex response will have to be able to circumvent the limitations of
the CCM.

Peridynamics (PD), introduced in (Silling, 2000) as a reformulation
of CCM, offers significant advantages in addressing these limitations.
Unlike CCM, which relies on local differential equations, PD employs
integral equations that remain well-defined even in the presence of
discontinuities like cracks. This nonlocal approach makes PD particu-
larly suitable for simulating fracture and other complex behaviours that
are difficult to handle with methods based on the CCM.

PD circumvents the mathematical limitations of classical theory by
replacing the spatial derivatives in the equations of motion with integral
operators. Consequently, PD does not require a continuously differen-
tiable displacement field. Evolving discontinuities, such as crack initi-
ation and propagation, are treated as inherent characteristics of the
material and are modelled using the fundamental PD equations of
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motion without additional assumptions or modifications. This advan-
tage has spurred growing interest in using PD to characterize materials
with strong or evolving discontinuous responses (Galadima et al., 2022;
Candaş et al., 2020). Previous research has demonstrated the potential
of PD in capturing the complex responses of various materials under
different loading conditions (Galadima et al., 2023a; Gu et al., 2019).

Building upon these insights, peridynamics is increasingly utilized to
characterize the complex behaviour of ice. A comprehensive survey of
existing literature reveals a growing body of research dedicated to
harnessing the power of peridynamics to study the response of ice. This
expanding exploration encompasses various peridynamic theo-
ries—BBPD, Ordinary State-Based Peridynamics (OSBPD), and
NOSBPD—each contributing uniquely to the growing understanding of
ice behaviour.

Within the framework of BBPD, studies have successfully modelled
inhomogeneous ice, incorporating inhomogeneity via a Weibull-
distributed critical bond stretch to conduct thermomechanical field
analysis of crack propagation (Song et al., 2023). Another study
employed a BBPD approach to develop a model for the fracture behav-
iour of polycrystalline ice under dynamic loading conditions, demon-
strating the method’s capability to simulate the fracture accurately and
compare it favourably with finite element analysis (Lu et al., 2020).
Additionally, the coupling of BBPD with Updated Lagrangian Particle
Hydrodynamics (ULPH) has been explored to simulate the interaction
between ice and seawater, effectively capturing the dynamics of
ice-breaking processes (Liu et al., 2020).

The application of OSBPD has also gained traction in ice mechanics.
For instance, OSBPD has been utilized to investigate the numerical
modelling of columnar polycrystalline ice, determining the minimum
number of grains required to maintain isotropy and accurately charac-
terizing polycrystalline materials (Li et al., 2023).

The NOSBPD has been employed to model the impact-induced
fragmentation of ice using a viscoelastic-plastic material model inte-
grated with the Drucker-Prager constitutive model (Song et al., 2018).
Furthermore, a study on ice crater formation due to impact loads
implemented adaptive particle refinement within the NOSBPD frame-
work, demonstrating the method’s predictive capacity and efficiency
(Song et al., 2019). Additionally, NOSBPD has been used to simulate the
interaction between level ice and a cylindrical rigid structure, showing
good agreement with experimental data and highlighting its applica-
bility in modelling complex ice-structure interactions (Liu et al., 2017).

The primary objective of this study is to explore the elastic and
viscoelastic behaviour of ice using the NOSBPD framework. By vali-
dating NOSBPD through benchmark problems, this research aims to
contribute to the expanding discourse on the applicability of PD by
demonstrating its effectiveness and robustness in ice mechanics. This
will be achieved by employing NOSBPD to simulate the response of ice
in both elastic and viscoelastic regimes.

In the elastic regime, this study will employ PDCHT to determine the
critical threshold of grain count necessary to induce an effectively
isotropic response in polycrystalline S2 ice. In the viscoelastic regime, a
convolution-type viscoelastic constitutive model based on CCM will be
adapted and implemented within the NOSBPD to investigate the visco-
elastic response of ice.

The aim of this study is to contribute to the ongoing effort of vali-
dating PD as an effective mathematical modelling tool, thereby
enhancing its credibility and applicability in the field of ice mechanics.
The manuscript is structured as follows: Section 2.0 outlines the theo-
retical framework of peridynamics, focusing on the NOSBPD. Section 3.0
discusses CCM constitutive models to be incorporated into the NOSBPD
framework in this study, detailing both the elastic and viscoelastic
regimes.

Section 4.0 presents an overview of PDCHT. Section 5.0 presents the
validation of NOSBPD using PDCHT to determine the critical grain count
for isotropy in polycrystalline S2 ice. Section 6.0 examines the visco-
elastic response of ice through NOSBPD simulations, including the

implementation of constitutive models and benchmark problem ana-
lyses. Finally, Section 7.0 concludes the study by summarizing key
findings, contributions, and potential directions for further research.

2. Theoretical framework

In PD, the state of a material point x in a bodyB is determined by the
net effect of its interaction with all points located within a finite dis-
tance. The interaction between a primary point x, which is a point under
consideration, and a secondary point xʹ is called a bond. The distance
ξx = xʹ − x in the undeformed configuration between x and xʹ is called
bond length or a ‘bond’ for short. The intended meaning of the term
‘bond’ when used is usually discerned from the context. The maximum
distance, denoted as δ, over which a primary point is allowed to interact
with other points is called its horizon. The region defined by δ for a
primary point x is sometimes referred to as its domain of influence, such
that the set:

B δ(x)= {xʹ∈R : |xʹ − x|< δ} (1)

containing points xʹ interacting with x is called its family. Also, the set

H ={ξx ∈ (R\0)|(ξx+x) ∈ (B δ(x) ∩B )} (2)

is the family of bonds for x. The equation that tracks the motion of a
primary point x at time t in the SBPD framework is given by the field
equation:

ρ(x)ü(x, t)=
∫

H x

{T[x, t]〈xʹ − x〉 − T[xʹ, t]〈x − xʹ〉dVxʹ + b(x, t) (3)

where u and b represents displacement and body force vectors, and T is
defined as a vector force state. The notion of PD states or states for short is
a central feature of SBPD that distinguishes it from the BBPD framework.
Within this framework, a state constitutes a mathematical function that
is defined on bonds so that for a primary point x, the force state T
associate each element of (2) with some force density function t(x,xʹ, t)
that is vector-valued. The definition of the force state T leads to the
emergence of two distinct material models within the framework of
SBPD. When T is defined such that the force density function t(x,xʹ, t)
aligns with the corresponding bond ξx, it is termed an ‘ordinary state,’
resulting in the so-called OSBPD model, otherwise is termed a "non-or-
dinary state," giving rise to the NOSBPD model.

