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In this paper we propose a time-varying parameter (TVP) vector error correction model
(VECM) with heteroskedastic disturbances. We propose tools to carry out dynamic
model specification in an automatic fashion. This involves using global–local priors
and postprocessing the parameters to achieve truly sparse solutions. Depending on the
respective set of coefficients, we achieve this by minimizing auxiliary loss functions. Our
two-step approach limits overfitting and reduces parameter estimation uncertainty. We
apply this framework to modeling European electricity prices. When considering daily
electricity prices for different markets jointly, our model highlights the importance of
explicitly addressing cointegration and nonlinearities. In a forecasting exercise focusing
on hourly prices for Germany, our approach yields competitive metrics of predictive
accuracy.
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Forecasters. This is an open access article under the CC BY license
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1. Introduction

This paper discusses econometric tools to achieve
ynamic model specification for vector error correction
odels (VECMs) automatically. Our main idea is to start
ith a suitably flexible and sophisticated specification
mongst this model class and to impose data-driven shri-
kage on the parameter space to obtain the simplest ad-
quate nested version. This approach is motivated by our
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applications, where no clear theoretical guidance is avail-
able about how to choose crucial modeling aspects deter-
ministically. Using a very general model guards against
underfitting and misspecification while pushing its pa-
rameters toward a simpler sparsified solution to avoid
overfitting and poor out-of-sample (OOS) predictive per-
formance.

Specifically, we propose a time-varying parameter
(TVP) VECM with heteroskedastic errors and apply it to
model and forecast European electricity prices.1 Deregu-
lation and increasingly competitive markets in the power

1 TVPs can be useful for improving predictive accuracy in many
contexts (see, e.g., Yousuf & Ng, 2021), because they can capture
arameter instability from diverse sources. Combining TVPs with ho-
oskedastic errors poses the risk of erroneously attributing changes in

he volatility of the shocks to conditional mean dynamics, which is why
uch specifications are typically equipped with heteroskedastic errors.
ndeed, heteroskedasticity has been shown to be a useful model feature
n the context of modeling electricity prices; see Gianfreda, Ravazzolo,
nd Rossini (2023).
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sector have led to a surge of interest in statistical methods
for modeling and forecasting electricity demand and price
dynamics. Competing approaches include both univariate
and multivariate time series models in linear and non-
linear settings (e.g., structural breaks in the conditional
means and variances). For an overview of the related
literature, see Weron (2014). Most directly related to our
approach, De Vany and Walls (1999) show that electricity
prices in US states are cointegrated, with long-run re-
lationships driven by no-arbitrage conditions. The more
recent literature also finds evidence in favor of com-
mon dynamics and cointegration between electricity and
gas prices for major power exchanges in the European
Union (see, among others, Bello & Reneses, 2013; Bosco,
Parisio, Pelagatti, & Baldi, 2010; de Marcos, Reneses, &
Bello, 2016; Gianfreda, Parisio, & Pelagatti, 2019; Houllier
& Menezes, 2012).

We aim to capture these empirical features and regu-
larities in energy markets and model them explicitly. This
motivates our proposed TVP-VECM. However, estimating
VECMs, particularly with TVPs, poses several econometric
challenges (see, e.g., Koop, Leon-Gonzalez, & Strachan,
2011). First, even when it is agreed upon that cointe-
gration should be taken into account, there is often no
compelling argument about how a set of (economic) vari-
ables are cointegrated (especially in higher dimensions).
This complicates introducing reasonable restrictions to
identify the long-run behavior of such time series. For
electricity prices, this aspect is even more apparent, since
there is no clear intuition from economic theory about
how to restrict the cointegration space a priori. Second,
and relatedly, the cointegration rank is unknown and
may be subject to change over time depending on the
application. The previous literature often conditions on
the rank and then compares measures of model fit ex
post (see Geweke, 1996). This may be impractical, either
due to computational limits or due to varying the rank
requiring additional (possibly ad hoc) identifying restric-
tions.2 Third, due to their flexibility, large TVP models
are prone to overfitting. Many papers thus propose to
restrict the parameter space by relying on hierarchical
prior distributions or approximations.3

Our approach to solving these interrelated issues com-
bines several recent econometric techniques used for
large-scale TVP models and reduced rank regressions.
We employ continuous global–local priors for pushing
the parameter space towards sparsity. Prüser (2023) is
a related paper with a similar approach to dealing with
shrinkage in (constant parameter) VECMs. However, as
noted by Chakraborty et al. (2020), such priors solely
achieve approximate zeroes; the probability of observing
exact zeroes is zero. In simple terms, this implies that

2 Notable exceptions are Jochmann and Koop (2015) and Chua
and Tsiaplias (2018), who use regime-switching models to estimate
a time-varying cointegration rank.
3 These three aspects are discussed to a varying extent in,

e.g., Bunea, She, and Wegkamp (2012), Chakraborty, Bhattacharya, and
Mallick (2020), Eisenstat, Chan, and Strachan (2016), Hauzenberger,
Huber, and Koop (2024), Hauzenberger, Huber, Pfarrhofer, and Zörner
(2021), Huber, Koop, and Pfarrhofer (2020), Huber and Zörner (2019),
Jochmann, Koop, Leon-Gonzalez, and Strachan (2013).
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shrinkage may guide a general model specification to-
wards a simpler one, but it cannot achieve the nested
version exactly (in terms of model selection).

As a remedy, we postprocess our posterior by min-
imizing distinct least absolute shrinkage and selection
operator (lasso)-type loss functions to obtain truly sparse
estimates that may feature exact zeroes. The choices of
loss functions are due to different implications of varying
sparsity patterns across partitions of the parameter space.
In particular, we propose to use distinct loss functions
for the cointegration matrix (grouped lasso, to exploit
column-wise group structures for matrix rank selection),
the autoregressive parameters (element-wise lasso), and
the covariances (graphical lasso). A key feature of our
framework is that it selects the number of cointegration
relationships for each period, limiting the need to impose
ad hoc restrictions a priori. Moreover, sparsifying the
coefficients ex post alleviates overfitting concerns and re-
duces parameter estimation uncertainty (see also Huber,
Koop, & Onorante, 2021).

We apply our model framework in two different ene-
rgy-related contexts. The first uses daily data from several
European markets jointly. Our approach detects distinct
patterns in both dynamic and static interdependencies
across markets. That is, the procedure selects relevant
relationships in a multicountry context; see, e.g., Feld-
ircher, Huber, Koop, & Pfarrhofer, 2022. The results cor-
oborate previous empirical evidence about the impor-
ance of addressing cointegration, nonlinearities, and het-
roskedasticity. In our second application, we conduct
n extensive OOS forecast exercise for hourly electricity
rices for Germany. In this case, our approach uncovers
nd/or excludes intra-day relationships between energy
rices within a single country. We consider forecasts for
ach hour of the following day and find that multivari-
te cointegration models with TVPs and heteroskedastic
rrors provide improvements relative to various simpler
enchmarks. In particular, the forecast exercise indicates
hat our proposed sparsified TVP-VECM yields compet-
tive and in many cases superior forecasts for German
ourly electricity prices.
Summarizing, the VECM allows for discriminating be-

ween long-run equilibria and short-run adjustment dy-
amics, which we find to be important for modeling
lectricity prices. TVPs capture structural breaks in the
ynamic relationships of the underlying data. This is par-
icularly useful when addressing complex latent pric-
ng mechanisms and the varying importance of variables
uch as fuel prices that may be subject to change over
ime. Moreover, our shrink-then-sparsify approach al-
ows for specification searches and variable selection in
igh-dimensional data by imposing exact zeroes in the
oefficient matrices. Heteroskedastic errors capture large
nanticipated shocks in prices, a crucial feature when
nterest centers on producing accurate density forecasts,
hich corroborates the findings of Gianfreda et al. (2023).
The paper proceeds as follows. Section 2 presents

ur flexible TVP-VECM model equipped with global–local
hrinkage priors and heteroskedastic errors, while Sec-
ion 3 discusses our proposed dynamic sparsification tech-
iques. Section 4 applies the TVP-VECM to modeling Eu-
opean electricity prices. Section 5 summarizes and con-
ludes the paper.
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2. Time-varying parameter vector error correction
models

We begin by introducing our baseline econometric
ramework using rather general notation. This reflects the
otion that while these methods are developed in light
f our applications, they are also applicable in other con-
exts. Let yt be an M × 1 vector of endogenous variables
for t = 1, . . . , T , and denote the first difference operator
by ∆ such that ∆xt = xt − xt−1.

