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Abstract: Radical or partial nephrectomy, commonly used for the treatment of kidney tumors, is a
surgical procedure with a risk of high blood loss. The primary aim of this study is to quantify blood
loss and elucidate the redistribution of blood flux and pressure between the two kidneys and the
abdominal aorta during renal resection. We have developed a robust research methodology that
introduces a new lumped-parameter mathematical model, specifically focusing on the vasculature of
both kidneys using a non-Newtonian Carreau fluid. This model, a first-order approximation, accounts
for the variation in the total impedance of the vasculature when various vessels are severed in the
diseased kidney (assumed to be the left in this work). The model offers near real-time estimations of
the flow–pressure redistribution within the vascular network of the two kidneys and the downstream
aorta for several radical or partial nephrectomy scenarios. Notably, our findings indicate that the
downstream aorta receives an approximately 1.27 times higher percentage of the redistributed flow
from the diseased kidney compared to that received by the healthy kidney, in nearly all examined
cases. The implications of this study are significant, as they can inform the development of surgical
protocols to minimize blood loss and can assist surgeons in evaluating the adequacy of the remaining
kidney vasculature.

Keywords: blood loss; kidney tumor; renal arteries; vessel cutting; surgery; resection; two-kidney
vasculature; simulation; mathematical modelling; lumped-parameter model; blood flux; pressure

1. Introduction

Renal cancer is responsible for more than 2% of new cancer cases worldwide, affecting
over 330,000 individuals annually. Primary surgical interventions for this form of cancer
include radical nephrectomy and partial nephrectomy, which can be performed laparoscop-
ically or through open surgery. Recently, robotic-assisted partial nephrectomy has gained
considerable prominence and is regarded as a gold standard in the field.

Radical or partial nephrectomy for the treatment of kidney tumors is a surgical proce-
dure with a substantial risk of bleeding due to cutting of various blood vessels in complex
renal vascular networks. Effective management of blood loss during renal surgery is crucial
for minimizing surgical trauma. A clinical study by Rosiello et al. [1] identified a link
between blood losses larger than 500 mL and the risk of chronic kidney disease. Other stud-
ies highlighted the association between general surgery and chronic kidney disease [2–5].
Jaramillo et al. [6] emphasized the necessity of more precise techniques to accurately mea-
sure blood loss and stressed the limits and inaccuracies of in vivo measurements alongside
the use of empirical algorithms. A comprehensive understanding of kidney vascular perfu-
sion and blood loss during renal surgery may help surgeons improve the recovery times
of patients by reducing the risk of bleeding and potential trauma. However, the scale and
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complexity of the vascular networks within each of the kidneys make this task particularly
challenging.

The kidneys‘ vascular networks have complex structure with multiple interconnected
blood vessels and branching points, commonly dividing into two, three, four, or five
branches. Central to the understanding of the anatomy of renal vasculature is rigorous
clinical data obtained using various medical imaging techniques, such as optical projection
tomography (OPT) as discussed by Puelles et al. [7] and magnetic resonance imaging, MRI
(e.g., as presented by Schutter et al. [8]). Nordsletten et al. [9] developed an automated
segmentation technique to construct rat kidney vessel morphology from micro-computed
tomography (µCT) images, while Kalantarinia et al. [10] imaged the kidney vascular
structure via high-frequency ultrasound in conjunction with ultrasound contrast agents,
UCAs [11,12].

According to Lok et al. [13], a typical healthy human kidney exhibits a blood flow rate
of 600 mL/min, with both kidneys, combined, requiring approximately 25% of the cardiac
output (CO) which amounts to about 5000 mL/min. Various studies have considered renal
hemodynamics and autoregulation of blood flow in human and animal models [14–31].
Furthermore, key insights concerning physiological blood flow in the renal arteries have
been provided by several numerical simulations [32–36]. For example, Cury et al. [32]
considered a numerical simulation of a single human kidney’s vasculature, whereas Postnov
et al. [37] developed a mathematical model of a single renal vascular network using a
probability-based topological method. Additionally, Hao et al. [38] derived a mathematical
model for renal fibrosis, while Basri et al. [39] designed a computational fluid dynamic
simulation of stenotic renal arteries. There are a plethora of other studies on computational
and mathematical modelling of various vascular networks [40–43], as well as several
numerical approaches that study diverse vascular geometries [44–52]. However, as far
as the authors are aware, there appears to be no other existing mathematical model or
simulation from any research groups that can both estimate the perfusion in the vasculature
of the two kidneys and simultaneously quantify the blood loss due to the severing of blood
vessels during surgery, within a short timeframe.

