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Simple tensorial theory of smectic C liquid crystals
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The smectic C (smC) phase represents a unique class of liquid crystal phases characterized by the layered
arrangement of molecules with tilted orientations with respect to layer normals. Building upon the real-valued
tensorial smectic A (smA) model in Xia et al. [Phys. Rev. Lett. 126, 177801 (2021)], we propose a continuum
mathematical model for smC (and smA) by introducing a coupling term between the real tensor containing
orientational information and density variation to control the tilt angle between directors and the layer normal
(the tilt angle is zero for smA and nonzero for smC). To validate our proposed model, we conduct a series
of two- and three-dimensional numerical experiments that account for typical structures in smectics: chevron
patterns, defects, dislocations, and toroidal focal conic domains. These results also reveal the phenomenological
differences between smA and smC configurations.
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I. INTRODUCTION

Liquid crystals (LCs), an intermediate state of matter be-
tween the ordered solid state and the disordered fluid state,
have been a subject of profound interest in both the scientific
community and the technological world [1,2]. Among various
LC phases, smectic phases stand out for their layerlike ar-
rangement of molecules, featuring periodic density undulation
[3]. Two of the most prominent smectic phases are the smectic
A (smA) and smectic C (smC, also known as tilted smectic)
phases, each characterized by distinct molecular orientations
within the layers. A schematic illustration on these two phases
can be seen in Fig. 1.

Researchers studied various smA and smC systems in
experiments and exploited their special properties to de-
velop potential applications. For smA and smC in shells and
droplets, complex three-dimensional (3D) chevron structures
and numerous macroscopic defects called focal conic do-
mains are observed with distinct optical textures [4]. The
formation of depression during the local smA-smC transition
allows researchers to use smectics as an active substrate to
manipulate nanoparticles [5]. Ferroelectric displays, which re-
quire a smC host utilizing faster switching modes, may bring
about innovation in the display industry [6]. Furthermore, the
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smectic-based sensors have an outstanding sensitivity com-
pared to nematic-based sensors in response to a subtle change
in the chain rigidity of amphiphiles [7].

To deeply understand the macroscopic phenomena of smA
and smC LCs, a continuum mathematical model that can
describe smA and smC phases under the same framework is
in demand. Although there have been some successful con-
tinuum models for smA in recent years [8,9], these models
are difficult to extend to smC phases. There are a few con-
tinuum models for smC LCs. The Orsay Group presented a
continuum model for the smC phase in the 1970s, assuming
small perturbations of planar-aligned samples of smC [10].
With the phenomenological approach, the system of smC with
fixed layer normal was studied by analogy to the behavior
of superconductors with a complex scalar field in Ref. [11].
With mean-field theory, a Landau–Ginzburg free energy was
developed in Ref. [12]. Leslie et al.’s work [13] introduced
the tilt vector, the unit orthogonal projection of the director
onto the local smectic planes, and the information of tilt angle
between the layer normal and the director was hidden in the
elastic constants. The elastic energies for smC were further
extended to describe layer dilation and moderate variations
of tilt angle by Ref. [14]. Later, Ref. [15] introduced the Q
tensor from Landau–de Gennes (LdG) theory [1] for describ-
ing directors into the smC model and the corresponding free
energy included two competing coupling terms, which prefer
the layer normal to be parallel or orthogonal to the director.
However, due to the limitations of the above smC models,
research on modeling smC LCs mostly stays at the analytical
level, and numerical simulations for complex structures are
rarely possible, let alone research on frustrated smC systems
in confinement. Another problem is that the tilt angle between
the director and the layer normal is not directly quantified
within the models. The explicit description of the tilt angle
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FIG. 1. A schematic illustration of smA and smC phases. In
smA, the orientation of LC molecules n is well-defined; they align
along the layer normal m, resulting in a layer structure. In smC, the
orientation of molecules n deviates from the layer normal m with a
tilt angle θ0. Blue rods represent LC molecules. dA and dC are the
layer thicknesses of smA and smC, respectively.

in smC can provide more precise guidance for the application
of smA and smC liquid crystals.

In this paper, we deal with the above problems by develop-
ing a continuum model for smC (and smA), with a real-valued
order parameter δρ, representing the variation from the av-
erage density, and a tensor-valued order parameter Q from
the LdG theory. The tilt angle θ0 is explicitly included in
our proposed model by modifying the coupling term depicted
in Xia et al.’s smA model [16]. Within this model, typical
smectic structures, like bookshelf and chevron [15], and dis-
location [17] in smA and smC are numerically recovered. We
investigate the different behaviors of point defects in two-
dimensional (2D) smA and smC, and numerically deduce that
half-integer defects do not exist in the smC phase. The model
is also validated by obtaining toroidal focal conic domains
(TFCDs) [18] confined in a 3D box.

II. MATHEMATICAL MODEL

To describe the smC (and smA) phase, we need two or-
der parameters, one for the layering structure and the other
representing the orientation of LC molecules. According to
the discussion in Ref, [16], a real-valued order parameter δρ

and a tensor-valued order parameter Q are chosen. The δρ

represents the variation from the average density. The Q con-
tains the information of the preferred directions of spatially
averaged local molecular alignment or the directors and the
corresponding orientational orders.