The NOSBPD model offers a more comprehensive modelling frame-
work. In this communication, we will utilise a specific subclass of
NOSBPD known as the "correspondence PD model." This model, in
addition to the advantages it offers as a NOSBPD model, possesses the
unique capability of accommodating constitutive models from the CCT.
The force state T in the correspondence model is defined such that:

T[x, t]〈ξ〉=ω(|ξ|)PK− 1ξ (4)

where ω is a scalar-valued weight function that quantifies the effect of
the deformed bond ξ on the force field at the point x. The specific form of
the weight function used in this study is unity, (i.e. ω = 1). The function
P = P̂(F) represents the first Piola-Kirchhoff stress tensor, which is
derived from the material model P̂ based on the classical theory as a
function of the deformation gradient F. The nonlocal deformation
gradient is approximated (Silling et al., 2007) by the expression:

F(x)=
[∫

H x

ω〈ξ〉(y(xʹ, t) − y(x, t))⨂ξdxʹ
]

K− 1 (5)

and K is a second order shape tensor defined to be:

K=

∫

H x

ω〈ξ〉ξ⨂ξdVξ (6)

The first Piola-Kirchhoff stress tensor and the Cauchy stress tensor
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are related through the expression:

P= JσF− T , J = det(F) (7)

If the assumption of small perturbation is made, then F ≅ I, J ≅ 1,
and hence P = σ in (7), and thus (4) can be written as:

T[x, t]〈ξ〉=ω(|ξ|)σK− 1ξ (8)

3. Elastic and viscoelastic constitutive models for ice

The NOSBPD offers the flexibility to incorporate a wide range of
constitutive models from classical continuum mechanics (CCM). This
allows the leveraging of the state-of-the-art of CCM and the advantages
offered by PD in the analysis of complex material systems. In this sec-
tion, the focus will be on introducing the constitutive models that un-
derpin this study’s analysis of ice, both in its elastic and viscoelastic
regimes. In the elastic regime, the generalized Hooke’s law will be uti-
lized to describe the linear relationship between stress and strain in ice.
This law will be extended to accommodate the transversely isotropic
nature of ice.

Following the elastic model, a convolution-type integral viscoelastic
constitutive model will be introduced to capture the time-dependent
behaviour of ice. Viscoelasticity encompasses both the elastic and
viscous characteristics of materials, making it essential for accurately
modelling the long-term behaviour of ice under sustained loads. The
integral form of the viscoelastic model allows for the incorporation of
hereditary effects, providing a robust framework for understanding the
creep and relaxation behaviours observed in ice.

3.1. Elasticity of ice

The elastic response of ice under stress is well-documented through
various laboratory measurements. These measurements have indicated
that ice can be assumed to respond elastically when the period of load
application is less than 100 s for stress levels below 1 MN/m2, or if the
load to failure occurs within approximately 2 s (Gold, 1977). This elastic
assumption simplifies the analysis and allows for the application of
classical elastic theories to describe the mechanical behaviour of ice
under certain conditions.

S2 columnar ice, characterized by its hexagonal crystal structure,
exhibits unique mechanical properties that differ significantly from
those of isotropic materials. The hexagonal structure of S2 ice necessi-
tates the modelling of its elastic stiffness tensor as transversely isotropic.
This means that the material possesses a single axis of symmetry, which
leads to distinct mechanical properties along the axis of symmetry
compared to those in the perpendicular directions. Utilizing the Voigt
notation, the 3-D elastic stiffness tensor of the S2 columnar ice can be
written as (Elvin, 1996):

C3D=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C3D11 C3D12 C3D12 0 0 0
C3D22 C3D13 0 0 0

C3D22 0 0 0
1
/
2
(
C3D22 − C3D13

)
0 0

Sym C3D55 0
C3D55

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

Given that the elastic behaviour of ice is recognized to be
temperature-dependent, (Gammon et al., 1983) introduced an empirical
relationship to calculate the elastic stiffness tensor (9) at temperature T,
as outlined below:

C3D(T)=C3D( Tref
)
(
1 − 1.418× 10− 3T

)

(
1 − 1.418× 10− 3Tref

) (10)

where Tref denotes the reference temperature at which the elastic

stiffness tensor C3D was determined. Based on (10), the Young’s modulus
E, was also shown to be temperature depended, and for a given tem-
perature T, it can be obtained from

E(T)=E
(
Tref
)
(
1 − 1.418× 10− 3T

)

(
1 − 1.418× 10− 3Tref

) (11)

The Poisson’s ratio was shown to be temperature independent. If we
make the practical assumption that a plane stress condition applies, then
the stiffness tensor (9) in two dimensions can be expressed as follows:

C2D=

⎡

⎢
⎢
⎣

C2D11 C2D12 0
C2D12 C2D22 0
0 0 C2D33

⎤

⎥
⎥
⎦ (12)

where the components C2Dij in (12) are obtained from the following re-
lations (Elvin, 1996):

C2D11 = C3D11 −
C3D13C

3D
31

C3D33
,C2D12 = C3D12 −

C3D13C
3D
32

C3D33
,C2D21 = C3D21 −

C3D23C
3D
31

C3D33

C2D22 = C3D22 −
C3D23C

3D
32

C3D33
,C2D33 = C3D33

(13)

The material tensors (9) and (12) are defined in relation to the local
axes of the crystal, as illustrated in Fig. 1. However, when representing
the ice as a polycrystal, it becomes necessary to transform the compo-
nents of the elastic tensor into a global axes system. In a two-
dimensional scenario, the components of the fourth-order stiffness
tensor (12) undergo transformation according to the following rule
(Elvin, 1996):

CG=RTCLR (14)

In (14), the subscripts G and L respectively indicate global and local
quantities, and R represents the transformation tensor, as expressed by:

R=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

cos2(ζ) sin2(ζ)
1
2
sin(2ζ)

sin2(ζ) cos2(ζ) −
1
2
sin(2ζ)

− sin(2ζ) sin(2ζ) cos(2ζ)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15)

where ζ represents the angle between the c-axis of a crystal and the
global x1 axis.

3.2. Viscoelastic constitutive model for ice

Under a wide range of engineering conditions, polycrystalline ice

Fig. 1. Schematic representation of ice grain geometry.
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exhibits characteristics of a brittle, viscoelastic material (Shi et al.,
2017). This means that the material not only deforms elastically under
stress but also undergoes time-dependent deformation, which is char-
acteristic of viscoelastic materials. To incorporate this viscoelastic
response in our study, the convolution-type integral viscoelastic
constitutive model will be utilized. Specifically, this study will employ a
formulation that uses the Prony series representation of the viscoelastic
properties.