The primary objective of the present study is to extend and expand the work of Cowley
et al. [53], who derived a lumped-parameter first-approximation model of a single kidney
vascular network to calculate the blood loss resulting from the cutting of several blood
vessels. The novelty of this new article lies in the incorporation of both kidneys and the
downstream abdominal aorta into the model, as well as the near real-time estimation of
blood loss during partial and radical nephrectomy of one of the kidneys, before autoreg-
ulation and coagulation become relevant. This lumped-parameter, first-approximation
mathematical model accounts for the variation in the total impedance of the two-kidney
system and efficiently estimates the blood flow redistribution following a range of vessel
cuts due to surgery. The developed algorithms can be translated into a clinical environment
and can be adapted to a specific case of an individual patient. Consequently, this study pro-
vides a modelling framework for pre-operative planning of various surgical nephrectomy
scenarios.

The remainder of this article consists of, first, a Methods section (Section 2) where
model assumptions and methodology are described. This is followed by a Results sec-
tion (Section 3), where findings are presented diagrammatically. The Discussion section
(Section 4) discusses the modelling results and their implications on renal surgery. The
limitations of the model are highlighted, and a future research vision is also discussed.

2. Methods
2.1. The Renal Vasculature

A complex vascular network of the two kidneys and abdominal aorta (Figure 1) was
created for this study, based on the optical projection tomography image of a single kidney
by Puelles et al. [7] and by extending our previous single-kidney vasculature (Figure 2) [53].
The authors assumed that both the left and right kidney have identical geometrical structure
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as well as physical parameters and are connected to the aorta via a trifurcation node
(Figure 1). For simplicity, the superior mesenteric artery was ignored. Individually, the
left and right kidney were each considered an asymmetric vascular network composed of
25 vascular branching nodes (represented as black circles in Figure 1) and 61 blood vessels
(illustrated by line segments) and organized into left (“L”) and right (“R”) branches relative
to the first bifurcation node of each of the main (left or right) renal arteries and the two
primary daughter vessels of each kidney; thus labelled as LL1 (to indicate the first left
branch of the left renal artery) and LR1 (the first right branch of the left renal artery) for the
left kidney and RL1 (the first left branch of the right renal artery) and RR1 (the first right
branch of the right renal artery) for the right kidney (Figure 1).

The radii for the main left and right arterial branches (LL1–LR1, RL1–RR1) were
determined following Murray’s law [54], while the radii for the remaining vessels (LL2–
LL23 and LR2–LR38, RL2–RL23 and RR2–RR38) were variable based on measurements
by [32]. Cury et al. [32] showed that the arteries of the kidney are of a similar order of
magnitude in length, so for simplicity, we considered all the blood vessels in our vascular
network to be of equal length. We further assumed cylindrical vessel segments with
uniform cross-sections and that the branching angles at each node were negligible, based
on a previous study by Yang et al. [55].