Based on the mathematical model in Ref. [16], the energy
of a smC (and smA) system can be written as a sum of a LdG
[1] term of Q, a term of δρ to describe layer structure, and
a coupling term between δρ and Q to control the tilt angle
θ0 between the director and the layer normal (see Fig. 1) on
domain �:

F (δρ, Q) =
∫

�

{ fLdG(Q) + fsm(δρ) + ftilt(δρ, Q)}. (1)

(i) The simplest LdG free-energy density is given by

fLdG(Q) = fb(Q) + fel(∇Q), (2)

which includes the bulk energy density

fb(Q) = −A

2
tr(Q2) − B

3
tr(Q3) + C

2
(tr(Q2))2 (3)

and the elastic energy density

fel(∇Q) = K

2
|∇Q|2. (4)

The parameter A in (3) is a reduced temperature. the parameter
B is positive (respectively, negative) for rodlike (respectively,
disklike) LC molecules, and the parameter C is taken to be
positive to keep the functional bounded from below. Here,
tr(·) represents the trace operator. Note that the global min-
imizer of the bulk energy fb is a uniaxial Q [19], i.e., Q
can be formulated as Q = s(n ⊗ n − Id

d ), where n is an ar-
bitrary unit vector in Sd−1, d is the spatial dimension. The
orientational order s can be tuned by varying parameters
A, B, and C. This LdG energy term mainly characterizes
the isotropic-nematic phase transition. The reported values
for N-(4-methoxybenzylidene)-4-butylaniline (MBBA) as a
representative nematic material are B = 0.64 × 104N/m2 and
C = 0.35 × 104 N/m2 [20]. To ensure the imposition of the
orientational order s = 1 for minimizers of fb (one can check
this by simple calculations or using Ref. [19, Proposition
15]), we take fb = − l

2 (tr(Q2)) − l
3 (tr(Q3)) + l

2 (tr(Q2))2 in
3D and fb = −l (tr(Q2)) + l (tr(Q2))2 in 2D (also known as
the reduced Landau–de Gennes model in Ref. [21]). The
fel in (4) is the simplest form of the elastic energy density
under the one-constant approximation that penalizes spatial
inhomogeneities and K is the material-dependent elastic con-
stant. The typical value of the elastic constant for MBBA is
K = 4 × 10−11N [20]. We also note that it is feasible to apply
the anisotropic elastic form for (4).

(ii) The smectic potential fsm drives the appearance of
smectic layers:

fsm(δρ) = a

2
(δρ)2 + b

3
(δρ)3 + c

4
(δρ)4 + λ1(�δρ + q2δρ)2.

(5)
The first three terms with coefficients a, b, and c are a Lan-
dau expansion of the free energy that sets the amplitude of
layering. The last term enforces the constraint of equidis-
tance layers with the wave number q. If we assume δρ =
cos(k · x), then (�δρ + q2δρ)2 = (−|k|2δρ + q2δρ)2, which
is minimized when |k| = q. The constant λ1 is the weight
coefficient of the equidistant layering penalty. The value of
λ1 scales approximately as O(q−4) with units of Nm2. The
wave number q depends on the thickness of layer, i.e., q = 2π

ds

(ds = dA or dC). The layer thickness ds ranges from nm to
µm. The relation between the smA and smC layer thickness
is usually dC = dA cos θ0 (see Fig. 1). Exceptions are the so-
called de Vries materials [22,23], the layer thickness of which
is almost unchanged during the smA-smC transition. Note
that the parameter q is supposed to be proportional to 1

cos θ0
.

While, as the effect of q has been studied in the smA model
[16,24,25], and to focus on investigating the effect of the tilt
angle θ0 in smC phases, we assume q is a constant for both
smA and smC in each case of the following numerical results.

(iii) The coupling term of Q and δρ is given by

ftilt(δρ, Q) = λ2

(
tr

(
D2δρ

(
Q + Id

d

))
+ q2δρ cos2 θ0

)2

,

(6)
which is responsible for maintaining θ0, the tilt angle between
layer normal and the leading director of Q for smC phases,
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see Fig. 1. Here, λ2 represents the weight coefficient of the
coupling effect, with a value approximately of O(q−4) and
units of Nm2, D2(·) is the Hessian operator, and Id denotes
the d × d identity matrix. For the smA phase, we have θ0 = 0.
For the smC phase, the nonzero tilt angle θ0 is an essential
characteristic of smC LCs and has a significant impact on
their properties and behavior. Typical values of the tilt angle
θ0 are in the range of 10◦ ∼ 30◦ [26]. It can be controlled
by temperature [4,27] and external forces such as electric
fields [28,29] and mechanical force [26,30]. If we assume
δρ = cos(qm · x), where m, x represent the layer normal and
spatial location, respectively, we have D2δρ = −q2δρ(m ⊗
m). Further, if Q is uniaxial with a leading director n, i.e.,
Q = n ⊗ n − Id

d , after calculation, the coupling term is min-
imized when (m · n)2 = cos2 θ0, i.e., the angle between the
layer normal m and director n is θ0.