In this formulation, the constitutive equation governing the visco-
elastic response can be written as:

σ(t)= σS + σD =

∫ t

0
3K(t − τ) ∂εS(τ)

∂τ dεS(τ) +
∫ t

0
2G(t − τ) ∂εD(τ)

∂τ dεd(τ)

(16)

where K and G are respectively the bulk and shear relaxation functions,
σ and ε denote the stress and strain tensors respectively, and the sub-
scripts S and D respectively denotes the spherical and deviatoric com-
ponents of these tensors. The relaxation functions K and G can be
expressed in terms of Prony series as:

K(t)=K∞ +
∑nK

i=1
Kie− (t/(τKi )),G(t)=G∞ +

∑nG

i=1
Gie− (t/(τGi )) (17)

Viscoelastic response in ice is known to be driven primarily by shear
stress, while the volumetric change is governed by elasticity (Londono
et al., 2016). Therefore, the general constitutive equation can be
modified to account for this behaviour. In this regard, (16) is restated as
follows:

σ(t)=3KεsI +
∫ t

0
2G(t − τ) ∂εD(τ)

∂τ dεd(τ) (18)

Such that K(t) = K and I is identity tensor. From (17), the relation-
ship between the extreme values of the shear modulus can be established
as:

G(0)=G∞ +
∑nG

i=1
Gi ≡ G0 (19)

where: G∞ is the shear relaxation modulus at equilibrium (that is after a
long period of time), and G0 is the glassy shear relaxation function (also
referred to as the instantaneous shear relaxation modulus). Equation
(19) leads to another form of the Prony series representation of the shear
modulus as:

G(t)=G0 −
∑nG

i=1
Gi
(
1 − e− (t/(τi))

)
(20)

Equation (18) is implemented within the NOSBPD framework
alongside the Prony series representation of G(t) given in (17) or (20).

3.3. Numerical implementation of viscoelastic model in NOSBPD

The viscoelastic constitutive model (18) is introduced into the
NOSBPD field equation (3) via (8) to obtain:

T[x, t]〈ξ〉=ω(|ξ|)
[

3KεsI+
∫ t

0
2G(t − τ) ∂εD(τ)

∂τ dεd(τ)
]

K− 1ξ (21)

If we substitute for the shear relaxation modulus in equation (21)
with the Prony series expression in (20), we obtain:

T[x, t]〈ξ〉=ω(|ξ|)

[

3KεsI+ 2G0

(

εD −
∑nG

i=1
αiεDi

)]

K− 1ξ (22)

where

αi=
Gi
G0

; εDi=
∫t

0

(
1 − e− ((t− τ)/(τi))

) dεD(τ)
dτ dτ (23)

In (23), αi is the relative modulus of term i, and εDi is the viscous strain in
each term of the series. The solution of (22) at some time t, taking
cognizance of the integral in (23), will require knowledge of the entire
strain history to extract the PD solution. A computationally efficient way
of implementing the viscoelastic constitutive model within the NOSBPD
framework is to adopt an incrementalization algorithm. Similar ap-
proaches have been implemented for finite element methods (Simulia,
2011; Kaliske et al., 1997). Let the timeline be subdivided into discrete
intervals such that tn+1 = tn + Δt. Then the PD force density (22) at time
tn+1 is give as:

Tn+1 =ω(|ξ|)
[

3Kεn+1s I+2G0

(

εn+1D −
∑nG

i=1
αiεn+1Di

)]

K− 1ξ (24)

where

σD=2G0

(

εn+1D −
∑nG

i=1
αiεn+1Di

)

(25)

represents the deviatoric stress at the end of the increment, such that the
deviatoric stress increment is given by:

ΔσD(t)=2G0

(

ΔεD −
∑nG

i=1
αi
(
εn+1Di − εnDi

)
)

(26)

The tangent modulus GT is obtained by differentiating (26) with
respect to the deviatoric strain increment ΔεD which yields:

GT =G0

[

1 −
∑nG

i=1
αi

τi
Δt

(
Δt
τi

+ e− Δt/τi − 1
)]

(27)

Let εD vary linearly with t such that:

dεD
dt

=
ΔεD
Δt

(28)

Then, the expression for the viscous strain (23) can be written as

εn+1Di =

∫tn

0

(
1 − e(τ− tn+1)/(τi)

) dεDi(τ)
dτ dτ+

∫tn+1

tn

(
1 − e(τ− tn+1)/(τi)

) dεDi(τ)
dτ dτ

(29)

By expressing 1 − e(τ− tn+1)/(τi) = 1 − e− Δt/τi + e− Δt/τi
(
1 − e(τ− tn)/(τi)

)
in

(29), yields:

εn+1Di =
(
1 − e− Δt/τi

)
∫tn

0

dεD(τ)
dτ dτ + e− Δt/τi

∫tn

0

( (
1

− e(τ− tn)/(τi)
)) dεD(τ)

dτ dτ+ΔεD
Δt

∫tn+1

tn

(
1 − e(τ− tn+1)/(τi)

)
dτ (30)

Utilizing the second of (23) and (30) yields an expression for the
change in the i − th viscous strain as:
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The change in viscous strain obtained from (31) is then used to up-
date the current PD force density (23). If plane stress condition is
assumed, then the stress in one of the coordinate direction is taken to be
zero. Let the third component be the zero stress component. If the
spherical strain εS is assumed to be known, then

ε33 =3εS − ε11 − ε22 (32)

Note also the definition of deviatoric strain εD = ε − εS, then

εD33 =2εS − ε11 − ε22 (33)

The out-of-plane deviatoric stress at the end of the increment (see
(16)) is given as:

σn+1D33(t)=2G0

(

εn+1D33 −
∑nG

i=1
αiεn+1D33i

)

(34)

If we let εn+1D33 = εnD33+ ΔεD33, then (34) becomes

σn+1D33(t)=2G0

(

εnD33 +ΔεD33 −
∑nG

i=1
αi

(

εnD33i +ΔεnD33i

)

(35)

Substituting (31) into (35) yields:

σn+1D33(t)=2GTΔεnD33 + 2G0

(

1 −
∑nG

i=1
αi
(
1 − e− Δt/τi

)
)

εnD33

− 2G0

∑nG

i=1
αie− Δt/τiεnD33i (36)

Now, standing on the assumption that bulk response is governed by
elasticity, the volumetric stress at the end of the increment is given by:

σn+1S (t)=3Kεn+1S (37)

Note that the sum of deviatoric stress and spherical stress in the 3-di-
rection is zero for plane stress condition. Therefore, the sum of (36) and

(37) noting that εn+1S = εnS + ΔεS and writing σD33 = 2G0

(

1 −
∑nG

i=1αi
(
1 −

e− Δt/τi
)
)

εnD33 − 2G0
∑nG

i=1αie− Δt/τiεnD33i, yields:

3KεnS +3KΔεS + 2GTΔεnD33 + σD33 = 0 (38)

Note that from (33), the change in spherical strain in (38) can be
written as ΔεD33 = 2ΔεS − Δε11 − Δε22, so that with some rearrenge-
ment, (38) becomes:

ΔεS=
2GT(Δε11 − Δε22) − σD33 − 3KεnS(

3K+ 4GT
) (39)

Since εn11, εn22 and εn33 and hence εnS are known, (39) is used to update

these quantities in the present time step tn+1, from whence the PD force
density vector Tn+1 is obtained from (24).