Figure 1. Schematic of the vascular network model assumed for the two kidneys and abdominal
aorta. The left and right kidney were considered identical in structure and their major renal arteries
QR and QL joined the aorta at a single location. For simplicity, the superior mesenteric artery was
ignored. Each kidney was represented by an asymmetric vascular network composed of 25 vascular
branching nodes (black circles) and 61 blood vessels (line segments) and organized into left (“L”) and
right (“R”) branches relative to the first bifurcation node of each of the main renal arteries. The blood
vessels of the left kidney were labelled as (LL1–LL23 and LR1–LR38), while those of the right kidney
were labelled as (RL1–RL23 and RR1–RR38). See text for further details.
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Figure 2. (A) The vascular network for the human left kidney. The blue circle indicates an example
of a bifurcation, where the blood vessel LR4 divides into the vessels LR6 and LR7, shown in more
detail in (B) the healthy case and (C) a partial nephrectomy scenario where the branches LR6 and
LR7 are cut. The presented first-approximation lumped-parameters model assumes that each vessel
has an impedance described by (B) the three-element Windkessel model, with two resistors Zk1 and
Zk2 and a compliance Ck of the blood vessel. (C) The model also considers that each cut (severed)
blood vessel has a zero output flux (modified from [53]).

2.2. Mathematical Approximations

The new two-kidney lumped-parameter mathematical model is an extension of the
model presented in [53], using similar numerical assumptions. In brief: (a) The blood was
modelled as an incompressible fluid using the Carreau non-Newtonian model [56] since it
accounts for the shear-thinning behavior of blood, giving control over different shear rates.
(b) The flow was considered laminar and quasi-steady [57], with the pulsations of blood
flow being neglected. (c) The influence of backflow, associated with reflected waves due to
the propagation of the arterial pulse wave through the vessels, was considered negligible,
as demonstrated in the sensitivity analysis conducted in [53] for a single kidney, and was,
therefore, neglected. (d) The inlet flow rate in the abdominal aorta, Qaorta, was assumed
2400 mL/min [13,58]. (e) The hematocrit, φ, was taken equal to the physiological value
of 0.4 [59]. (f) The blood vessels were assumed to be rigid, and any viscoelastic physical
characteristics were neglected. (g) The blood vessels that were severed had zero blood flow
and pressure, and any remaining uncut output blood vessels possessed a constant pressure
described by Ohm’s Law (see Figure 2C). (h) Both kidneys were assumed to be physically
identical and connected to the abdominal aorta via a common node (Figure 1).

Referring to Figure 2B as an example, where the vessel LR4 divides into the blood
vessels LR6 and LR7 we apply the conservation of flux and the continuity of pressure at
each branching node of the two-kidney model to systematically solve the equations:

QLR4 = QLR6 + QLR7 (1)

PLR6 + ∆PLR6 = PLR7 + ∆PLR7 (2)

where Qk is the flux (here k = LR4, LR6, LR7); ∆Pk is the pressure gradient; and Pk
is the pressure, written as a time (t)- and angular frequency (ω)-dependent function
Pk = P0exp(jωt) with P0 representing the pressure amplitude and given by Ohm’s Law
Pk = ZkQk, where Zk is the impedance of the blood vessel.
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The magnitude of the total impedance, Zk, of each individual blood vessel of the
network (where k = LL1, . . .LL23, LR1, . . .LR38) for the left and right kidneys of the two-
kidney vasculature was calculated using the three-element Windkessel model [41] and
circuit theory, as [53]:

Zk =
Zk1 + Zk2 + jωCkZk1 Zk2

1 + jωCkZk1
. (3)

where Zk1, Zk2 are resistors, and Ck = ∆Vk/∆Pk is a capacitor representing the compli-
ance of each blood vessel; ∆Vk is the change in vessel volume. The impedance of the
compliance, denoted by ZCk, is ZCk = 1/jωCk. The vessel flux, Qk, can be expressed as
Qk = CkdPk/dt = jωCkPk.