By rescaling the free energy (1) on d-dimensional do-
main � according to x̄ = x

λ
, F̄ = FK̄

Kλd−2 , l̄ = lλ2K̄
2K , ā =

K̄aλ2

K , b̄ = K̄bλ2

K , c̄ = K̄cλ2

K , q̄ = qλ, λ̄1 = λ1K̄
Kλ2 , λ̄2 = λ2K̄

Kλ2 , the
nondimensionalized total energy is then given by

F̄ (δρ, Q)

=
∫

�0

− l̄

2
tr(Q2) − l̄

3
tr(Q3) + l̄

2

(
tr(Q2)

)2 + K̄

2
|∇Q|2

+ ā

2
(δρ)2 + b̄

3
(δρ)3 + c̄

4
(δρ)4 + λ̄1

(
�δρ + q̄2δρ

)2

+ λ̄2

(
tr

(
D2δρ

(
Q + Id

d

))
+ q̄2δρ cos2 θ0

)2

dx̄. (7)

Here, λd represents a measure of domain size, �0 denotes the
rescaled domain, and K̄ stands for the nondimensionalised
elastic constant. The choice of ā, b̄, and c̄ simply follows
Refs. [16,24]. In the implementation, we omit the bars over
the parameters and denote �0 as �.

III. RESULTS

We calculate the minimizers or the critical points of the
free energy (7) with respect to both Q and δρ or Q only in
some smC cases by employing finite element approximations
to solve the corresponding Euler-Lagrange (EL) equations.
Additionally, due to the nonlinearity in the EL equations,
we utilize the deflated continuation algorithm, so to compute
multiple solutions of the EL equations and the continuation of
known solution branches. A more detailed description of the
numerical methods, the stability calculation, and information
on each simulation is provided in the Appendices.

A. Bookshelf and chevron

There are two related typical smectic structures: bookshelf
and chevron [15,31]. The imposition of equidistant smectic
layer constraints results in the formation of horizontal layers, a
characteristic feature of the smA phase. This structure is often
referred to as a bookshelf configuration [Fig. 2(a)]. The corre-
sponding bookshelf configuration for smC phases, the special
case of a chevron structure with no folding layer (0 chevron),
is shown in the first image of Fig. 2(b). This structure has
been observed in numerous experiments by cooling a smA
bookshelf or by the effect of confinement [32–34].

FIG. 2. (a) The bookshelf structure in smA; (b) the k-chevron
structures in smC with tilt angle θ0 = π

6 and the plot of the free
energy of k-chevron versus the k, number of foldings. Vertical di-
rectors are strongly imposed on top and bottom boundaries of the
domain. The parameters are taken as q = 12π and a = −10, b =
0, c = 10, K = l = 0.3, λ1 = λ2 = 10−5. The density variation δρ

is represented by color from blue to yellow. The director field n is
the eigenvector associated with the largest eigenvalue of Q and vi-
sualized by uniform-length gray rods. We use the same visualisation
method for Figs. 3, 4(e), and 4(h). Note that directors are largely in
vertical alignment due to the imposed boundary condition.

In Fig. 2(b), in each k-chevron structure with k � 1, the
layers tilt with the tilt angle varying between +θ0 and −θ0,
and bend with k foldings. Given our assumption of the thin
film limit, all molecules in our continuum model lie within the
plane. The directors on the layers can tilt to either the left or
right by the angle θ0 and are predominantly vertical due to the
structural symmetry. Near the chevron tips, the directors re-
main vertical, although the tilt angle between the layer normal
and the director may not be well-maintained. Consequently,
foldings are energetically unfavorable. The free energy (7)
increases as k increases, as observed in Fig. 2. In a 3D do-
main, the configuration near the chevron tips is discussed in
Ref. [35]. The 1-chevron pattern in smC phases was often
observed in experiments, as reported by Refs. [15,32,36,37].
Although the configuration with fewer foldings is more en-
ergetically preferred, the k-chevron structure with multiple
foldings is unavoidable in confinements like shells [4] due to
its special geometry.

B. Dislocation

The edge dislocations are unique structures to materials
with broken translational symmetry such as smectics [17,38].
By minimizing the nondimensionalized free energy (7) with
an appropriate initial guess (refer to Scenario II in Ap-
pendix D), we recover a single dislocation profile in the smA
phase, with two layers merging into one layer at the center of
the domain as shown in Fig. 3(a). Near the dislocation, the
director changes along the layers and no longer conforms to
the prescribed boundary conditions. The magnitude |δρ| of
the density variation is weaker in regions where the director
undergoes significant changes, as observed in the dark blue
areas within light blue layers surrounding the dislocation, as
shown in Fig. 3. To examine the orientation variation in the
smC phase around an analogous single dislocation within the
domain, we use the layering pattern and director orientations
from Fig. 3(a) as the initial guess for the energy minimizing
procedure for smC phases. We apply appropriate left- and
right-tilted orientational constraints on the directors at the top
and bottom boundaries. Fig. 3(b) showcases two classes of
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FIG. 3. Dislocation structures in the (a) smA phase with hori-
zontal directors strongly enforced at the top and bottom surfaces,
and (b) smC phase with θ0 = π