4. Peridynamic computational homogenization theory

The PDCHT is a multiscale framework in which the homogenized or
effective properties of a heterogeneous material are obtained based on
information from the microscale by consideration of the macroscale
deformation gradient. Based on the definition above, the PDCHT can be
considered a first order nonlocal computational homogenization theory
(Otero et al., 2018). The nonlocality is introduced into the framework
through the NOSBPD.

The utilization of PDCHT to characterize complex material is driven
by the goal of bridging the gap between the complex microscale in-
teractions and the practical macroscale behaviour of the material. This is
particularly relevant in the context of polycrystal ice, where a deeper
understanding of how microscale features, as represented by grain
orientation in this context, contributing to macroscopic behaviour can
unlock critical insights for numerous applications, from infrastructure
design to environmental monitoring. By achieving this, we not only gain
insights into the fundamental behaviour of polycrystal ice but also pave
the way for streamlined engineering analyses and designs that account
for its unique characteristics.

4.1. Theoretical framework

Consider a microscopically heterogeneous material M. The objective
of the PDCHT is to approximate the response of M with a constitutively
equivalent microscopically homogeneous material M. This approxima-
tion is based on the following two assumptions. The first assumption
posits that if the constituent materials withinM exhibit linear responses,
then M will similarly exhibit a linear constitutive behaviour
(Christensen, 1969; Hashin, 1965). Therefore, if the constitutive
response of the constituent materials is assumed to be represented by the
Hooke’s law:

σij=Cijklεkl (40)

then the constitutive response of M is given by:

σij=Cijklεkl (41)

where underscored variables in (41) denotes quantities associated with
M. The second assumption posits that the microscopically heteroge-
neous material is characterized by statistical homogeneity. This entails
that M demonstrates consistent average behaviour across any randomly
selected subregion of considerable size relative to the dimensions of
individual microstructural elements or phases, such as grain size. Such a
subregion is formally termed a Representative Volume Element (RVE).

ΔεDi = εn+1Di − εnDi

=
(
1 − e− Δt/τi

)
∫tn

0

dεD(τ)
dτ dτ + e− Δt/τi

∫tn

0

( (
1 − e(τ− tn)/(τi)

)) dεD(τ)
dτ dτ + ΔεD

Δt

∫tn+1

tn

(
1 − e(τ− tn+1)/(τi)

)
dτ −

∫tn

0

(
1 − e− ((t− τ)/(τi))

) dεD
dτ (τ)dτ

=
(
1 − e− Δt/τi

)
∫tn

0

dεD(τ)
dτ dτ +

(
e− Δt/τi − 1

)
∫tn

0

( (
1 − e(τ− tn)/(τi)

)) dεD(τ)
dτ dτ + ΔεD

Δt

∫tn+1

tn

(
1 − e(τ− tn+1)/(τi)

)
dτ

=
(
1 − e− Δt/τi

)
εD +

(
e− Δt/τi − 1

)
εnDi +

ΔεD
Δt
(
Δt − τi

(
1 − e− Δt/τi

))

=
τi
Δt

(
Δt
τi

+ e− Δt/τi − 1
)

ΔεD +
(
1 − e− Δt/τi

)(
εnD − εnDi

)

(31)
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Given that the implications of the first and second assumptions are
granted, the determination of the response ofM proceeds by establishing
a relationship between micro-level stress and strain fields and their
corresponding macro-level counterparts. This relationship is achieved
through the application of the average stress and strain theorems
(Galadima et al., 2023b). Consider a heterogeneous body B occupying a
domain Ω = Ωₛ

⋃
Ωᴄ, where Ωₛ represents the solution domain and Ωᴄ

represents the boundary domain. Denoting the average stress and
average strain over Ωₛ as 〈σ〉 and 〈ε〉, respectively, the nonlocal average
stress theorem posits that if B attains static equilibrium under the action
of a constant stress tensor σ applied on the boundary domain Ωᴄ, then
the volume-averaged stress field within Ωₛ equals σ expressed as:

〈σ〉= σ (42)

Furthermore, the nonlocal average strain theorem postulates that if
B experiences displacement on the boundary domain Ωᴄ due to a con-
stant strain tensor ε, represented by u0 = εx for all x ∈ Ωᴄ, then it fol-
lows that:

〈ε〉= ε (43)

where 〈σ〉 and 〈ε〉 are respectively given as:

〈σ〉=
1
VΩs

∫

Ωs

σ(x)dVΩs (44)

and

〈ε〉=
1
VΩs

∫

Ωs

ε(x)dVΩs (45)

The implications from (42) and (43) is that once the stress or strain
field is obtained as solution of a boundary volume constraint (BVC)
problem over the RVE, then corresponding macro fields are easily ob-
tained as volume averages of themicro fields. To enforce the constitutive
equivalence between the microscopically heterogeneous material and
the substitute microscopically homogeneous one as well as to ensure a
unique solution to the BVC problem is obtained, appropriate boundary
volume constraint must be applied to the RVE. These dual objectives are
simultaneously achieved by satisfying the nonlocal macrohomogeneity
condition:

〈σijεij〉= σijεij (46)

One way of satisfying (46) is through the lemma (Galadima et al.,
2023b):

〈σijεij〉 − σijεij =
1
VΩs

∫

Ωc

(
(σik − σik)S s

ωxk
(
ui − xjεij

))
dVΩc (47)

In this context, the notation Ssω represents a symmetric gradient operator
weighted by ω, with the superscript S indicating its symmetric nature.
For an in-depth understanding of the nonlocal gradient operator and the
general elements of nonlocal vector calculus, refer to (Galadima et al.,
2023b; Du et al., 2013; Gunzburger et al., 2010). Observe that in order

for (47) to satisfy (46) requires the integral in (47) to be zero, i.e.:

1
VΩs

∫

Ωc

(
(σik − σik)S s

ωxk
(
ui − xjεij

))
dVΩc =0 (48)

Satisfying (48) is accomplished by imposing appropriate boundary
conditions. For example, consider applying homogeneous displacement
field of the form:

u(x)= εx (49)

where ε is a prescribed strain tensor and x represents the coordinate of a
material point. By substituting the displacement field from (49) into
(48), it can be shown that this form satisfies the condition expressed in
(48) as shown below:

4.2. Implementation of the PDCHT

The numerical implementation of the PDCHT in this study follows a
displacement-based homogenization procedure. This approach involves
subjecting the RVE to prescribed displacements at its boundaries. The
objective is to determine the displacement field, followed by the strain
field, and ultimately the stress field within the RVE by utilizing the
peridynamic field equation (3).