A general specification of the TVP-VECM is:

∆yt = Π twt +

P∑
p=1

Apt∆yt−p+γ tc t +ϵt , ϵt ∼ N (0,Σ t ).

(1)

Here, wt = (y ′

t−1, f
′

t−1)
′, where yt−1 is the first lag of

the endogenous variables, and f t−1 denotes a set of qf
exogenous factors such that wt is of size q × 1 with q =

M + qf .
The left-hand side of Eq. (1) is integrated of order zero,

which we denote as I(0); this in turn requires the product
Π twt to be I(0). Assuming unit roots of the endogenous
variables in levels, this implies that Π t is an M × q
matrix of reduced rank. The rank rt reflects the number
of linearly independent cointegrating relationships, with
rt < M . Apt refers to an M × M time-varying coefficient
matrix related to the pth lag ∆yt−p, and γ t of size M × N
relates an N × 1 vector c t of deterministic terms to ∆yt .
In our baseline version of the model, we assume a zero-
mean Gaussian error term ϵt with an M×M time-varying
covariance matrix Σ t .

2.1. Cointegration matrix

A more thorough discussion of the matrix Π t of re-
duced rank rt , governing the cointegration relationships,
is in order. In most applications using VECMs, rt = r̄ is
some fixed (time-invariant) integer with 1 ≤ r̄ ≤ (M−1).
The rank order is commonly motivated either based on
economic theory (see, e.g., Giannone, Lenza, & Primiceri,
2019), determined by calculating marginal likelihoods for
a set of possible choices (see, e.g., Geweke, 1996). For
large-scale models, these approaches are often computa-
tionally prohibitive and rather restrictive.4 As a solution,
we adapt the approach of Chakraborty et al. (2020) for the
TVP-VECM and estimate rt for each period.

It is convenient to consider a reparameterized version
of Eq. (1), where Π t = αtβ

′; see also Liu and Wu (1999).
Here, the short-run adjustment coefficients are collected
in αt of dimension M × q, and the long-run relationships
are captured by β which is q×q. Note that we follow Yang
and Bauwens (2018) and assume the long-run relations to

4 Notable exceptions are Huber and Zörner (2019) and Prüser
(2023), who use global–local shrinkage priors to estimate cointegration
relations in a data-driven manner.
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be constant over time.5 This amounts to the assumption
that long-run fundamental relations do not change over
time, since our interest centers on the combined matrix
Π t , where nonlinearities appear through αt , which is
sometimes also referred to as a loadings matrix.

We refrain from restricting the cointegration space
by imposing a deterministic structure on β (see also
Strachan, 2003; Strachan & Inder, 2004; Villani, 2006).
Instead, we follow Koop, León-González, and Strachan
(2009), Koop et al. (2011) and use the transformations
α̃t = αtζ

−1, β̃ = βζ, with ζ = (β̃
′

β̃)−0.5. This allows
for employing a linear state-space modeling approach
assuming conditional Gaussianity with a cointegration
space prior.

2.2. Time-varying parameters and shrinkage

Using w̃t = β̃
′

wt and z t = (w̃′

t , x′
t )

′, a more compact
ersion of Eq. (1), providing notational simplicity, is given
y:

yt = Btz t + Ltηt , ηt ∼ N (0,H t ), (2)

ith At = (A1t , . . . ,APt , γ t ), Bt = (α̃t ,At ) and xt =

∆y ′

t−1, . . . , ∆y ′

t−P , c
′
t )

′, where At is of size M × J and
t of size J × 1 with J = (MP + N). Furthermore, it
s convenient to factor Σ t = LtH tL′

t , with a diagonal
atrix H t = diag(exp(h1t ), . . . , exp(hMt )) and Lt denot-

ng the normalized lower Cholesky factor (i.e., a lower
riangular matrix with ones on its diagonal). Note that
ar(Ltηt ) = Var(ϵt ); and this triangularization of the
ultivariate system allows for equation-by-equation esti-
ation (see, e.g., Carriero, Chan, Clark, & Marcellino, 2022;
rimiceri, 2005).6
We select the ith row of Bt , and define bit = B′

i•,t ,
hich refers to the parameters of the ith equation of the
ECM. In addition, we stack all free elements of the matrix
t in a vector lt . Following the related literature, we then
ssume a random walk law of motion for these TVPs:7

it = bit−1 + ϑit , ϑit ∼ N (0,Θ (b)i), (3)
lt = lt−1 + ϑt , ϑt ∼ N (0,Θ (l)).

5 Assuming both αt and βt to vary over time further complicates
achieving identification. First, note that Π t = αtβ

′

t = αtQQ−1β′

t
for any non-singular matrix Q , which results in the so-called global
identification problem. It is common in the literature to use linear
normalization schemes such as βt = (I rt , β

′

t )
′; see also Villani (2001)

or Strachan (2003). Second, the local identification problem appears for
αt = 0, which implies that rank(Π t ) = 0 (see Kleibergen & Van Dijk,
1994, 1998; Paap & Van Dijk, 2003).
6 We use the structural form of the VAR merely as a technical

device, and do not aim to identify any underlying primitive shocks
(where the ordering would impose specific timing restrictions). Po-
tential order-invariance of the system is due to the implied prior on
the reduced-form coefficients; see Chan (2022). This poses an issue in
large-scale systems. In our empirical application, we use moderately
sized models, and limited experiments permuting the order of the
variables in the dependent vector show that this has negligible effects
on our estimates.
7 Hauzenberger (2021) assesses different laws of motion for such

state equations, and finds that random walks typically provide
sufficient flexibility capable of tracing most distinct patterns.
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The state innovation variances, which govern the amount
of time variation, are collected in diagonal covariance
matrices Θ (b)i and Θ (l). To impose shrinkage, we use
he non-centered parameterization of the TVP model (see
rühwirth-Schnatter & Wagner, 2010, for details), which
plits the parameters into a constant and time-varying
art:

it = bi0+
√

Θ (b)ib̃it , b̃it = b̃it−1+ϑ̃it , ϑ̃it ∼ N (0, I), b̃i0 = 0,

or i = 1, . . . ,M , with an analogously transformed state
quation for the parameters lt . This allows for imposing
hrinkage on the constant part of the coefficients bi0, with
he jth element bij,0 and the amount of time variation
etermined by

√
θ (b)ij, the jth diagonal element of

√
Θ (b)i.

The sparsification methods proposed in this paper (see
ection 3) may be combined with any desired setup from
he class of global–local shrinkage priors; see Cadonna,
rühwirth-Schnatter, and Knaus (2020) for a review. The
espective parameters—in our case, the constant part of
he coefficients and the square root of the state innovation
ariances—are assumed to follow a Gaussian distribution
ith zero mean, and a global variance parameter pushes
ll coefficients strongly towards zero. These global param-
ters are multiplied with local scalings that can pull prior
ass away from zero for specific parameters even in cases
here the underlying parameter vector is very sparse.
oth of these shrinkage factors are equipped with an-
ther prior hierarchy, and shrinkage properties arise from
hoices about these mixing distributions. From this class
f priors, we choose the horseshoe of Carvalho, Polson,
nd Scott (2010) for its lack of prior tuning parameters
nd excellent shrinkage properties.

.3. Heteroskedastic errors

To address possible heteroskedasticity, we use stochas-
ic volatility (SV) models for the structural errors. We fol-
ow the literature (see, e.g., Kastner & Frühwirth-Schnatter,
014) and assume that the logarithms of the diagonal
lements of H t follow independent AR(1) processes:

it = µi + φi(hit−1 − µi) + ςiξit , ξit ∼ N (0, 1), (4)

where µi is the unconditional mean, φi is the persistence
parameter, and ςi is the error variance of the log-volatility
rocess. In our applications, we find empirical evidence
n favor of using stable processes instead of less densely
arameterized state equations such as a random walk.
Note that ηt = (η1t , . . . , ηMt )′ in Eq. (2) features

Gaussian errors. We also consider specifications where we
replace this Gaussian with a t-distribution:

ηit ∼ tνi (0, exp(hit )),

which renders the model even more flexible. Note that
as the degrees of freedom νi → ∞, we obtain a Gaus-
sian as the limiting case. We place standard priors on
µi, φi, ςi, and on the degrees of freedom νi, in case we use
t-distributed errors (see Kastner & Frühwirth-Schnatter,
2014). They are estimated alongside all other parameters.
This completes our baseline model specification. Specifics
about priors are provided in the appendix.
364
2.4. Sampling algorithm

The joint posterior of our model is analytically in-
tractable. We thus employ a Markov chain Monte Carlo
(MCMC) sampling algorithm to draw from it, and these
draws can then be used for posterior and predictive infer-
ence. Fortunately, our proposed model structure and prior
choices translate into individual sampling steps that are
fairly straightforward and well understood. Specifically,
our sampling algorithm consists mostly of Gibbs updates:

1. Writing the multivariate system in triangular form
allows for updates of the covariances and condi-
tional mean parameters equation-by-equation. Con-
ditional on all other parameters and the TVPs, the
constant part of the coefficients and the state in-
novation variances can be drawn from their con-
ditionally conjugate Gaussian posterior distribution
with well-known moments. In fact, these take the
form of conditional linear regression models with
standard normal errors; see Chan, Koop, Poirier,
and Tobias (2020) for a textbook treatment.