6 with left- or right-tilted Dirichlet
boundary conditions imposed on the top and bottom surfaces. Black
arrows represent the approximate main orientation of directors. Here,
we take parameters q = 9π , a = −10, b = 0, c = 10, K = 0.01,
l = 1, λ1 = λ2 = 10−5.

orientations in each layer, naturally arising due to the sym-
metric tilting of the angle θ0 from the layer normal. Both
profiles shown in Fig. 3(b) exhibit nearly identical energy
levels, differing by only approximately 10−3 in magnitude,
underscoring the tilting symmetry of directors within each
layer for smC.

C. Defect

The behavior of defects in smC has been discussed intu-
itively in Ref. [39]. In the smA phase, the configuration near
w-charge defects, without loss of generality, can be described
by the layer normal m = (cos(wϑ ), sin(wϑ )) and director
n = (cos(wϑ ), sin(wϑ )), where ϑ is the azimuth angle on xy
plane. For smC phases, as we fix the layer structure, i.e., m =
(cos(wϑ ), sin(wϑ )), if we only consider the tilt angle θ0, the
expected director is n = (cos(wϑ + θ0), sin(wϑ + θ0)) [see
Figs. 4(a)–4(d)]. Due to the symmetry of the structure, here
we only assume that the director tilts to the left relative to
the layer normal. The defect charge of the expected director
is still w. For w �= +1, the addition of the phase angle θ0 in
directors n is equivalent to rotating the configuration of layer
normals m as a whole by θ0

(1−w) [see Figs. 4(b)–4(d)]. For
w = +1, the configurations of m and n are not rotationally
degenerate, as shown in Fig. 4(a). The construction of n =
(cos(wϑ + θ0), sin(wϑ + θ0)) works well for integer-charged
defects in the smC system. However, the half-integer charged
defects are prohibited in the smC phase to some extent, due
to the polar character of the tilt vector field c = n−(n·m)m

|n−(n·m)m| =
(− sin(wϑ ), cos(wϑ )). The tilt vector c represents the unit
vector along the projection of n on the smectic plane. In
contrast to the directors n and −n, which are equivalent, and
the layer normals m and −m, which are also equivalent in
both smC and smA phases, the tilt vector field c does not have
“director symmetry”, i.e., c and −c are not equivalent [40]. In
Figs. 4(c) and 4(d), the discontinuity of c is indicated by red
arrows, signifying conflicting signs of c.

We successfully observe the phenomena above in our nu-
merical results in Figs. 4(e)–4(h). First, we recover the profile
with a ±1 or ±1/2 defect within the center of the disk domain
for the smA system. The smA state with +1 and ±1/2 are
obtained by minimizing the free energy (7) with θ0 = 0 with
certain specified boundary conditions on Q (refer to Scenario
III in Appendix D). Strong surface anchoring is employed to

(a) (b) (c) (d)

layer normal m director n
-1+1 -1/2+1/2

tilt vector c

(e)

(f)

(g)

(h)

FIG. 4. (a)–(d) The schematic illustration of expected w-charged
defects [(a) w = +1, (b) w = −1, (c) w = +1/2, (d) w = −1/2]
with the layer normal m = (cos(wϑ ), sin(wϑ )), director n =
(cos(wϑ + θ0 ), sin(wϑ + θ0)) with θ0 = π/6. In (c) and (d), the
tilt vector field is given by c = n−(n·m)m

|n−(n·m)m| and the discontinuity of
c is marked by red arrows. (e)–(h) The ±1, ±1/2 defect struc-
tures in smA with θ0 = 0 and smC with various nonzero θ0. We
set parameters as q = 10π , a = −10, b = 0, c = 10, K = 0.3, l =
5, λ1 = λ2 = 10−5. Defects are marked with yellow dots.

induce the desired defects. Notably, the structure in the smA
state with −1 defect, in fact, is a critical state rather than a
local minimizer. In Fig. 4(f), near the −1 defect at the center,
four dislocations are observed where two layers merge into
one. The magnitude |δρ| of density variation is lower at these
dislocations, consistent with the observations in Fig. 3. Then,
we continue the tilt angle θ0 as the essential parameter in the
deflated continuation algorithm (see Appendix B) on ±1 and
± 1

2 defect branches, respectively. To preserve energetically
unfavorable defect structures and focus on the coupling be-
tween directors and layer normals, we maintain the pattern
of δρ arising from smA experiments. We then minimize or
calculate the critical point of the energy functional (7) with
respect to Q only. As the tilt angle θ0 increases, the directors
in Fig. 4(e) for the +1 defect become spiral and the direc-
tors in Fig. 4(f) for the −1 defect rotate as a whole by θ0.
In Figs. 4(e) and 4(f), the ±1 defects remain at the center,
while in Figs. 4(g) and 4(h), the ±1/2 defects gradually move
away from the center point. Essentially, when the tilt angle
θ0 is large enough, the ±1/2 defect disappears from the disk
domain.