Since the goal is to obtain the effective material tensor, it is necessary
to apply as many boundary conditions as the size of the matrix repre-
senting the material tensor. In two dimensions, the material tensor is
represented by a 3 × 3 matrix. Therefore, three different iterations of
(49) are required. A straightforward way to accomplish this is by suc-
cessively applying the following strain tensors:

ε(1) =
[
c 0
0 0

]

, ε(2) =
[
0 0
0 c

]

, ε(3) =
[
0 c/2
c/2 0

]

(50)

where c is the magnitude of the prescribed strain tensor. The resultant
displacements for each iteration are given by:

u(1)i =

{
cαi
0

}

,u(2)i =

{
0
cβi

}

,u(3)i =

{
cαi
cβi

}

(51)

where αi and βi are the components of the coordinates of the material
point. Once the local stress field within the RVE is resolved, the average
stress 〈σ〉 is computed using (44) (specific to the displacement-based
method). This average stress is then utilized to recover the effective
material tensor which in turn yields the effective modulus E and Pois-
son’s ratio ν. This approach ensures that the effective properties derived
from the computational homogenization procedure are reflective of the
local stress and strain distributions within the RVE, thus facilitating a
comprehensive characterization of the polycrystalline ice’s behaviour
under different loading conditions.

5. Computational homogenization of S2 ice

In this validation study, the objective is to assess the accuracy of
PDCHT by solving several specimens of polycrystalline S2 ice. All

1
VΩs

∫

Ωc

((
σik − σ∗

ik

)
S

s
ωxk
(
xjε∗ij − xjε∗ij

))
dVΩc =

1
VΩs

∫

Ωc

((
σik − σ∗

ik

)
S

s
ωxk
(
xj − xj

)
ε∗ij
)
dVΩc

=
1
VΩs

∫

Ωc

((
σik − σ∗

ik
)(

δjk − δjk
)
ε∗ij
)
dVΩc

=
1
VΩs

∫

Ωc

( (
σik − σ∗

ik
)(

ε∗ik − ε∗ik
))
dVΩc

= 0
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specimens are of square geometry to ensure consistency and compara-
bility in the study. To achieve a comprehensive validation, the PDCHT
results will be compared with data from two previously conducted
studies, namely, Elvis (Elvin, 1996) and Li et al. (2023). To replicate the
results obtained in (Elvin, 1996), seven specimen sizes have been
considered, including 5 × 5 mm2, 7.5 × 7.5 mm2, 10 × 10 mm2, 12.5 ×

12.5 mm2, 15× 15 mm2, 17.5× 17.5 mm2, and 20× 20 mm2. Likewise,
for the replication of results obtained in (Li et al., 2023), nine specimen
sizes of 50 × 50 mm2, 64 × 64 mm2, 78 × 78 mm2, 85 × 85 mm2, 92 ×

92 mm2, 99× 99mm2, 106× 106mm2, 113× 113 mm2, and 121× 121
mm2 have been investigated.

For each specimen, a prescribed strain of c = 1 (refer to equation
(50)) is applied to evaluate the mechanical response. Fig. 2 (a, b, and c)
show representative specimens with grain geometries corresponding to
specimen sizes of 5 × 5 mm2, 10 × 10 mm2, and 20 × 20 mm2,
respectively. These specimens contain 25, 85, and 305 grains,
respectively.

Since the cross-section of columnar ice typically exhibits a polygonal
grain shape (Sinha, 1989), Voronoi polygons are employed to represent
the grain geometry in this study. It is worth noting that this choice aligns
with the approach used in (Elvin, 1996) as well as (Li et al., 2023). The
process of obtaining these Voronoi polygons begins with defining a set of
nucleation points or seeds. The number of seeds corresponds to the
number of grains in the specimen under consideration. To ensure the
representation of ice grains with approximately equal areas, these
nucleation points are selected randomly but with a constraint such that
they must be spaced a minimum distance apart. This constraint is
applied to ensure uniformity in the ice grain sizes (Sinha, 1989). The
size, number of grains and the average grain size for the two cases
investigated are given in Tables 1 and 2. Bar graphs showing the dis-
tribution of grain sizes for specimen of sizes 20 × 20 and 121 × 121 are
presented in Figs. 3(a) and 4(a), respectively. In Fig. 3(a), it is evident
that a significant proportion of the grains possess sizes close to the
average value of 1.3 mm2, which aligns with the average grain size re-
ported in (Elvin, 1996). Similarly, Fig. 4(a) shows that the majority of
the grains exhibit sizes close to the average value of 50.66 mm2,
consistent with the average grain size reported in (Li et al., 2023).

Fig. 2. Typical grain geometries for specimen size of (a) 5 × 5 mm2, (b) 10 × 10 mm2, and (c) 20 × 20 mm2.

Table 1
Sample size and grain characteristics for samples corresponding to (Elvin, 1996).

Specimen Size mm2 Number of grains Average grain area mm2

5 × 5 25 1.0
7.5 × 7.5 50 1.1
10 × 10 85 1.2
12.5 × 12.5 125 1.3
15 × 15 180 1.3
17.5 × 17.5 235 1.3
20 × 20 305 1.3

Table 2
Sample size and grain characteristics for samples corresponding to (Li et al.,
2023).

Specimen size mm2 Number of grains Average grain area mm2

50 × 50 49 51.02
64 × 64 81 50.57
78 × 78 121 50.28
85 × 85 144 50.17
92 × 92 169 50.08
99 × 99 196 50.01
106 × 106 225 49.94
113 × 113 256 49.88
121 × 121 289 50.66

Fig. 3. A bar graph for a 20 × 20 (mm) RVE showing; (a) Grain area; (b) Grain orientation.
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Following the definition of grain geometry, each grain within the
specimen is assigned a random grain orientation. This orientation is
selected from a range spanning from 0 to 180◦. A histogram illustrating
the distribution of these uniformly chosen grain orientations for speci-
mens of size 20 × 20 and 121 × 121 are presented in Figs. 3(b) and 4(b)
respectively.

5.1. Elastic material properties

The 3D dynamic elastic stiffness tensor of the ice crystal at a tem-
perature of − 16 ◦C, as derived from (Elvin, 1996) is given as:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

15.010 5.765 5.765 0 0 0
13.929 7.082 0 0 0

13.929 0 0 0
3.4235 0 0

Sym 3.014 0
3.014

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa (52)

For numerical convenience, plane stress condition is assumed to
apply. Thus from (12) and (13), the equivalent two-dimensional elastic
modulus is given as:
⎡

⎣
12.624 2.832 0
2.832 10.328 0
0 0 3.014

⎤

⎦GPa (53)

The c-axis of the ice crystal has an angular inclination of 45◦ relative
to the global x₁ axis.

5.2. Result of simulations

To determine the homogenized properties of polycrystalline ice
samples, thirty simulations were conducted for each sample configura-
tion. The first set of simulations, corresponding to the study in (Elvin,
1996), used consistent grain geometries with randomly generated grain
orientations for each iteration. The second set, corresponding to (Li
et al., 2023), randomized both the grain geometries and orientations for
each simulation.