2. The TVPs can subsequently be obtained by us-
ing a straightforward forward-filter backward-sam-
pling (FFBS) algorithm conditional on all other pa-
rameters; see Carter and Kohn (1994), Frühwirth-
Schnatter (1994) and specifically
Frühwirth-Schnatter and Wagner (2010).

3. The draws for the time-invariant parameters in the
conditional mean can then be used to update the
global and local shrinkage factors for the horse-
shoe prior to using the auxiliary representation
of Makalic and Schmidt (2015), which involves
sampling solely from inverse gamma distributions.

4. The transformed cointegration vectors conditional
on all other parameters follow a multivariate Gaus-
sian posterior distribution with standard moments
which can again be found in any Bayesian textbook.

5. The SVs and the parameters of their state equations
are sampled using the R package stochvol (Kast-
ner, 2016). This step also involves drawing the
parameters that govern the SV state equations,
and the degrees-of-freedom parameter for the t-
distribution in the case of heavy-tailed errors.

6. Sparsification is performed for each draw as out-
lined in detail in Section 3 and Ray and Bhat-
tacharya (2018). This implies that we can run the
respective specification once and retain draws from
the non-sparsified posterior. These may subseque-
ntly be postprocessed with dynamic sparsification
methods and used to compute predictions outside
the MCMC algorithm.

Standard MCMC diagnostics point towards satisfactory
convergence properties of this algorithm. In our empirical
work, we use a burn-in period of 3000 draws and retain
each third of the remaining 9000 draws. This yields a set
of 3000 draws for postprocessing and inference. We use
the posterior or predictive median as a Bayesian point
estimate (see chapters 3–5 in Chan et al., 2020, for further
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details), if applicable. For our most demanding specifica-
tion (with more than 200,000 parameters to estimate),
estimation using the proposed algorithm (which is imple-
mented in the software R) takes about 2.5 min per 100
draws on a cluster with Intel E5-2650v3 2.3 GHz cores.

3. Dynamic sparsification

The model proposed above combined with continuous
global–local priors yields posterior draws that are pushed
towards approximate sparsity.8 We rely on ex post spar-
sification of these draws for each point in time to obtain
exact sparsity. In cointegration models, particularly with
TVPs, it is beneficial to adjust loss functions for specific
parts of the parameter space. This is due to the subtle
implications of these blocks of parameters for the overall
model structure.

3.1. Designing suitable loss functions

To perform variable selection and obtain sparse coef-
ficient matrices we postprocess Π t , At , and Σ t by mini-
mizing three coefficient-type specific lasso loss functions.
In particular, we rely on methods proposed in Fried-
man, Hastie, and Tibshirani (2008), Hahn and Carvalho
(2015), Chakraborty et al. (2020), Ray and Bhattacharya
(2018), and Bashir, Carvalho, Hahn, and Jones (2019),
which have been successfully used in a range of mul-
tivariate and univariate macroeconomic and finance ap-
plications (see Hauzenberger, Huber, & Onorante, 2021;
Huber et al., 2021; Puelz, Hahn, & Carvalho, 2020; Puelz
et al., 2017). Given the properties of the reduced rank
matrix Π t , we propose modifications when compared to
sparsification of the autoregressive coefficients, At , and
the covariance matrix Σ t .

As a general remark on notation, draws from the non-
sparsified posteriors are indicated by a hat (e.g., Π̂ t ) and
sparse estimates are marked with an asterisk (e.g., Π ∗

t ).
The key difference between the two is that the non-
sparsified posterior draws may have many entries close
to but not exactly zero, while the sparsified estimate has
exact zeros which are imposed using auxiliary loss func-
tions. The general idea is that these loss functions are de-
signed to reward model fit by minimizing a distance mea-
sure between the non-sparse and sparse solutions, while
an additional tuning parameter penalizes non-zero pa-
rameters. Choosing this tuning parameter—which, loosely
speaking, governs the number of zeroes—is generally not
a trivial task. To avoid extensive pre-estimation tuning
procedures, we use the signal adaptive variable selec-
tion (SAVS) estimator proposed by Ray and Bhattacharya
(2018), which selects an appropriate amount of sparsity
automatically.

In a TVP context, dynamic sparsification poses some
additional challenges concerning how sparsity is imposed
with respect to t:

8 As highlighted by Hahn and Carvalho (2015), the success of
the two-step shrink-then-sparsify approach depends on the shrinkage
properties of the prior. They note that the horseshoe prior is well suited
for such procedures, which is another reason why we illustrate our
proposed framework with this specific choice.
365
1. Ex post sparsification is commonly applied to point
estimators, such as the posterior median or mean.
We deviate from this procedure and solve the re-
spective optimization problem for each draw from
the posterior distribution. The procedure of Woody,
Carvalho, and Murray (2021) is closely related to
this approach. They provide a theoretical motiva-
tion for conducting uncertainty quantification of
sparse posterior estimates.

2. Our loss functions are defined in terms of full-
data matrices instead of t-specific covariates. The
latter might be considered the natural candidate
when transforming a TVP model to its static repre-
sentation (for details, see Chan & Jeliazkov, 2009;
Hauzenberger, Huber, Koop, & Onorante, 2022).
Commonly, sparsification is applied in standard
regression frameworks with constant coefficients,
implying that all information over time is consid-
ered. Using t-by-t draws results in dependence on
a single observation in time t .

We illustrate these issues and our solutions in more de-
tail below in the context of sparsifying the cointegra-
tion matrix. It is worth noting that these concerns apply
to all three blocks of the parameters that we intend to
dynamically sparsify.

3.2. Sparsifying the cointegration matrix

Our basic approach to sparsifying the cointegration
relationships follows Chakraborty et al. (2020). Ex post
sparsifying Π t is of crucial importance to obtain an es-
imate for the rank. Using solely a global–local prior,
ome estimates in Π t are pushed towards zero, but they
re never exactly zero. In the case of the cointegration
atrix, this implies that Π t would always be of full rank

i.e., r = M for all t). The main goal is thus to minimize
he predictive loss between a non-sparsified draw Π̂ t
nd a column-sparse solution Π ∗

t . The natural choice for
he respective loss function is thus to impose a group
tructure on the elements of this matrix. We provide
etails below.
Our interest centers on dynamic sparsification to ob-

ain a sparse cointegration matrix at each point in time.
he loss function is specified in terms of the full-data
atrix W , a T × q matrix with w′

t in the tth row:

∗
′

t = min
Π t

⎛⎝∥WΠ̂
′

t − WΠ ′

t∥
2

F +

q∑
j=1

κjt∥Π •j,t∥2

⎞⎠ , (5)

ith ∥C∥F denoting the Frobenius norm of a matrix C ,
c∥2 the Euclidean norm of a vector c , and Π •j,t referring
o the jth column of Π t (i.e., the jth row of its transpose).
q. (5) denotes a grouped lasso problem with a row
column)-specific penalty κjt and aims at finding a row
column)-sparse solution of Π ′

t (Π t ).9

9 The Frobenius norm is a common distance measure between
subspaces and is given by ∥C∥F =

√
tr(C ′C ) with tr(C ) denoting the

trace of a matrix C . For a detailed discussion on properties of the
grouped lasso, see Yuan and Lin (2006) and Wang and Leng (2008).
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The first part controls the distance between an esti-
ate and its sparse solution (measured by the Frobenius
orm), while the second part penalizes non-zero elements
n Π t (in terms of column-specific Euclidean norms).
e use the grouped lasso as opposed to an element-
ise lasso to establish a loss function that penalizes the
ointegration matrix towards a lower rank structure. It
s worth noting that using an element-wise lasso could
ield situations where the penalty introduces spurious
ointegration relationships. Summarizing in simple terms,
his loss function is designed to obtain an adequate re-
uced rank estimate of Π t that avoids sacrificing model
it relative to the full rank case.