D. Toroidal focal conic domains

In a more complex scenario, we extend the domain into
3D, allowing for the emergence of experimentally observed
defects known as TFCDs in smA LCs [41]. A schematic
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FIG. 5. TFCD profiles in the scenarios of smA (left) with
θ0 = 0 and smC (right) with θ0 = π

6 . Here, parameters are taken
as q = 10, a = −10, b = 0, c = 10, K = 0.03, l = 10, λ1 = λ2 =
10−3. We plot the zero isosurface of the density variation δρ to illus-
trate the layering structure and color them with the computed angle
θ between directors and layer normals, where θ = arccos |∇δρ·n|

|∇δρ| , n is
the unit eigenvector of Q corresponding to the largest eigenvalue.

description and experimental observation of confocal conics
in smC are depicted in Refs. [18,42], but it has not been math-
ematically explored in prior research. In TFCDs, the smectic
layers adopt a unique configuration, comprising stacked in-
terior sections of tori, with a central line defect extending
between the two substrates.

Our proposed model is effective in capturing the TFCD
structure in both smA and smC, as shown in Fig. 5. In the
smA case, it is expected that the angle between the directors
and the layer normals θ should be close to θ0 = 0, as verified
in the left panel of Fig. 5. Notably, nonzero values of θ tend
to concentrate around the central axis of the computational
domain and the bottom surface. This concentration is a result
of the presence of a defect line in TFCDs, which coincides
with the central axis, and the application of radial confine-
ments to the directors on the bottom surface. It is noted that
directors near the bottom surface deviate from layer normals,
and this is actually due to the surface anchoring predominates
over TFCD structures near the surface. For the smC case with
a specific value of θ0 = π

6 , the calculated values of θ exhibit
a consistent variation around θ0 = π

6 in the right panel of
Fig. 5. Similar to the smA phase, deviations from π

6 tend to be
concentrated around the central axis and the bottom surface.
This similarity in behavior between the two phases highlights
the effectiveness of the proposed tensorial model in describing
both smA and smC phases within a unified framework.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a continuum mathematical
model for smC (and smA) phases with a real-valued density
variation for layering structures and a tensor-valued order
parameter for orientations of LC molecules. This model ex-
plicitly includes the tilt angle θ0 between directors and layer
normals, which serves as a crucial model parameter to dis-
tinguish between smA and smC phases. To enhance the
reliability and applicability of our model, we performed a
series of 2D and 3D numerical experiments to recover typical
structures in smA and smC phases, such as bookshelves and
chevrons, dislocations, defects, and TFCDs.

Prospective future research includes the exploration of
phase transitions [15,43], as our model provides a unified
framework that can describe the first- or second-order phase
transitions between isotropic, nematic, smA, and smC phases.
This tensorial model can serve as a foundation for inves-

tigating the complex dynamics of topological defects and
dislocation in layered smectics, which have an additional po-
sitional order compared to nematics.
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APPENDIX A: FINITE ELEMENT METHODS

Minimizing the free energy (7) of the main text presents
significant challenges in numerics due to the presence of
the Hessian term, which necessitates, from analytical view-
points, that δρ ∈ H2 ⊂ C1. Considerable attention is required
in determining suitable finite element approximations, with a
focus on both conforming and nonconforming aspects. For a
comprehensive introduction to finite element methods, refer
to works such as Refs. [44–46]. For simplicity, we follow
a strategy used in our previous work [16] to deal with this
similar challenge. To this end, we apply the so-called C0

interior penalty approach [46], resulting in nonconforming
discretizations. In essence, this approach employs only C0

elements, meaning that the approximations are continuous
without necessarily having continuous first derivatives. To
overcome the nonconformity issue, interelement jumps in the
first derivatives are penalized, effectively enforcing C1 confor-
mity in a weak sense.

Hence, we add an interelement penalty term to the energy
functional (7) of the main text in all of our implementations,
leading to

Fγ (δρ, Q) := F (δρ, Q) +
∑
e∈EI

∫
e

γ

2h3
e

(�∇δρ�)2
. (A1)

Here, γ is the penalty parameter (we fix γ = 1 throughout this
paper to ensure the convergence as discussed in Ref. [47]),
EI corresponds to the collection of interior facets, which are
edges or faces within a mesh, he denotes the size of an edge
or face e, and the jump operator applied to a vector ∇δρ on
a facet e shared by two adjacent cells, labeled K− and K+,
is defined as �∇δρ� = (∇δρ)− · ν− + (∇δρ)+ · ν+, where ν−
and ν+ denote the restriction of the outward normal to K− and
K+, respectively. It is noteworthy that the numerical analysis
of this choice of discretization has been reported in detail in
Ref. [47] for a similar minimization problem modeling smA
LCs. Utilizing the C0 interior penalty method offers several
advantages, combining both convenience (no extra construc-
tion of sophisticated discretizations) and efficiency (since the
weak form remains straightforward, with only minor adjust-
ments compared to a conforming method) in computations.
Moreover, this approach employs fewer degrees of freedom
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in comparison to a fully discontinuous method, e.g., discon-
tinuous Galerkin methods [48].