The viscosity was modelled using a Carreau fluid model (Supplementary Materials,
Equation (S1)) in conjunction with the physical parameters found in [56,60]. Using the flux
conservation at the example bifurcation node splitting to LR6 and LR7 vessels (Figure 2B),
the pressure in each daughter branch is equated to give:

P⋆ = ZLR6QLR6 +

(
2LLR6
RLR6

)
.
γ

[
µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2

) n−1
2
]
= ZLR7QLR7 +

(
2LLR7
RLR7

)
.
γ

[
µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2

) n−1
2
]

. (4)

Equation (5) can be rearranged to:

ZLR6QLR6 − ZLR7(QLR4 − QLR6) + 2
.
γ

(
LLR6

RLR6
− LLR7

RLR7

)[
µ∞ + (µ0 − µ∞)

(
1 + λ2

.
γ2

) n−1
2
]
= 0. (5)

Equation (5) can be solved for QLR6 since the total flux QLR4 is known as well as the
impedances (ZLR6 and ZLR7), the lengths of the vessels (LLR6 and LLR7), the radii (RLR6 and
RLR7), and the viscosity for a specified shear strain rate. Further details on the mathematical
approximations and a sensitivity analysis can be found in the Supplementary Materials
of [53].

2.3. Modelling Cuts to the Two-Kidney Vascular Network

Due to the complexity of the two-kidney vascular structure, numerous cuts result in a
new vascular arrangement which is a subset of the original vascular network. Every blood
vessel cut creates a new, unique set of equations describing the flux conservation and the
pressure continuity and yielding simultaneous equations that can be solved numerically
using the platform Mathematica [61]. These distinct sets of algorithms account for the
change in the total impedance of the vascular network due to surgical cuts. We verified
computationally that the blood flux at each node was always conserved. The rest of this
article will focus on various cuts to key primary and secondary vessels within our vascular
network.

2.4. Verification and Validation

We have implemented the same methodological approach and validation techniques
as Cowley et al. [53]. We validated our model by comparing our computations with the
experimental results of Zhao and Lieber [62] and Shroter and Sudlow [63] for a Y junction,
where we found differences of 3.4% and 3.6%, respectively. We also conducted a validation
of the entire left kidney network based on the study of Jaramillo et al. [6]. They found a
3.64% mean blood volume loss in urological surgery patients with the use of the López-
Picado formula [64] which was in good agreement with direct blood loss measurements,
while our blood volume loss estimation of severing the QLR2 and QLR10 vessels was 2.46%.
Using the same physical dimensions and flow conditions and assumptions, we further
validated our modelling methodology for Y and T junctions as described in [46] yielding
1.1% and 1.6% differences, respectively, in the flow rates and pressures. This validates that
the influence of different branching angles and unsteady flow is minimal in the model.
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3. Results
3.1. Blood Flow Rates in a Healthy Two-Kidney Model

Let us consider first the blood flow in the healthy vasculature of a pair of kidneys,
before discussing blood loss rates due to surgery. We calculated the blood fluxes in the
healthy network by applying the flux conservation and the pressure continuity at each
node via a system of linear equations, such as Equations (1) and (5), alongside the data
from Tables S1 and S2 of the Supplementary Materials. The physical parameters for the
two-kidney vascular network were obtained from previous studies [32,58,65,66]. Figure 3
illustrates the resulting distribution of blood flux in the healthy case.

Figure 3. Schematic of the blood flux distribution for the healthy (uncut) two-kidney vascular network
before any vessels in the left kidney are severed.

The blood fluxes to the healthy left and right renal arteries were QL = QR = 599.6 mL/min
whereas the aorta arterial output had a blood flux of Qaorta = 1200.8 mL/min. The down-
stream aorta had a greater blood flow rate since this is a large vessel with a wider radius
delivering oxygen and nutrients to the periphery, and thus a lower impedance. The physio-
logical blood fluxes in the left and right branches of the left kidney, QLL1 and QLR1, were
212.5 mL/min and 387.1 mL/min, respectively, highlighting the asymmetry within each
kidney and illustrating that the QLL1 pathway had a larger impedance compared to the
QLR1 pathway.