Notice that we rely on the full data matrix W instead
of the t-specific covariates w′

t . This is in line with our
state equations for the TVPs, where all information over
time is used for filtering and smoothing. In constant pa-
rameter regressions, losses would be based on variation
explained byWΠ ′. Using the static regression framework
to perform dynamic sparsification and solely relying on
the tth observation w′

t , instead of the full data matrix W ,
renders the penalty highly sensitive to individual obser-
vations over time. To illustrate this, we focus on the jth
columns in both W •j and Π •j. The norm of W •j is defined

by ∥W •j∥2 =

√∑T
t=1 w2

tj. When using t-by-t estimates
independently, the norm of the tth observation is given by
∥wtj∥2 =

√
w2

tj. A simple solution to this issue would be
to down-weight the penalty in Eq. (6) by a factor T . How-
ever, although theoretically in line with the sparsification
techniques proposed in Hahn and Carvalho (2015), this
has the disadvantage of being exposed to idiosyncrasies
of the tth observation which poses the risk of unstable
enalties in Eq. (5). Therefore, using W is arguably the

most practicable solution, where each t-specific estimate
is used for the entire sample.

Note that Eq. (5) can be interpreted as minimizing
the expected loss (see Hahn & Carvalho, 2015). Setting
Π̂ t = Π (s)

t with (s) indicating the sth MCMC draw (rather
than a posterior point estimate), has the attractive feature
of allowing for uncertainty quantification about the rank
of Π t (see also Hauzenberger, Huber, & Onorante, 2021;
Huber et al., 2021).

In fact, the resulting reduced rank cointegration matrix
can be used to extract a model-based estimate of the
number of cointegration relationships. An estimate of this
time-varying rank rt is obtained using:

rt =

M∑
i=1

I (sit > ϕ) ,

with I(•) denoting the usual indicator function, and sit for
= 1, . . . ,M , denoting the singular values of WΠ ∗

′

t . We
follow Chakraborty et al. (2020) and define the rank as
the number of non-thresholded singular values, with ϕ

defined as the largest singular value of the residuals of
the full data specification of Eq. (1), which corresponds to
the maximum noise level.

To avoid cross-validation for the penalty term (as in
Hahn & Carvalho, 2015), we rely on the SAVS estima-
tor proposed by Ray and Bhattacharya (2018) and set
366
the penalty term to κjt = 1/∥Π̂ •j,t∥
2
2. This yields the

following soft threshold estimate:10

Π ∗

•j,t =

⎧⎪⎨⎪⎩
0M×1, if κjt

2∥Π̂ •j,t ∥2
≥ ∥W •j∥

2
2,(

1 −
κjt

2∥W •j∥
2
2∥Π̂ •j,t ∥2

)
Π̂ •j,t , otherwise.

(6)

s shown by Ray and Bhattacharya (2018), this choice of
jt has properties similar to the adaptive lasso proposed
y Zou (2006). To extend our discussion about specifying
he penalty in terms of full data matrices with respect to
AVS, it is worth noting that the only part that changes
s how the norm of the data is calculated (∥W •j∥

2
2 instead

f w2
jt ). In this case, the penalty specified by Chakraborty

t al. (2020), κjt = 1/∥Π̂ •j,t∥
2
2, can be used (without

correcting for T ). Note that this is a practicable solution
from an applied perspective, since the norm over the
full data matrix is more robust than considering a single
observation in period t .

3.3. Sparsifying the autoregressive coefficients

For sparsifying the time-varying autoregressive coeffi-
cients, we define a full-data matrix X of dimension T × J
with x′

t in the tth row, an MJ × 1 vector at = vec(A′

t )
and the corresponding TM × MJ regressor matrix X̃ =

(x̃′

1, . . . , x̃
′

T )
′ with x̃t = (IM ⊗ x′

t ).
We assume a loss function of the form:

a∗

t = min
at

⎛⎝1
2
∥X̃ ât − X̃at∥

2
2 +

J∑
j=1

δjt |ajt |

⎞⎠ , (7)

with ajt denoting the jth element of at , and δjt a covariate-
specific penalty. It is worth noting that we minimize a
standard lasso-type predictive loss where the first part
controls the distance between an estimate and a sparse
solution and the second part penalizes non-zero elements
in at , unlike the sparsification of the cointegration rela-
tionships.

An optimal choice for the penalty is δjt = 1/(|âjt |
2). We

again rely on the soft threshold estimate implied by SAVS
to obtain a sparse draw of at :

a∗

jt =

⎧⎨⎩0, if δjt
|âjt |

≥ ∥X̃•j∥
2
2,(

1 −
δjt

∥X̃•j∥
2
2|âjt |

)
âjt , otherwise.

(8)

As shown by Ray and Bhattacharya (2018), this choice
of δjt again has properties similar to the adaptive lasso
proposed by Zou (2006).

10 To solve the optimization problem in Eq. (5), the SAVS estimator
can be interpreted as a special case of the coordinate descent algo-
rithm (Friedman et al., 2007) by relying on a single iteration to obtain
a closed-form solution. Ray and Bhattacharya (2018) and Hauzenberger,
Huber, and Onorante (2021) both provide evidence that the coordinate
descent algorithm already converges after the first pass-through.
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3.4. Sparsifying the covariance matrix

A sparse draw of the covariance matrix can be obtained
y relying on methods proposed by Friedman et al. (2007)
nd Bashir et al. (2019). This involves using the precision
ather than the covariance matrix, as the precision defines
he conditional independence structure of the variables. It
s worth noting that directly postprocessing estimates of
he covariance matrix can result in a rather dense preci-
ion matrix and, hence, induce spurious contemporaneous
elationships. Sparse estimates of the precision matrix

−1
t are based on the graphical lasso penalty:

−1∗
t = min

Σ−1
t

⎛⎝tr
(
Σ−1

t Σ̂ t

)
− log det

(
Σ−1

t

)
+

∑
i̸=j

λij,t |σ
−1
ij,t |

⎞⎠ ,

(9)

ith tr(C ) and log det(C ) respectively denoting the trace
nd the log determinant of a square matrix C , λij,t an
lement-specific lasso penalty, and σ−1

ij,t the jth element
n the ith row of Σ−1

t . Similar to Eq. (5) and Eq. (7), the
arts tr

(
Σ−1

t Σ̂ t

)
− log det

(
Σ−1

t

)
are measures of fit,

hile the third term penalizes non-zero elements in the
recision matrix. Here, it is worth noting that if σ−1∗

ij,t is set
o zero, the ith and jth endogenous variable in the system
oes not feature a contemporaneous relationship. Thus,
ostprocessing estimates of the precision matrix capture
he notion of obtaining a truly sparse set of relationships
etween elements in ∆yt .
Following Bashir et al. (2019), the penalty in Eq. (9)

s chosen as λij,t = 1/|σ−1
ij,t |

0.5
, which constitutes a semi-

utomatic procedure to circumvent cross-validation. Here,
e refrain from showing the exact form of the soft thresh-
ld estimates for each element inΣ−1∗

t and refer to Fried-
an et al. (2008) instead, who define a set of soft thresh-
ld problems, similar to Eq. (8), to solve for an optimal
olution for each element in Σ−1

t (and thus Σ t ). We use
he coordinate descent algorithm of Friedman, Hastie, and
ibshirani (2019) and iterate once in line with the SAVS
stimator.11
Estimating the model proposed in Section 2 yields

CMC draws from the posterior distributions of all rel-
vant parameters. These are subsequently postprocessed.
he baseline framework may be applied to any dataset
here one suspects the presence of cointegration rela-
ionships. In the next section, we discuss further speci-
ication details in the context of applying this framework
o a study of electricity prices.

. Modeling European electricity prices

We use our proposed model in two different appli-
ations related to European electricity prices. First, we

11 Alternatively, one could also regularize the precision matrix by
writing Σ−1

t as an M-dimensional set of nodewise regressions by
using the triangularization decomposition outlined by Meinshausen
and Bühlmann (2006). Friedman et al. (2008) and Banerjee, Ghaoui,
and d’Aspremont (2008) show that this approach constitutes a special
case of Eq. (9) with M independent lasso problems.
367
use daily data from several European markets jointly.
This serves to illustrate our approach in terms of detect-
ing suitable cointegration relationships and nonlinearities
among interconnected energy markets in different Euro-
pean countries. Second, we produce forecasts of hourly
electricity prices one day ahead. Here, we perform an
extensive OOS forecast exercise, selecting German hourly
electricity prices as the market of interest. We then evalu-
ate our approach against a large set of competing models.
This exercise serves to demonstrate that flexibly con-
trolling for cointegration patterns in data (in this case,
between hours during the day), in the absence of prior
knowledge of such relationships, is beneficial for forecast
accuracy.