5.2.1. Effective properties analysis
Tables 3 and 4 analysis (First set of Specimens):

• Young’s Modulus (E1 and E2): The results demonstrate that as the
number of grains increases, the homogenized Young’s modulus
values converge more rapidly. For instance, with 25 grains (5 mm ×

5 mm), the percentage difference in E1 is 7.03%, decreasing signifi-
cantly to 1.93% for 305 grains (20 mm × 20 mm). This trend in-
dicates that a higher grain count results in more consistent
mechanical properties and reduced variability in Young’s modulus.
Similarly, E2 shows a convergence trend with decreasing percentage
differences from 7.23% to 2.15% across the grain range.

• Poisson’s ratios (ν12 and ν21): The Poisson’s ratios also show a
decrease in percentage difference with increasing grain count. For
ν12, the percentage difference decreases from 14.11% (25 grains) to
3.89% (305 grains), while ν21 reduces from 13.41% to 3.11%. This
trend demonstrates that an increased number of grains leads to more
isotropic behaviour, as noted in (Elvin, 1996).

Tables 5 and 6 Analysis (Second Set of Specimens):

• Young’s Modulus (E1 and E2): For larger specimens, such as those
with 49 grains (50 mm × 50 mm), the percentage difference in E1 is
6.16%, decreasing to 2.58% for 289 grains (121 mm × 121 mm).
This trend further supports the findings from the first set, empha-
sizing the critical role of grain count in achieving isotropic me-
chanical behaviour

• Poisson’s ratios (ν12 and ν21): The percentage differences for ν12 and
ν21 also decrease as the grain count increases, with ν12 reducing from
14.37% to 4.70% and ν21 from 11.47% to 3.82%. This corroborates
the trend observed in the first set, highlighting the role of grain
distribution in influencing isotropy.

5.2.2. Results discussion
The results from Tables 3–6 illustrate a clear trend: the homogenized

elastic properties, converge more rapidly with an increasing number of
grains. This trend is consistent across both specimen sets and aligns with

Fig. 4. A bar graph for a 121 × 121 (mm) RVE showing; (a) Grain area; (b) Grain orientation.

Table 3
Homogenized properties E1 and ν12 for sample sizes consistent with (Elvin, 1996).

Spacemen Size (mm2) E1 (MPa) ν12

Min Ave Max % Diff Min Ave Max % Diff

5 × 5 9194.03 9534.49 9840.01 7.03 0.305 0.326 0.348 14.108
7.5 × 7.5 9215.38 9543.97 9814.96 6.51 0.308 0.327 0.340 10.252
10 × 10 9358.24 9601.06 9792.60 4.64 0.314 0.327 0.341 8.759
12.5 × 12.5 9383.02 9602.02 9774.07 4.17 0.315 0.326 0.342 8.556
15 × 15 9456.73 9613.09 9758.92 3.20 0.318 0.328 0.339 6.513
17.5 × 17.5 9426.32 9606.33 9747.10 3.40 0.317 0.326 0.334 5.592
20 × 20 9516.675 9627.72 9700.29 1.93 0.319 0.325 0.331 3.889
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findings from (Elvin, 1996) and (Li et al., 2023).

• Convergence of Young’s Moduli: The relatively faster convergence of
Young’s moduli compared to Poisson’s ratios suggests that elastic
stiffness stabilizes more quickly as the grain count increases. This
implies that the mechanical stiffness of polycrystalline ice becomes
less sensitive to variations in grain orientation and distribution at
higher grain counts, leading to more predictable and uniform
behaviour.

• Role of Grain Count: The decreasing percentage differences with
increasing grain count underscore the critical role of microstructural
elements in determining the macroscopic mechanical response of
polycrystalline ice. As the number of grains increases, the effects of
individual grain orientations diminish, resulting in a more isotropic
material behaviour. This finding is particularly relevant for appli-
cations requiring precise predictions of mechanical properties in
polycrystalline ice.

• Validation Against Previous Studies: The consistency of these results
with prior studies further validates the use of PDCHT as an effective
tool for modelling the mechanical behaviour of polycrystalline ice.
The ability of PDCHT to capture the impact of grain count and
orientation distribution on isotropy and mechanical properties
demonstrates its robustness and applicability in ice mechanics.

5.3. Effective elastic properties and the Voigt-Reuss bounds

The Voigt (V) and Reuss (R) formulas are commonly employed to
estimate the upper and lower bounds of the effective elastic properties of
heterogeneous materials. The V-R bounds for the elastic properties of S2
ice in the plane of isotropy at -16oC were computed in (Nanthikesan
et al., 1994) as follows:

9.726 ≥ E ≥ 9.431
0.320 ≤ ν ≤ 0.334 (54)

where E and ν are the homogenized Young’s modulus and Poisson’s ratio
respectively. Figs. 5 and 6 show plots of the homogenized elastic con-
stants E and ν obtained from simulations corresponding to (Elvin, 1996)
and (Li et al., 2023), respectively. In these figures, the V-R bounds are
also included. These graphical representations offer a convenient means
of analysing how the number of grains in an ice sample affects the
computed effective elastic constants.

Figs. 5(a) and 6(a) display the band of the homogenized Young’s
modulus E, while Figs. 5(b) and 6(b) show the band of effective Poisson’s
ratio ν derived from the computations. Each band results from running
the simulation 30 times for a specified number of grains. As expected,
increasing the number of grains in a sample has the effect of narrowing
the band of the effective properties. In both simulations, samples con-
taining more than 225 grains exhibit narrower bands of effective elastic

Table 4
Homogenized properties E2 and ν21 for sample sizes consistent with (Elvin, 1996).

Spacemen Size (mm2) E2 (MPa) ν21

Min Ave Max % Diff Min Ave Max % Diff

5 × 5 9252.66 9612.51 9921.29 7.23 0.307 0.329 0.348 13.405
7.5 × 7.5 9359.53 9597.90 9948.32 6.29 0.316 0.329 0.347 9.655
10 × 10 9331.63 9567.49 9764.82 4.64 0.313 0.326 0.342 9.380
12.5 × 12.5 9366.13 9598.02 9788.66 4.51 0.316 0.326 0.342 8.036
15 × 15 9379.52 9561.91 9720.43 3.63 0.317 0.326 0.337 6.508
17.5 × 17.5 9475.32 9605.46 9750.29 2.90 0.316 0.326 0.337 6.700
20 × 20 9510.72 9618.29 9715.14 2.15 0.320 0.325 0.330 3.113

Table 5
Homogenized properties E1 and ν12 for sample sizes consistent with (Li et al., 2023).