Specifically, in two dimensions, we employ quadrilateral
meshes where the function space CGk is defined through
tensor products of polynomials with degrees up to k in each
coordinate direction. This results in spaces of piecewise bi-
quadratic functions for CG2 and piecewise bicubic functions
for CG3. For the tensor Q, we impose the constraint of it
being a symmetric and traceless tensor, which gives rise to two
independent components in two dimensions. Consequently,
we seek the components of Q in CG2

2, while representing δρ

in CG3. In three dimensions, we utilize hexahedral meshes
with similar tensor-product spaces, resulting in spaces of
piecewise triquadratic functions for CG2 and piecewise tricu-
bic functions for CG3. In this context, the tensor Q possesses
five independent components. Therefore, we seek its compo-
nents in CG5

2, while retaining δρ in CG3.
As the total energy (1) under consideration is nonlinear in

nature, we employ Newton’s method with an L2 line search,
as outlined in Ref. [49, Algorithm 2], as the outer nonlinear
solver. The nonlinear solver is considered to have converged
when the Euclidean norm of the residual falls below 10−8 or
decreases by a factor of 10−14 from its initial value, whichever
occurs first. For the inner solves, the linearized systems are
tackled using the sparse LU factorization library MUMPS
[50]. This solver framework is implemented within the Fire-
drake library [51], which relies on PETSc [52] for solving
the resulting linear systems. In the context of the C0 interior
penalty approach, the mesh scale he is selected as the average
of the diameters of the cells located on either side of an edge
or face.

APPENDIX B: THE DEFLATED CONTINUATION
ALGORITHM

In addressing a parameter-dependent nonlinear problem,
such as seeking solutions to the Euler-Lagrange equation for
the proposed energy functional (7) of the main text, where the
tilt angle θ0 serves as the parameter, it is inherent to encounter
multiple solutions. This diversity offers a comprehensive in-
sight into the potential states and configurations attainable by
the system under specified conditions. In this paper, we adopt
the deflated continuation algorithm to systematically identify
multiple solutions. For a more detailed exploration of this
algorithm, one may refer to Ref. [53]. However, we present a
self-contained explanation of the algorithm, as also elucidated
in Ref. [16].

The algorithm seamlessly integrates two essential ingredi-
ents: deflation and continuation, where the latter is a widely
utilised technique for challenging nonlinear problems to fa-
cilitate convergence. We use standard continuation [54] in the
implementation of this work. Hence, we briefly introduce the
idea of deflation and give an overview of the algorithm below.

Consider a general parameter-dependent nonlinear
problem

f (u, λ) = 0 for u ∈ U and λ ∈ [λmin, λmax], (B1)

where U is an admissible space for u and λ is the parameter.
In our context, f is the residual of the Euler-Lagrange equa-
tion for the proposed energy functional Eq. (7) of the main

text, u represents the variable pair (δρ, Q), and λ represents
the tilt angle θ0.

For a fixed parameter λ�, problem (B1) then becomes

G(u) := f (u, λ�) = 0. (B2)

Initially, we employ the classical Newton iteration, starting
from an initial guess denoted as u0 to find a solution, referred
to as u�, for Eq. (B2). Following this, we proceed with a
process called deflation for this identified solution.

The primary objective of deflation is to formulate a nonlin-
ear problem denoted as H (u), which shares the same solutions
as the original problem G, except for the now-known solution
u�. Subsequently, we can apply Newton’s method to this prob-
lem H , once again commencing from the initial guess u0. If
this iterative process converges, it will lead to the identifica-
tion of a different solution. It is important to highlight that the
deflation technique effectively provides only a single initial
guess for the initial parameter value in our implementation.

In this paper, we construct the deflated problem H via

H (u) :=
(

1

‖u − u�‖2
+ 1

)
G(u) = 0,

where the norm used in this paper is

‖u‖2 = ‖(δρ, Q)‖2 =
∫

�

(
(δρ)2 +

∑
i

Q2
i

)
,

with Qi being the ith component of the vector proxy for
Q (i.e., two components in two dimensions, five in three
dimensions). Under mild assumptions, it can be proven that
Newton’s method applied to H will not converge to u� again.