4.1. Dataset

For the first application, we use daily prices (in lev-
els, averaged over the hours of the day) to estimate our
model jointly for nine different regional markets: the
Baltics (BALT), Denmark (DK), Finland (FI), France (FR),
Germany (DE), Italy (IT), Norway (NO), Sweden (SE), and
Switzerland (CH); that is, M = 9. The data are available
for the period from January 1st, 2017 to December 31st,
2019, in EUR per megawatt-hour (MWh).12 We follow the
literature and choose day-ahead prices determined on a
specific day for delivery at a certain hour on the following
day.

Prices for BALT and the Nordic countries (DK, FI, NO,
and SE) are obtained from Nord Pool; the German, Swiss,
and French hourly auction prices are from the power spot
market of the European Energy Exchange (EEX); for the
Italian prices, we use the single national prices (PUN) from
the Italian system operator Gestore dei Mercati Energetici
(GEM). We preprocess the data for daylight saving time
changes to exclude the 25th hour in October and to inter-
polate the 24th hour in March. As additional exogenous
factors, we consider daily prices for coal and fuel and
interpolate missing values for weekends and holidays.
In particular, we use the closing settlement prices for
coal (LMCYSPT) and one-month-forward ICE UK natu-
ral gas prices (NATBGAS), due to their importance for
the dynamic evolution of electricity prices and potential
cointegration relationships (i.e., q = M + 2 = 11).

In our second application, the forecast comparison, we
choose hourly day-ahead prices (in levels) for Germany
as our main country of interest, and focus on daylight
hours (see Raviv, Bouwman, & Van Dijk, 2015), which
refer to 11 brackets starting with 8:00–9:00 a.m. (in the
tables, labeled as 8 a.m.) to the slot from 6:00–7:00 p.m
(in the tables, labeled as 6 p.m.), and an average of the
night hours. We use a hold-out period of approximately a
year and a half ranging from July 3rd, 2018 to December
31st, 2019 (in total, 540 observations). We estimate TVP-
VECMs with the individual hours per day being treated
as dependent variables such that M = 12. Our exercise is

12 We note that electricity prices may occasionally turn negative in
some countries such as Germany, while in others such as Italy, a zero
lower bound is applied by law. This aspect of heterogeneity poses no
further issues in our flexible multivariate framework.
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based on a pseudo-OOS simulation using a rolling window
of T = 365 observations at a time. We consider one-step-
ahead predictions, which implies that we forecast each
individual hour for the following day.13

For forecasting electricity prices, apart from seasonal
day-of-the-week dummies and daily prices for coal and
fuel (henceforth labeled FUEL), we also include renewable
energy sources (labeled RES) in the form of forecasted
average daily demand, forecasted average daily wind gen-
eration, and forecasted average daily photovoltaic solar
generation as exogenous factors. These factors have been
found to carry substantial predictive power for daily elec-
tricity prices, in particular in the short term such as one
day ahead (see, e.g., Billé, Gianfreda, Del Grosso, & Ravaz-
zolo, 2023; Ziel & Weron, 2018).

4.2. Nonlinearities and cointegration in European electricity
prices

One major feature of the proposed approach is that
it remains relatively agnostic to the precise form of the
cointegration and parameter space spanned by short-run
coefficients and cross-country relationships or hetero-
geneities. We do not rule out complex patterns a priori,
but our flexible modeling approach is also capable of
supporting a fairly parsimonious specification when the
data suggests so. It is worth noting that a more ‘struc-
tural’ analysis of the estimated cointegration patterns
would require additional restrictions to allow for eco-
nomic interpretations. We leave these aspects for future
research.

In this subsection, we examine the sparsification pat-
terns and nonlinearities when daily electricity price data
from multiple electricity markets are modeled jointly
with a sparse TVP-VECM. We first assess whether these
electricity prices are indeed cointegrated and whether
these cointegration relationships change over time. We
roughly gauge the nonlinear features of the cointegration
space by assessing estimates for a time-varying cointe-
gration rank. Second, we assess the sparsification patterns
and nonlinearities of static and dynamic interdependen-
cies across the European electricity market. To this end,
we examine the sparsified estimates of both the short-run
adjustment coefficients (dynamic interdependencies) and
the contemporaneous relationships (static interdepen-
dencies). Third and finally, we investigate heteroskedastic
data features and the role of large variance shocks.

Fig. 1 shows the posterior probability of the rank (PPR)
over time based on our MCMC output. The probabilities
are indicated in various shades of red. Several findings
are worth noting. A rank larger than six is hardly ever
supported, and while most posterior mass is concentrated

13 The main reason for the use of a rolling rather than expanding
window is to limit the computational burden. A rolling window implies
quicker parameter change over the holdout than an expanding one.
However, the daily frequency provides enough observations for making
more abrupt parameter changes—possibly captured by the TVPs—and
likely also for the rolling window. The presence of TVPs safeguards
our framework to some extent from influencing the results by choices
about the length of the rolling window, as discussed by Hubicka,
Marcjasz, and Weron (2018).
368
on rt = 4 for all t , we detect subtle differences over
time. At the beginning of the sample in 2017, our es-
timates are more dispersed, with non-negligible proba-
bilities for no cointegration. The precision of our rank
estimate increases over time, with a much narrower cor-
ridor of probabilities starting around 2018. After a brief
period in late 2018 and early 2019 with probabilities
shifting towards lower ranks, we find increases in coin-
tegration relationships towards the end of the sample.
We conjecture that this pattern of the cointegration rank
results from the fact that some of the countries (or re-
gions) experienced a large (idiosyncratic) positive shock
in electricity prices in early 2018, while others did not. For
example, electricity prices in the Baltics and two Nordic
countries (Finland and Sweden) increased from around
30 euros to 90 euros. In all other countries, these jumps
are either less pronounced (e.g., Denmark and Norway) or
almost nonexistent (e.g., Italy) during this episode.

Next, we turn to sparsified estimates of the autore-
ressive coefficients and the error covariance matrix in
anels (a) and (b) of Fig. 2. Rather than showing the
agnitudes of the estimated coefficients, we use this
xercise to illustrate the sparsification approach. As noted
bove, conventional shrinkage approaches push coeffi-
ients toward zero, but they are never exactly zero. The
parsification approach, on the other hand, introduces
xact zeros in these matrices. We use this fact to compute
he posterior inclusion probabilities (PIPs) of all coeffi-
ients by calculating the relative share of zeroes over
he iterations of the algorithm. In other words, these
igures showcase the sparsification approach as a variable
election tool (see Hahn & Carvalho, 2015).
We start with the coefficients linked to ∆yt−p, that is,

he dynamic interdependencies of the multivariate sys-
em in panel (a). A few findings are worth noting. First,
e detect different degrees of sparsity across countries.
hile the Nordic and Baltic countries look rather similar

with comparatively dense coefficient matrices), this is
ot the case for Switzerland, Germany, Italy, and France
CH, DE, FR, and IT). For these countries, the model es-
imates rather sparse coefficient matrices. Second, the
ariables with the highest PIPs are typically the countries’
wn lagged series. Particularly, France shows extremely
parse estimates, with non-zero inclusion probabilities
nly for its own lags. Third, we observe several interesting
hanges in PIPs over time. This implies changes in the
mportance of predictors over time, a feature that our
odel detects in a data-based fashion. Fourth, we observe
ome noteworthy patterns of dynamic interdependencies,
amely between Nordic and Baltic countries on one side,
nd to a lesser degree between continental European
conomies.
A similar exercise of PIPs in the context of the sparse

ovariance matrix is displayed in panel (b). Here, we
how the lower triangular part of the contemporaneous
elationships over time. As in the case of the regression
oefficients, we detect differences in the degree of spar-
ity over the cross-section and across time. Strong con-
emporaneous relationships are detected especially be-
ween the Nordic countries. The PIPs in this case are often
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Fig. 1. Posterior probability of the rank (PPR) over time of the most flexible specification.

Fig. 2. Posterior inclusion probability (PIP) over time of autoregressive coefficients (panel (a)) and covariance matrices (panel (b)) of the most flexible
specification.
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Fig. 3. Posterior median of SV. The red line denotes the first principal component (PCA) of M latent processes (hit ).
xactly one, indicating that the respective coefficients fea-
ure non-zero draws across all iterations of the sampler.
imilarly, albeit with lower inclusion probabilities, we
ind that covariances appear to be important between
ontinental European electricity prices.
Interestingly, we observe a substantial degree of time

ariation in the inclusion probabilities. Investigating these
atterns in more detail, we find that the overall spar-
ity of the covariance matrix changes strongly over time,
ut does so in a specific way. In particular, there are
eriods where most covariance terms (apart from the
lways-featured ones across Nordic countries) are spar-
ified strongly. Examples of such periods are in late 2017
nd early 2018, or around the beginning of 2019. Again,
t is noteworthy that our model automatically discovers
hese features.