Spacemen Size (mm2) E1 (MPa) ν12

Min Ave Max % Diff Min Ave Max % Diff

50 × 50 9353.71 9593.72 9930.24 6.16 0.31 0.32 0.35 14.37
64 × 64 9384.44 9583.64 9911.93 5.62 0.31 0.33 0.34 10.56
78 × 78 9467.87 9602.12 9748.80 2.97 0.32 0.33 0.34 6.90
85 × 85 9415.93 9621.55 9810.82 4.19 0.31 0.33 0.33 6.71
92 × 92 9429.94 9612.64 9779.62 3.71 0.32 0.33 0.34 7.71
99 × 99 9445.83 9599.95 9737.25 3.09 0.32 0.33 0.33 5.51
106 × 106 9481.66 9594.98 9735.15 2.67 0.32 0.33 0.34 5.66
113 × 113 9459.62 9619.22 9764.43 3.22 0.32 0.33 0.34 5.01
121 × 121 9481.56 9615.89 9725.96 2.58 0.32 0.33 0.33 4.70

Table 6
Homogenized properties E2 and ν21 for sample sizes consistent with (Li et al., 2023).

Spacemen Size (mm2) E2 (MPa) ν21

Min Ave Max % Diff Min Ave Max % Diff

50 × 50 9168.23 9619.05 9917.15 8.17 0.31 0.33 0.34 11.47
64 × 64 9368.54 9582.90 9972.46 6.45 0.31 0.33 0.34 8.76
78 × 78 9402.86 9579.52 9815.92 4.39 0.32 0.33 0.34 5.43
85 × 85 9475.28 9584.15 9838.80 3.84 0.31 0.33 0.34 7.49
92 × 92 9353.22 9589.78 9740.23 4.14 0.32 0.33 0.34 6.93
99 × 99 9477.56 9596.74 9737.90 2.75 0.32 0.33 0.34 5.66
106 × 106 9455.93 9600.99 9730.35 2.90 0.32 0.33 0.33 4.91
113 × 113 9435.94 9577.84 9699.88 2.80 0.32 0.33 0.33 5.34
121 × 121 9479.63 9611.70 9733.56 2.68 0.32 0.33 0.33 3.82
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constants compared to the limiting V-R bounds. Consequently, it can be
inferred that a sample of S2 ice with more than 225 grains can serve as a
representative area for polycrystalline ice, aligning with the findings in
(Duddu et al., 2013) and (Silling, 2000).

5.4. Degree of anisotropy as a function of number of grains in a sample

Further analysis of how the number of grains affect the effective

elastic properties of S2 ice is conducted by measuring the degree of
anisotropy with increasing grain number in the ice samples. Various
methods exist to quantify the elastic anisotropy of materials, with one of
the earliest proposed approaches presented by Zener and Siegel (Zener
et al., 1949). This method, initially proposed for cubic crystals, assesses
the degree of anisotropy using a scalar parameter known as the Zener
anisotropy index, Az= 2C33 / (C11 − C12), where Cij represents compo-
nents of the elastic stiffness tensor.

Fig. 5. Homogenized elastic properties consistent with (Elvin, 1996): (a) Young’s modulus E1, (b) Young’s modulus E2, (c) Poisson’s ratio ν12, (d) Poisson’s ratio ν21.

Fig. 6. Homogenized elastic properties consistent with (Li et al., 2023): (a) Young’s modulus E1, (b) Young’s modulus E2, (c) Poisson’s ratio ν12, (d) Poisson’s
ratio ν21.
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However, for the purposes of this study, we will employ the modified
Zener anisotropy index proposed in (Li et al., 2023). This modified index
is formulated as follows:

Az=
4C33

C11 + C22 − C12 − C21
(55)

Fig. 7(a) presents the anisotropic index for a single grain, covering
grain orientations in the range of 0 ≤ ζ ≤ 180. From Fig. 7(a), the
extremum values of the modified Zener anisotropy index, Aʹ

z correspond
to grain orientations ζ = 0o and ζ = 45o. These values serve as the upper
and lower bounds for the degree of anisotropy exhibited by the S2 ice.
These are subsequently compared with the anisotropy index computed
from the simulations. Fig. 7(b) shows the anisotropy index resulting
from computations corresponding to (Elvin, 1996), while Fig. 7(c) il-
lustrates the anisotropy index derived from computations corresponding
to (Li et al., 2023). Due to the considerable disparity in magnitude be-
tween the anisotropy index computed from simulation and the bounding
values, we have chosen to present them on the same plot using different
axes. This approach ensures a clearer and more informative represen-
tation of our data. As evident in Fig. 7(b)–(c), the more grains contained
in a sample, the more the effective response of the sample tends towards
isotropic behaviour.

5.5. Comparison with experimental results

As noted in section 5.3, samples with number of grains greater than
230 provide effective elastic properties that mostly lie within a band that
is narrower than the V-R bounds. It is therefore expected that the
effective elastic properties computed from any sample with number of
grains more than 230 should be at per with experimental data. In this
respect, the effective elastic constants computed from two samples with
sizes 17.5× 17.5 mm2 and 113× 113 mm2 with 235 and 256 number of
grains respectively will be compared with experimental data from (Gold,
1958) and (Sinha, 1978). The equivalent elastic stiffness tensors of the
17.5 × 17.5 mm2 and 113 × 113 mm2 samples, which are taken as the
averages of the respective homogenized elastic stiffness tensors, are
respectively given as:
⎡

⎣
10.747 3.502 0.001
3.499 10.746 -0.007
0.002 -0.005 3.608

⎤

⎦GPa, and

⎡

⎣
10.766 3.507 0.004
3.505 10.720 0.008
0.002 0.006 3.616

⎤

⎦ GPa

(56)

From (56), the equivalent elastic constants for the two samples at

temperature of − 16oC are computed, and the results are presented in
Table 7. From Table 7, the effective Young’s modulus for S2 columnar
ice is predicted to lie in the range 9.606 ≤ E ≤ 9.607 and
9.578 ≤ E ≤ 9. 620, while the corresponding effective Poisson’s ratio is
predicted to be ν = 0.326 and to lie between 0.326 ≤ ν ≤ 0.327 for the
17.5 × 17.5 and 113 × 113 samples respectively. Note that the equiv-
alent Young’s moduli and Poisson’s ratios computed above are at −

16oC. However, the data from referenced experimental studies are re-
ported at different temperatures. To facilitate for comparisons with
experimental data, the equivalent Young’s modulus computed from the
simulation of the two samples are corrected for temperatures of − 5oC
and − 40oC using (11) and the results are also presented in Table 7.

The Young’s modulus obtained from the experimental work in (Gold,
1958) at temperature of − 5oC as reported in (Elvin, 1996) lie in the
range 8.95 GPa and 9.94Gpa, while the Poisson’s ratio lies in the range
0.31 and 0.365. In (Sinha, 1978), the result of experimental observation
conducted in the temperature range of − 40oC and − 45oC was reported
to lie in the range of 9.1 GPa and 9.8 GPa. A comparison of these
experimental results with results from the numerical simulation pre-
sented in Table 7 shows good agreement. This agreement with experi-
mental data highlights the validity and accuracy of the numerical
simulations across a spectrum of temperatures, enhancing the robust-
ness of our findings.