Having introduced the concept of deflation for a single
nonlinear problem, we now provide a concise overview of the
deflated continuation algorithm. During a continuation step
from λ− to λ+, assuming that m solutions u−

1 , u−
2 , . . . , u−

m are
already known at λ−, the next step unfolds in two distinct
phases. In the initial phase, each solution u−

i is continued
from λ− to λ+, resulting in corresponding solutions denoted
as u+

i . Concurrently, as each solution u+
i is computed, it is

deflated, effectively removing it from consideration in the
nonlinear problem at λ+. Subsequently, the search phase of
the algorithm initiates. Each previously known solution u−

i
is reintroduced as an initial guess for the nonlinear problem
at λ+. As discussed earlier, the deflation mechanism ensures
that the Newton iteration will not converge to any of the previ-
ously identified solutions u+

i . Therefore, if Newton’s method
achieves convergence, it signifies the discovery of a hitherto
unknown solution, to the best of our knowledge. In the event
that an initial guess leads to the identification of another solu-
tion, it undergoes deflation, and the initial guess is repeatedly
utilized until it no longer succeeds. Once all initial guesses
from λ− have been exhausted, the current continuation step
concludes, and the algorithm progresses to the subsequent
step. These aforementioned phases are reiterated for each
continuation step until λ attains the desired target value of
λmax.

In the implementation results present in the main text, we
provide further details on the utilization of both the deflation
and continuation components of the algorithm. In cases where
a series of values for parameter θ0 are considered, such as θ0
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ranging from 10◦ to 30◦ as depicted in Fig. 4 of the main
text, the algorithm predominantly employs the continuation
part. In scenarios where multiple solution profiles emerge for
a single value of parameter θ0, the deflation component of the
algorithm plays a significant role in identifying these distinct
solutions.

APPENDIX C: STABILITY CALCULATION

We focus on minimizing our proposed free energy (7) of
the main text for smectic LCs. These minimizing profiles
inherently possess lower energy and align with the under-
lying physics. Consequently, evaluating the stability of the
stationary solutions obtained during the minimization process
becomes a crucial step. To assess the stability of each solu-
tion profile, we employ Cholesky factorization to compute
the inertia of the Hessian matrix associated with the energy
functional, as implemented in MUMPS [50]. We classify a
solution as minimizer if its Hessian matrix is positive semidef-
inite. Conversely, the presence of any nonzero number of
negative eigenvalues in the Hessian matrix characterizes a
solution as nonminimizing critical point [55]. It is noteworthy
that in all the solution profiles presented in this paper, zero
eigenvalues were not observed in the Hessian matrices. Fur-
thermore, all configurations explored in this paper are stable,
except for the −1 defect profiles in Fig. 4(f) of the main text.

APPENDIX D: DETAILS ON EACH SIMULATION

1. Scenario I: Bookshelf and chevron

In this straightforward example, we examine a rectan-
gular region covering � = [−1, 1] × [0, 1]. The domain is
discretized into a grid of 60 × 30 quadrilaterals, each further
crossly subdivided into four triangular elements. Along top
t and bottom b boundaries of the rectangle �, vertically
aligned directors are enforced for both smA and smC cases,
i.e., Q|t

⋃
b

= Qv = [−1/2 0
0 1/2]. We take the following ini-

tial guess for both smA case as present in Fig. 2(a) and smC
case as in Fig. 2(b) of the main text:

δρ0 = cos(qy), Q0 = Qv.

We start from this initial guess and use the deflation method
to find multiple k-chevron states in Fig. 2(b). The parameters
are consistently taken as q = 12π and a = −10, b = 0, c =
10, K = l = 0.3, λ1 = λ2 = 10−5.

It is noteworthy that multiple locally stable solutions exist
as minimizers of the free energy under the conditions de-
scribed in this subsection. Upon examination, solutions within
the same class are found to maintain similar energy levels. For
instance, in addition to the present left-tilted 0-chevron profile
of smectic layers as shown in Fig. 2(b) of the main text, there
also exists a right-tilting 0-chevron configuration. The energy
difference between these configurations is only on the order
of 10−4.

2. Scenario II: Dislocation

In this scenario, we examine the domain � = [0, 2] ×
[0, 2], which is uniformly discretized into a grid of 30 × 30
squares, each further subdivided into four triangular elements.

We impose strong boundary conditions on the director at the
top surface t = {y = 2} and bottom surface b = {y = 0},
while keeping the left and right lateral surfaces free with pre-
scribed constraints. For the smA case, horizontal directors are

enforced, i.e., Q|t
⋃

b
= Qh = [

1/2 0
0 −1/2]. Meanwhile,

the following initial guess of variables δρ and Q is taken:

δρ0 =
{

cos(9πx) if y > 1
cos(10πx) if y � 1 , Q0 = Qh.

As for the smC case present in Fig. 3(b) of the main text,
we simply use the obtained smA solution [i.e., Fig. 3(a)] as
the initial guess for the smC model with θ0 = π/6. Here,
due to the natural tilting symmetry of smC molecules, left-
and right-tilted directors are constrained on top and bottom
surfaces. We specify the values of parameters throughout
this scenario as q = 9π and a = −10, b = 0, c = 10, K =
0.01, l = 10, λ1 = λ2 = 10−5.

3. Scenario III: Defect

In this scenario, we opt for a circular domain � with
unit radius from the origin, with model parameters tak-
ing q = 10π , a = −10, b = 0, c = 10, K = 0.3, l = 5, λ1 =
λ2 = 10−5.