We complete our discussion of the multi-country ap-
lication by assessing whether heavy-tailed errors are
equired to capture energy price fluctuations across the
ountries. For this purpose, we compare our estimates
rom our TVP-VECM benchmark model with SV to the
ame specification with t-distributed errors (see Appendix
370
A). We therefore assess the log-volatilities over time and
across countries.

Fig. 3 shows our estimates for t-distributed errors in
the top panels (a), while the bottom panels (b) indicate
the standard SV specification. A few things are worth not-
ing here. First, while the level of the volatilities varies sub-
stantially over the cross-section, the volatilities exhibit a
substantial degree of co-movement. Second, even though
we detect several differences between heavy-tailed errors
and conventional SVs, the first principal component of
all volatility processes (marked by the red lines) is al-
most identical for both error specifications. Third, while
t-distributed errors result in numerous high-frequency
spikes for Denmark, Finland, and Sweden (i.e., the Nordic
countries, which are shown in the left-hand side panels of
(a) and (b), except for Norway), Central European coun-
tries, shown in the right-hand side panels of (a) and (b),
exhibit a higher degree of persistence.

Overall, our results across countries are thus mixed.
These findings can be explained by differences in the
electricity generation mix of individual countries (see,
e.g., Durante, Gianfreda, Ravazzolo, & Rossini, 2022; Ziel,
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Steinert, & Husmann, 2015). There is overwhelming em-
pirical evidence for time-varying variances. On the other
hand, we find that t-distributed errors are not crucial for
Baltic countries, Switzerland, Germany, France, Italy, and
Norway, while the data support heavier-than-normal tails
for the remaining Nordic countries. Our model detects
these features automatically, without the need to take
specific a priori decisions about model specification. Next,
we discuss whether these features pay off in terms of
predictive performance.

4.3. Forecast results

In our forecasting comparison, we zoom in on a single
ountry to conduct a thorough analysis featuring many
ompeting models that have been shown to work well in
he previous literature. In particular, we select hourly day-
head prices for Germany and evaluate point and density
orecasts for a set of models that are described in detail
elow.

.3.1. Competing models
The competing specifications include a large set of uni-

ariate and multivariate models. We provide additional
etails about key modeling aspects below. At a glance, the
ajor dimensions of differentiation (which we consider in
arious combinations) are the following:

• Dynamic process: Multivariate vector error correc-
tion model (VECM), vector autoregression (VAR), and
equation-specific univariate autoregression (AR),
with all three variants featuring exogenous/determ-
inistic variables (see details below).

• Conditional mean: We consider both time-varying
parameter (TVP) and time-invariant (TIV), i.e., con-
stant parameter, versions of our model.

• Conditional variance: We vary between stochastic
volatility (SV) with Gaussian or t-distributed errors,
and homoskedastic variants.

• Postprocessing: Sparsified posteriors, as described
in Section 3, and non-sparsified, exact posteriors
from the MCMC algorithm are considered.

Our main interest centers on VECMs that are either
parsified or non-sparsified. For all these VECM specifi-
ations, we remain agnostic regarding the cointegration
elations and estimate them from the data. Recall that
hese VECMs feature two lags, i.e., two full days’ worth
f hourly lags (P = 2), and are equipped with a horse-
hoe (HS, Carvalho et al., 2010) prior. It is also noteworthy
hat the VECM specifications all include expert informa-
ion, as discussed in Section 4.1. In this sense, our VECM
odels can be thought of as flexible multivariate exten-
ions of the expert autoregressive distributed lag (ADL or
R-X) models (see, e.g., Billé et al., 2023; Ziel & Weron,
018). These VECM specifications explicitly account for
ny cointegration relationships and — in the case of the
371
parsified versions — consider not only shrinkage but also
parsification to obtain truly sparse solutions.14
As natural (non-sparsified) multivariate competitors,

e consider VAR-X models in levels. Natural (non-spars-
fied) univariate competitors are AR-X and AR models in
evels. The VAR-X models feature the same set of ex-
genous covariates as the VECMs (i.e., seasonal day-of-
he-week dummies, FUEL, and RES), while for the AR-X
odel, we differentiate between two variants. One variant

ncludes both FUEL and RES, while a smaller specification
ncludes just RES as exogenous indicators (apart from
he dummies). In this sense, all these competitors are
mong the class of expert models. Moreover, to facilitate
omparisons across the different model classes, all spec-
fications feature HS shrinkage for regularization, which
itigates the risk of specifics about prior choices affecting
ur results.
The univariate AR-X competitors can be interpreted

s Bayesian implementations of Lasso-Expert-AR (LEAR,
ago, Marcjasz, De Schutter, & Weron, 2021) models,
hich have been found to be very successful at fore-
asting daily electricity prices. The VAR-X is the respec-
ive multivariate companion. For the univariate AR-X and
R models, we also vary the lag length. We consider
wo lags (P = 2) and seven lags, i.e., seven full days’
orth of hourly lags (P = 7), while the VAR-X spec-

fications, similar to the VECMs, feature two lags. All
he multivariate model variants are much more flexible
nd are estimated with constant/time-invariant (TIV) and
ime-varying (TVP) parameters, while for the univariate
enchmarks we consider just constant coefficients. In the
ollowing, the AR(2) in levels with constant coefficients
erves as an overall benchmark.
Concerning the stochastic disturbances, we account for

eteroskedasticity by relying either on a conventional SV
pecification with Gaussian errors (SV-n in the tables)
s in Eq. (4), or the extension with t-distributed errors
labeled SV-t in the tables). For VECMs, we also estimate
dditional competing variants with homoskedastic error
ariances (labeled homosk. in the tables). These com-
etitors, alongside all other VECM specifications discussed
elow, allow us to assess whether changes in conditional
ariances and/or changes in the conditional means im-
rove forecast accuracy for VECMs (our main model class
f interest).

.3.2. Point and density forecasts
Root mean squared errors (RMSEs) serve to evaluate

he point predictions (which are based on the predictive
edian) across our models. As a density forecast measure,
e rely on the continuous ranked probability score (CRPS,
neiting & Raftery, 2007). It captures not only the first but
lso higher-order moments of the predictive distribution.
he CRPS can be interpreted in the scale of the data and

14 Another flexible approach worth mentioning, although among a
different class of machine learning models, is the neural network
architecture proposed by Marcjasz, Narajewski, Weron, and Ziel (2023).
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Table 1
Forecast performance for point forecasts (and density forecasts in parentheses) relative to the benchmark.

Specification One-day ahead

Total 8 a.m. 9 a.m. 10 a.m. 11 a.m. 12 noon 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m. Night

Sparsified VECM

TVP SV-t 0.965 0.960 0.952 0.962 0.940 0.977 0.962 0.953 0.908 0.967 1.031 1.035 0.925
(0.902) (0.948) (0.943) (0.880) (0.869) (0.859) (0.873) (0.865) (0.855) (0.903) (0.963) (0.984) (0.871)

TVP SV-n 0.968 0.949 0.944 0.953 0.952 0.979 0.968 0.976 0.934 0.976 1.023 1.040 0.932
(0.902) (0.942) (0.945) (0.880) (0.861) (0.857) (0.884) (0.861) (0.869) (0.904) (0.964) (0.984) (0.864)

TVP homosk. 0.982 1.032 0.991 0.944 0.951 0.951 0.996 0.966 0.967 0.984 1.019 1.006 0.954
(0.925) (1.093) (1.008) (0.897) (0.883) (0.860) (0.891) (0.889) (0.907) (0.910) (0.912) (0.945) (0.878)

TIV SV-t 0.984 0.952 0.959 0.960 0.956 1.007 0.973 0.985 0.936 0.992 1.079 1.064 0.960
(0.923) (0.928) (0.932) (0.892) (0.881) (0.869) (0.890) (0.893) (0.886) (0.930) (1.022) (1.051) (0.907)

TIV SV-n 0.974 0.941 0.922 0.962 0.951 0.983 0.967 0.998 0.939 0.985 1.062 1.055 0.945
(0.921) (0.925) (0.927) (0.893) (0.867) (0.860) (0.888) (0.890) (0.892) (0.934) (1.022) (1.051) (0.907)

TIV homosk. 0.996 0.961 0.975 0.984 0.990 0.979 0.994 1.026 0.965 0.999 1.056 1.075 0.968
(0.927) (0.949) (0.939) (0.928) (0.923) (0.869) (0.897) (0.923) (0.909) (0.922) (0.950) (1.010) (0.909)