6. Study of viscoelastic ice response using NOSBPD

In this section, the viscoelastic constitutive model presented in Sec-
tion 2 will be integrated into the Non-Ordinary State-Based Peridy-
namics (NOSBPD) framework. The aim is to extend the application of
NOSBPD to capture the time-dependent, viscoelastic response of ice,
which is known to exhibit viscoelastic properties under various loading
conditions. This section will start by describing the computational
implementation of the integral viscoelastic model (equation (18)) and
how the constitutive model is integrated into the NOSBPD framework.
This will be followed by a benchmark simulation to validate the
NOSBPD framework against Finite Element simulation of the same
problem. These simulations will highlight the effectiveness of NOSBPD
in modelling the viscoelastic behaviour of ice.

6.1. Viscoelastic response of ice sample subjected to tensile stress

In this subsection, the benchmark problem, simulation setup, and
parameters are described for analysing the viscoelastic response of an ice

Fig. 7. Modified Zener anisotropy index.

Table 7
Equivalent elastic constants at − 16oC.

sample T = − 16oC T = − 5oC T = − 40oC

ν12 ν21 E11 E22 E11 E22 E11 E22

17.5 × 17.5 mm2 0.326 0.326 9.607 9.606 9.460 9.460 9.927 9.926
113 × 113 mm2 0.327 0.326 9.620 9.578 9.473 9.432 9.940 9.897
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sample subjected to tensile stress. The sample is a square ice sample with
unit dimensions. The left edge of the ice sample is fixed, while a tensile
load P = 0.45 MPa is applied to the right edge.

For the numerical implementation, the solution domain is discretized
into a grid where the spacing between points along the x and y directions
are equal, denoted as dx and dy respectively, with dx = dy. The horizon
δ is chosen such that δ = 3dx.

The simulation setup, illustrating the boundary conditions and
loading configuration, is shown in Fig. 8. Under the assumption of bulk

elastic response and viscoelastic response being governed by shear, the
bulk and shear relaxation modulus G (t) of the ice as derived from
(Swamidas et al., 1978) are:

K=5244MPa,G(t) = G∞ +
∑2

i=1
Gie

− t/τ1 (57)

where G∞ = 51.2 MPa, G1 = 86.9 MPa, G2 = 333 MPa, τ1 = 400 Mi-
nutes, and τ2 = 4.2 Minutes.

To present the results obtained using the NOSBPD, a material point Q
located at coordinate x = 0.5 and y = 0.5 was selected, and its
displacement was tracked over time. The x-displacement of point Q is
presented in Fig. 9, while the y-displacement is presented in Fig. 10. For
comparison, a finite element model (FEM) of the same problem was
simulated in ANSYSMechanical, and the results are presented alongside.

Fig. 9 presents the x-displacement of point Q over time. The
displacement curve obtained from the NOSBPD simulation shows a
gradual increase with time, indicating the viscoelastic nature of the
material. The FEM simulation results are plotted alongside for com-
parison. The x-displacement curve from the FEM simulation closely

Fig. 8. Simulation setup showing ice sample subjected to tensile load for
viscoelastic analysis.

Fig. 9. Comparison of the evolution of displacement in the x-direction in a
viscoelastic ice sample subjected to tensile stress.

Fig. 10. Comparison of the evolution of displacement in the y-direction in a
viscoelastic ice sample subjected to tensile stress.

Fig. 11. Comparison of the evolution of strain response.

Y.K. Galadima et al. Ocean Engineering 312 (2024) 119241 

12 



follows the trend observed in the NOSBPD results, demonstrating a good
agreement between the two methods. This alignment suggests that the
NOSBPD model accurately captures the viscoelastic response of the ice
sample under tensile loading.

Similarly, Fig. 10 shows the y-displacement of point Q as a function
of time. The y-displacement curve from the NOSBPD simulation also
exhibits a viscoelastic behaviour. The FEM simulation results are also
presented alongside for comparison. The y-displacement curve from the
FEM simulation closely matches the NOSBPD results, reinforcing the
accuracy and robustness of the NOSBPD model in predicting the visco-
elastic behaviour of the ice sample.

To further validate the NOSBPD model, a typical plot of strain versus
time is presented in Fig. 11, with the corresponding results from the FEM
simulation included for comparison. The strain-time curve from the
NOSBPD simulation reflects the expected viscoelastic response, char-
acterized by an initial rapid increase in strain, followed by a gradual
approach to an asymptotic value. The FEM simulation results exhibit a
similar trend, closely matching the NOSBPD curve.

The comparison of displacement and strain results between the
NOSBPD and FEM simulations reveals a high degree of correlation,
indicating that the NOSBPD framework effectively captures the visco-
elastic behaviour of ice under tensile loading. The good agreement be-
tween the two methods validates the NOSBPD model as a reliable tool
for simulating the time-dependent response of ice. This validation is
crucial for the continued development and application of PD in the field
of ice mechanics, providing a robust alternative to traditional FEM
simulations.

7. Conclusion

This study has successfully explored the elastic and viscoelastic
behaviour of ice using the Non-Ordinary State-Based Peridynamic
(NOSBPD) framework, significantly contributing to the expanding
discourse on peridynamics in ice mechanics. The key findings from both
the elastic and viscoelastic studies are as follows:

Utilizing the PDCHT within the NOSBPD framework, this study
identified the critical threshold of grain count necessary to induce an
effectively isotropic response in polycrystalline S2 ice. The results were
consistent with previous studies, further validating the robustness of the
NOSBPD and PDCHT frameworks. Additionally, the study extended the
application of NOSBPD to capture the viscoelastic response of ice. By
integrating a viscoelastic constitutive model within the NOSBPD
framework, the simulation results showed good agreement with FEM
simulations conducted in ANSYS Mechanical. This demonstrates the
capability of NOSBPD to accurately model time-dependent, viscoelastic
behaviours of ice under tensile loading.

This research advances the understanding and application of
NOSBPD in ice mechanics by demonstrating its effectiveness and
robustness in capturing both elastic and viscoelastic responses. The
validation of PDCHT in homogenizing polycrystalline ice also un-
derscores its potential for practical applications in ice mechanics.

Future studies could extend the NOSBPD and PDCHT frameworks to
investigate the response of ice under more complex loading conditions,
such as cyclic or impact loading, to further validate its applicability in
dynamic scenarios. Incorporating more detailed material properties,
such as temperature-dependent behaviours, ageing and anisotropic
characteristics, could enhance the accuracy of NOSBPD simulations in
capturing more complex mechanics of ice.
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