3.2. Estimation of Blood Loss in Radical or Partial Unilateral Nephrectomy

We calculated the blood loss rates and blood fluxes for several different examples
of single and double cuts to the blood vessels of a diseased kidney requiring radical or
partial nephrectomy (here the left kidney was considered, but the results would be valid
also for the right). We estimated the blood fluxes using the Carreau fluid model described
by Equation (4), in conjunction with the flux conservation and the pressure continuity
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(Equations (1) and (5)) and the physical data from Tables S1 and S2 (see Supplementary Ma-
terials). Each vessel’s blood loss was recorded as a percentage of the total amount of blood
(cardiac output, CO) in the typical 70 kg human body, considered as 5000 mL/min [13]
(Table 1). It is worth noting that the % of blood loss in most partial nephrectomy scenarios
with double or more cuts (representing a surgical resection of about half of the left kidney)
was higher than that for a radical nephrectomy. The only case, from those shown in Table 1,
where the % of blood loss was less was for a resection case with severed blood vessels at
the bottom tip of the diseased (left) kidney (after vessel QLR33).

Table 1. Blood loss rates for various cuts to blood vessels for the Carreau fluid model.

Branch Cut(s)
Blood Loss from

Individual Vessel
(mL/min)

Total Blood Loss
(mL/min) % Blood Loss

QL (radical
kidney nephrectomy) 59.9 59.9 1.20

QLR33 34.9 34.9 0.70

QLR2 & QLR10 24.3 & 48.5 72.8 1.46

QLR11 & QLR20 22.0 & 44.1 66.1 1.32

QLL2 & QLL5 22.4 & 44.9 67.3 1.35

QLL6 & QLL9 20.7 & 41.6 62.3 1.25

QLL6 & QLL9 & QLR2
& QLR10

24.5 & 48.8 & 25.9 &
51.5 150.7 3.01

3.3. Redistribution of Blood Fluxes Due to Unilateral Kidney Nephrectomy

Table 2 illustrates the blood redistribution from the left kidney, undergoing radical
or partial nephrectomy, to the right kidney and to the downstream abdominal aorta for
various cuts to different blood vessels. The considered scenarios demonstrated that approx-
imately 3–40% of QL was redistributed to the right kidney and 3–50% to the downstream
abdominal aorta, with the downstream aorta receiving an approximately 1.27–1.28 times
higher percentage of the redistributed flow than the right kidney in each case.

Table 2. Blood flux redistribution to the renal arteries and the downstream aorta for various cuts to
different blood vessels.

Branch Cut(s)
Right Renal

Artery
Blood Flux, QR

(mL/min)

% of Flow
Redistributed
from the Left
Kidney to the

Right

Left Renal
Artery Blood

Flux, QL
(mL/min)

% of Flow
Remaining at

the Left Kidney

Downstream
Aortic Blood
Flux, Qaorta
(mL/min)