Non-sparsified VECM

TVP SV-t 0.959 0.919 0.946 0.934 0.957 0.961 0.984 0.986 0.937 0.949 1.010 1.009 0.949
(0.890) (0.902) (0.912) (0.871) (0.890) (0.845) (0.864) (0.875) (0.887) (0.873) (0.910) (0.972) (0.864)

TVP SV-n 0.962 0.916 0.953 0.939 0.950 0.971 0.999 0.991 0.950 0.950 0.990 1.019 0.949
(0.889) (0.901) (0.910) (0.874) (0.886) (0.840) (0.861) (0.881) (0.900) (0.881) (0.904) (0.975) (0.860)

TVP homosk. 0.966 0.961 0.964 0.935 0.938 0.973 0.973 0.991 0.968 0.961 0.987 1.002 0.948
(0.907) (0.944) (0.965) (0.887) (0.867) (0.854) (0.892) (0.886) (0.899) (0.908) (0.925) (0.951) (0.894)

TIV SV-t 0.969 0.928 0.946 0.931 0.967 0.972 0.985 1.005 0.948 0.958 1.013 1.051 0.963
(0.907) (0.880) (0.892) (0.897) (0.904) (0.848) (0.885) (0.873) (0.903) (0.905) (0.965) (1.050) (0.901)

TIV SV-n 0.968 0.923 0.945 0.941 0.964 0.950 0.988 0.999 0.955 0.948 1.011 1.063 0.960
(0.904) (0.880) (0.895) (0.898) (0.901) (0.832) (0.872) (0.857) (0.893) (0.913) (0.972) (1.051) (0.894)

TIV homosk. 0.994 0.937 0.976 0.963 0.987 1.005 1.032 1.016 0.978 0.985 1.057 1.031 1.000
(0.931) (0.894) (0.906) (0.909) (0.919) (0.906) (0.939) (0.920) (0.949) (0.943) (1.009) (0.968) (0.918)

Non-sparsified VAR-X, estimated in levels

TVP SV-n 0.967 0.943 0.971 0.940 0.937 0.973 0.987 0.987 0.960 0.986 0.997 0.985 0.949
(0.913) (0.909) (0.906) (0.925) (0.874) (0.865) (0.912) (0.906) (0.902) (0.952) (0.966) (0.949) (0.888)

TIV SV-n 0.968 0.955 0.966 0.955 0.936 0.956 0.984 0.993 0.947 0.995 0.995 0.994 0.949
(0.910) (0.924) (0.915) (0.926) (0.877) (0.858) (0.896) (0.883) (0.910) (0.945) (0.952) (0.953) (0.884)

Exo. fac. No. of lags AR-X with TIV and SV-n, estimated in levels

RES & FUEL 7 lags 0.943 0.845 0.877 0.916 0.950 0.948 0.999 1.012 0.968 0.991 0.999 0.932 0.943
(0.919) (0.820) (0.840) (0.916) (0.936) (0.909) (0.980) (0.954) (0.959) (0.948) (0.947) (0.920) (0.924)

RES & FUEL 2 lags 1.016 1.017 1.006 1.001 1.001 1.003 1.044 1.056 1.009 1.036 1.036 0.972 1.017
(0.991) (0.993) (0.966) (0.979) (0.978) (0.960) (1.039) (1.010) (0.998) (1.011) (1.014) (0.966) (0.988)

RES 7 lags 0.934 0.843 0.882 0.960 0.966 0.973 0.973 0.979 0.956 0.946 0.945 0.895 0.930
(0.917) (0.835) (0.837) (0.923) (0.945) (0.939) (0.990) (0.958) (0.932) (0.911) (0.913) (0.902) (0.945)

RES 2 lags 1.009 1.009 1.047 1.039 1.028 1.027 0.986 1.007 0.993 0.982 1.006 0.971 0.973
(1.007) (1.032) (1.014) (1.042) (1.040) (0.999) (1.049) (1.009) (0.996) (0.981) (0.975) (0.956) (0.981)

AR with TIV and SV-n, estimated in levels

7 lags 0.916 0.793 0.845 0.901 0.948 0.949 0.955 0.961 0.949 0.936 0.960 0.942 0.930
(0.898) (0.817) (0.816) (0.893) (0.921) (0.916) (0.948) (0.919) (0.918) (0.900) (0.905) (0.922) (0.933)

2 lags 8.55 10.32 9.78 8.77 8.56 8.40 7.96 8.84 9.86 9.32 8.44 7.62 4.58
(5.67) (6.40) (6.27) (5.76) (5.67) (5.78) (5.43) (6.05) (6.53) (6.20) (5.66) (4.94) (3.02)

Notes: Point forecasts are evaluated using root mean squared errors (RMSEs). Density forecasts are continuous ranked probability scores (CRPSs). Values in the first row per model indicate RMSEs. Those
in parentheses in the second row are CRPSs. The red shaded rows denote the benchmark and display actual values for RMSEs and CRPSs. All other models are shown as ratios to the benchmark. Relative
numbers below one indicate superior forecast performance, with the best performing specification in bold. For the VECM and VAR-X models, we always include seasonal day-of-the-week dummies, daily
prices for coal and fuel (FUEL), and forecasts of average daily renewable energy sources (RES) as exogenous factors. For the AR-X model, we differentiate between two variants. One variant includes
seasonal dummies, FUEL, and RES, while a smaller specification just includes RES and seasonal dummies as exogenous indicators. Moreover, for the univariate benchmarks, we consider a lag length of
two and seven (along with seasonal dummies).
is defined such that lower values are better:

CRPSh,t (yh,t+1) =

∫
∞

−∞

(
F (z) − I{yh,t+1 ≤ z}

)2 dz =

= Ef |ŷh,t+1 − yh,t+1| − 0.5Ef |ŷh,t+1 − ŷ′

h,t+1|,

or hour h. F (·) denotes the cumulative distribution func-
ion associated with the predictive density f , I{yh,t+1 ≤ z}
enotes an indicator function taking the value 1 if yh,t+1 ≤

and 0 otherwise, and ŷh,t+1 and ŷ′

h,t+1 are independent
raws from the posterior predictive density.
Table 1 displays RMSEs and CRPSs across all model

ypes (rows) and over the respective hours of the day
372
(columns). Forecasts are produced hourly for a full day
ahead (8 a.m. until 6 p.m., and aggregate ‘Night’ hours).
Besides individual hours, we produce a summary figure
for overall forecast performance across a full day (labeled
‘Total’). Model abbreviations and variants of features such
as TVPs or the error variances specification are indicated
in the previous subsection. Values in the first row per
model indicate RMSEs. Those in parentheses in the second
row are CRPSs. They are benchmarked relative (as ratios)
to the AR(P) model in differences with constant param-
eters and a standard SV specification (red shaded row,
indicating raw values of RMSEs and CRPSs). In both cases,
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relative numbers below one indicate superior forecast
performance, with the best-performing specification in
bold.

The upper panel contains results for our main model
ariant (i.e., a VECM equipped with shrinkage priors)
ith both sparsified and non-sparsified estimates. The

ower panel shows several non-sparsified benchmarks. It
s worth mentioning that many of these benchmark spec-
fications are nested in our proposed model. For example,
n the case where our approach selects the cointegration
atrix to be of full rank, we obtain a VAR in levels. Such
pecifications in essence differ in terms of the implied
hrinkage prior of the reduced-form coefficients (see, for
nstance, Eisenstat et al., 2016; Giannone et al., 2019;
illani, 2009).
Our results indicate the lack of a single best-perfor-

ing specification. However, some intriguing patterns
till emerge across the model variants. We find that pre-
ictive accuracy is rather heterogeneous with respect to
ours of the day, and that some differences occur depend-
ng on whether the focus is on point or density forecasts.
able 1 reports that univariate expert models combined
ith shrinkage, particularly those with higher lag-orders,
erform very well and virtually always improve upon
he naive AR(2) benchmark, as expected. Specifically, the
elative performance of these models is strongest in the
arly hours of the day, which is the main reason for their
verall strong performance on average.
Versions of the VECM perform particularly well in

he afternoon and evening, where they are the best-
erforming specification in several cases, reducing losses
n density forecasts by more than 10% relative to the
enchmark in some instances. Focusing on the column
otal, which summarizes overall forecast performance
cross all hours over the day ahead, indicates that the
est-performing model in terms of density forecast accu-
acy is a non-sparsified TVP-VECM with conventional SV.
ence, flexible expert VECMs with TVPs and SV produce
ompetitive forecasts and have the potential to improve
ensity forecast accuracy upon strong benchmarks.
Turning to predictive accuracy premia that arise from