For smA cases of defects with w = +1,±1/2 in Figs. 4(e),
4(g), and 4(h) of the main text, we impose Dirichlet boundary
conditions for the orientations:

Q|∂� = Qb =
[

cos2(α) − 1
2 cos(α) sin(α)

cos(α) sin(α) sin2(α) − 1
2

]
,

with α = wϑ , where ϑ = arctan( y
x ). The initial guess of δρ

and Q is given by

δρic = cos (q(cos(α)x + sin(α)y)), Qic = Qb.

As for the smC cases of defects with w = +1,±1/2, we
fix the layering pattern from the obtained smA profile and
minimise only with respect to variable Q without boundary
conditions of Q. We use the continuation method to find
minimizers with θ0 taking the value of 0, 10◦, 20◦, 25◦, and
30◦ respectively. Note that in the smC case of +1 defect, all
present profiles are minimizers to the free energy (7) of the
main text.

Due to the unavoidable appearance of dislocation struc-
tures, for the w = −1 case in Fig. 4(f) of the main text, it
is hard to find smA or smC minimizers with −1 defects. The
initial guess for smA profiles (i.e., the left panel) is set as

δρic = cos (8π (cos(α)x + sin(α)y)), Qic = Qb.

We found the nonminimizing critical state with a −1 defect,
as shown in the left panel of Fig. 4(f) in the main text. Again,
to obtain the corresponding smC profiles, we fix the layering
pattern from the obtained smA profile and minimise only with
respect to variable Q, but this time with a stronger constraint,
Dirichlet boundary enforcement

Q|∂� =
[

cos2(α + θ0) − 1
2 cos(α+θ0) sin(α+θ0)

cos(α + θ0) sin(α + θ0) sin2(α + θ0) − 1
2

]
,

with α = −ϑ .
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4. Scenario IV: Toroidal focal conic domains

We discretize a box � = [−1.5, 1.5] × [−1.5, 1.5] ×
[0, 1] into 6 × 6 × 5 hexahedra, and label the boundary faces
of � as

left = {(x, y, z) : x = −1.5}, right = {(x, y, z) : x = 1.5},
back = {(x, y, z) : y = −1.5}, front = {(x, y, z) : y = 1.5},

bottom = {(x, y, z) : z = 0}, top = {(x, y, z) : z = 1}.
In the smA configurations, illustrated in Fig. 5 of the main

text, we adhere to the formulation of boundary conditions
and initial guesses for the smA case as elaborated in the
Supplemental Material of Ref. [16]. Specifically, we consider
the following surface energy:∫

bottom

W

2
|Q − Qradial|2 +

∫
top

W

2
|Q − Qvertical|2, (D1)

where W = 1 denotes the weak anchoring weight,

Qradial =

⎡
⎢⎣

x2

x2+y2 − 1
3

xy
x2+y2 0

xy
x2+y2

y2

x2+y2 − 1
3 0

0 0 − 1
3

⎤
⎥⎦

represents an in-plane (x-y plane) radial configuration of the
director, and

Qvertical =
⎡
⎣− 1

3 0 0
0 − 1

3 0
0 0 2

3

⎤
⎦

gives a vertical (i.e., along the z axis) alignment configuration
of the director. Furthermore, we take the initial guess of δρ

and Q:

δρA
ic = cos(3πz), QA

ic = nic ⊗ nic − I3

3
,

where

nA
ic :=

⎡
⎣n1

n2

n3

⎤
⎦ = 1

m

⎡
⎢⎢⎢⎣

x
(√

x2 + y2 − R
)

y
(√

x2 + y2 − R
)

z
(√

x2 + y2
)

⎤
⎥⎥⎥⎦

and

m =
√

x2 + y2

√(
R −

√
x2 + y2

)2
+ z2.

Here, the initial guess for the Q tensor is calculated based on
the mathematical representation for a family of tori, and we
have chosen a major radius R = 1.5 in our implementation.

Regarding the smC configuration, we formulate the initial
guess for the Q variable by leveraging the initial guess from
the smA configuration. The boundary conditions of Q are
rigorously enforced with the identical choice of the initial
guess. More specifically,

Qic =
{

ntilt ⊗ ntilt − I3
3 if x2 + y2 � R2

nrotate ⊗ nrotate − I3
3 if x2 + y2 < R2,

where

ntilt =
⎡
⎣−sign(x)

∣∣cos
(
arctan( y

x )
)∣∣ sin(θ0)

−sign(y)
∣∣sin

(
arctan( y

x )
)∣∣ sin(θ0)

cos(θ0)

⎤
⎦,

nrotate =

⎡
⎢⎢⎣

sin (arccos(n3) + θ0) cos
(

arctan( n2
n1

)
)

sin (arccos(n3) + θ0) sin
(

arctan( n2
n1

)
)

cos (arccos(n3) + θ0)

⎤
⎥⎥⎦.

It is important to note that ntilt is derived from the schematic
illustration in Ref. [18, Fig. 2], while nrotate effectively rotates
nA

ic azimuthally by an angle of θ0. Throughout this sce-
nario, parameters are taken as q = 10, a = −10, b = 0, c =
10, K = 0.03, l = 10, λ1 = λ2 = 10−3.
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