xplicitly modeling cointegration relationships, we find
hat our proposed VECMs typically have a slight edge over
he VAR specifications. This points towards the useful-
ess of our framework to forecast electricity prices. The
ame is true when comparing sparsified to non-sparsified
pecifications. The sparsified and non-sparsified predic-
ive metrics are often close, but there is some evidence
hat sparsification on average offers bigger gains than po-
ential losses. Improvements are usually more substantial
or density forecasts as evaluated with CRPSs, when com-
ared to RMSE metrics for point forecasts. Moreover, for
ur VECM specifications, when examining in greater de-
ail whether allowing for TVPs and/or time-varying vari-
nces (heteroskedasticity through SV) improves predic-
ive accuracy, we generally find that introducing flexi-
ility along both dimensions yields predictive gains (al-
hough these gains are sometimes small). Specifically,
round noon and in the afternoon hours, we find sys-
ematic gains in predictive accuracy for specifications that
eature both TVPs and SV. We do not find systematic
373
improvements when contrasting Gaussian errors with t-
distributed ones, consistent with our findings for Ger-
many from the cross-country application. However, occa-
sionally, during the afternoon hours, we even find support
for t-distributed errors, suggesting that during these times
of the day, it is important to explicitly model poten-
tial outliers. Conversely, the worst VECM specification
(on average) is a model that neither allows for TVPs
nor features heteroskedasticity (i.e., the homoskedastic
VECM-TIV specification).

Next, we gauge the statistical significance of our re-
sults. Our set of competitors is large, and conventional
approaches—such as the common (Diebold & Mariano,
1995) test—are typically pairwise tests that require choos-
ing a distinct benchmark to formulate a hypothesis. While
this allows us to check whether any specific model is
statistically more accurate than the benchmark, it is not
possible to comment on two non-benchmark specifica-
tions in terms of their relative significance. Consequently,
we employ the model confidence set (MCS) procedure
of Hansen, Lunde, and Nason (2011), which has been
designed specifically for such large-scale comparisons.

The MCS procedure yields a set of specifications, a col-
lection of models, that contains the best one with a given
level of confidence. In essence, it allows us to obtain a set
of models that are statistically indistinguishable from one
another, and thus is informative both in terms of which
models consistently perform well and which ones are
strictly dominated by others. It is worth mentioning that,
as in any testing procedure, several assumptions (that
may or may not be fulfilled in finite samples) underpin
the MCS (see Diebold, 2015, for a discussion of related
issues). This is why we employ the MCS procedure only
as a rough gauge of statistical significance in a model-
selection context and stress that these results must be
interpreted with some caution. In the following, we opt
for an MCS setting that uses the TR test statistic and a
pre-defined level of 90% confidence for our loss of choice,
which is the CRPS. Hansen et al. (2011) derive another test
statistic, Tmax, that can also be used for this procedure.15
In Appendix B, we show additional results for MCS, where
we vary not only the pre-defined confidence level (75%
versus 90%) but also the employed test statistic (TR versus
Tmax). Overall, we find that the obtained rankings are
robust with respect to these different settings.

Given the informativeness of the data, this procedure
may either select a single best-performing specification or
a ranking of several comparable models on our chosen
level of 10% significance (see also Hansen et al., 2011).
The results of this MCS exercise are shown in Table 2
and empty cells indicate that the corresponding model
was eliminated. We again stress that models included
in the MCS are statistically indistinguishable from one
another. This also translates to the model ranks derived
from the two common test statistics in the context of
the procedure, which must be interpreted as likely im-
perfectly measured and approximate indicators of relative
performance.

15 For details about MCS and how these two key test statistics are
derived, refer to Hansen et al. (2011).
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Table 2
Model confidence set (MCS) for density forecasts.

Specification One-day ahead
Total 8 a.m. 9 a.m. 10 a.m. 11 a.m. 12 noon 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m. Night

Sparsified VECM
TVP SV-t 4 3 9 9 3 3 1 4 9 5 7
TVP SV-n 5 2 1 7 10 2 6 7 10 7 2
TVP homosk. 10 7 7 5 6 6 13 9 3 3 3
TIV SV-t 16 13 12 13 13
TIV SV-n 14 8 8 11 14 14 12
TIV homosk. 11 11 10 8 12 11 8 7 9

Non-sparsified VECM
TVP SV-t 2 4 6 11 2 10 2 2 4 11 5
TVP SV-n 1 1 5 4 1 9 4 1 2 12 1
TVP homosk. 8 5 2 3 7 5 8 5 6 9 8
TIV SV-t 14 4 4 12 12 12 13 8 5 12 14 14
TIV SV-n 13 5 5 17 11 1 5 1 3 16 10
TIV homosk. 12 15 10 15 15 13 10 10 13 6 11

Non-sparsified VAR-X, estimated in levels
TVP SV-n 7 9 3 6 9 7 7 15 11 10 6
TIV SV-n 6 10 4 2 4 4 9 11 8 8 4

Exo. fac. No. of lags AR-X with TIV and SV-n, estimated in levels
RES & FUEL 7 lags 9 2 2 8 14 14 17 12 2
RES & FUEL 2 lags

RES 7 lags 15 3 3 13 15 14 6 5 1
RES 2 lags 13

AR with TIV and SV-n, estimated in levels
7 lags 3 1 1 6 16 13 14 11 12 3 1 4
2 lags

Notes: Results for the model confidence set (MCS) procedure of Hansen et al. (2011) at a 10% significance level using the TR test statistic. The loss function
s specified in terms of continuous ranked probability scores (CRPSs) as a density forecast measure. Empty cells indicate that the model is not part of the
CS. The top three ranked models are marked in bold. For the VECM and VAR-X models, we always include seasonal day-of-the-week dummies, daily prices

or coal and fuel (FUEL), and forecasts of average daily renewable energy sources (RES) as exogenous factors. For the AR-X model, we differentiate between
wo variants. One variant includes seasonal dummies, FUEL, and RES, while a smaller specification just includes RES and seasonal dummies as exogenous
ndicators. Moreover, for the univariate benchmarks, we consider a lag length of two and seven (along with seasonal dummies).
We find that our proposed models perform consis-
ently well overall. The TVP-VECMs are always included
n the MCS (i.e., among the statistically significant supe-
ior model set), and a single TVP-VECM variant appears
mong the top three ranked models for density forecasts
n all hours (except for 8 a.m. and 9 a.m.). In terms of
he univariate models, it is noteworthy that the two-lag
pecifications are consistently eliminated by MCS. How-
ver, the seven-lag specifications perform quite well, as
lready suggested by the overall forecast performance in
able 1. Overall, Table 2 indicates that simple univariate
enchmarks (in the form of AR variants) dominate before
oon, while in the afternoon and evening, multivariate ex-
ert models dominated—specifically those that explicitly
odel cointegration relationships as well as shrink and
parsify.
It is also worth reiterating that VECMs appear to yield

uperior forecasts to VARs. However, compared to our
revious discussion of CRPSs, we observe some differ-
nces. The MCS procedure yields a different performance
anking in terms of significance when compared to eval-
ating solely CRPSs and producing a ranking in absolute
erms. We conjecture that this is due to several peri-
ds in our holdout sample that affect the end-of-sample
etrics shown in parentheses in Table 1, whereas the
CS procedure is more robust to such idiosyncrasies. In
articular, for the sparsified TVP-VECMs, we observe high
374
ranks particularly during the afternoon in terms of density
forecasts.

5. Concluding remarks

In this paper, we proposed a TVP-VECM equipped with
shrinkage priors and heteroskedastic errors. We then dis-
cussed methods for inducing sparsity. This framework is
capable of introducing exact zeroes in cointegration rela-
tionships, autoregressive coefficients, and the covariance
matrix. The main idea is to start with a suitably flexible
and sophisticated specification and to impose data-driven
sparsity on the parameter space to obtain the simplest
adequate nested version. Moreover, our procedure yields
estimates for a time-varying cointegration rank, with-
out the need for introducing prior information on the
cointegration relationships.

We estimated our model using daily and hourly day-
ahead prices for different European electricity markets.
In the empirical section, we illustrated some features
of our approach in-sample using a multicountry dataset
and conducted an extensive OOS forecast comparison for
Germany. Regarding the in-sample analysis, we detected
several interesting time-varying patterns of sparsity in the
autoregressive coefficients and the covariance matrix. Our
proposal detects such features of the data automatically.
In addition, we found that our approach is competitive
when forecasting hourly one-day-ahead electricity prices
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compared to a large set of univariate and multivariate
benchmarks.
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