% of Flow
Redistributed
from the Left

Kidney to Aorta

Ratio of Aortic
to Right Kidney
Redistribution

Healthy kidney
(with no cuts) 599.6 - 599.6 - 1200.8 - -

QL (radical left
kidney

nephrectomy)
837.7 39.71 59.9 9.99 1502.4 50.30 1.27

QLR33 (partial
left kidney

nephrectomy)
613.2 2.27 568.6 94.83 1218.2 2.90 1.28

QLR2 & QLR10 719.6 20.01 327.6 54.64 1352.8 25.35 1.27

QLR11 & QLR20 685.0 14.24 406.0 67.71 1309 18.05 1.27

QLL2 & QLL5 649.4 8.31 486.7 81.17 1263.9 10.52 1.27

QLL6 & QLL9 637.4 6.30 513.8 85.69 1248.8 8.01 1.27

QLL6 & QLL9 &
QLR2 & QLR10

776.7 29.54 198.2 33.06 1425.1 37.41 1.27

Focusing on how surgery in a diseased kidney influences the blood flux rates to
both the healthy kidney and the downstream aorta let us consider cuts after the nodes
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QLL6, QLL9, QLR2, and QLR10, as represented by Figure 4. These cuts would result in the
resection of a large portion of the outer regions of the left kidney (around the cortex and
medulla), leaving intact the central region (the renal pelvis). The aorta’s blood flux (Qaorta)
increased from 1200 mL/min to 1425.1 mL/min (18.68%), the healthy (right) kidney’s QR
increased from 599.6 mL/min to 776.7 mL/min (29.54%), while the left renal artery QL of
the unhealthy kidney decreased substantially from 599.6 mL/min to 198.2 mL/min (by
66.94%). Therefore, it was found that 33.05% of the pre-surgical (healthy) left renal flow
remained in the post-surgical resected kidney, while 37.41% of the pre-surgical flow was
redirected to the downstream abdominal aorta and 29.54% to the right kidney (Table 2); that
is, the aorta received 1.27 times more of the redistributed flow from the surgically-operated
(left) kidney, which can be explained since the aorta has a larger radius and therefore a
smaller impedance. The blood loss rates for each separate cut were QLL6 = 24.5 mL/min,
QLL9 = 48.8 mL/min, QLR2 = 25.9 mL/min, and QLR10 = 51.5 mL/min, yielding a total
blood loss rate of 150.7 mL/min, equivalent to 3% of the average human cardiac output.

Figure 4. Schematic of the blood flux redistribution due to severing a large portion of the outer
regions of the left kidney (around the cortex and medulla), after the nodes QLL6, QLL9, QLR2, and
QLR10, leaving intact the central region (the renal pelvis).

3.4. Mapping the Blood Flux for a Radical Kidney Resection

Figure 5 illustrates the blood loss and blood flux redistribution for a radical kidney
resection with the unhealthy kidney’s left renal artery experiencing a blood loss of ap-
proximately 1.2% of the cardiac output (Table 1). The blood fluxes in the major arteries
were QL = 59.9 mL/min, QR = 837.7 mL/min, and Qaorta = 1502.4 mL/min, with both the
aorta and the healthy (right) kidney experiencing significant increases in their blood fluxes
(25.12% and 39.71%, respectively). Even though at first glance the right kidney appeared to
have a greater % increase than the abdominal aorta, it was calculated that 50.30% of the
pre-surgical (healthy) left renal flow was redirected to the aorta, due to its lower impedance,
while 39.71% went to the right kidney. This gives a ratio of aortic to right (healthy) kidney
redistribution of 1.27 times, which is the same in almost all the nephrectomy scenarios
considered (Table 2).
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Figure 5. Schematic of the blood flux redistribution between the unhealthy (left) kidney, the healthy
(right) kidney, and the downstream aorta due to a radical left kidney resection with a cut after the
node at QL, the left major renal artery.

3.5. Blood Pressure Distributions for Pre- and Post-Surgery Nephrectomies

Figure 6 illustrates the various blood pressures in the two-kidney vascular network
which are calculated using Equations (1) and (5). The blood pressure, Paorta, at the down-
stream aorta was significantly lower than PL or PR due to the downstream aorta’s larger
radius which yields a lower impedance (see Table S1).

We next considered the blood pressures in the key major arteries after a variety of cuts
to the vascular network. Table 3 illustrates the blood pressures PR, PL, and Paorta in the key
major arteries after a range of cuts. The blood pressures are calculated using Equations (1)
and (5) and using the data from Tables S1 and S2.

Table 3. Blood pressure in the key major arteries PR, PL, and Paorta after a variety of cuts.

Branch Cut(s) Blood Pressure, PR
(mmHg)

Blood Pressure, PL
(mmHg)

Blood Pressure, Paorta
(mmHg)

Healthy kidneys (with
no cuts) 125.2 125.2 10.3

PL (radical kidney
resection) 175.0 12.5 12.9

PLR33 128.1 118.8 10.5

PLR2 & PLR10 150.3 68.4 11.7

PLR11 & PLR20 143.1 84.8 11.3

PLL2 & PLL5 135.6 101.7 10.9

PLL6 & PLL9 133.1 107.3 10.8

PLL6 & PLL9 & PLR2 &
PLR10

162.2 41.4 12.3
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Figure 6. Schematic of the blood pressure distributions for a healthy two-kidney vascular network,
before any severing of blood vessels.

Table 3 emphasizes how the blood pressure for the aorta is approximately one order
of magnitude lower than the blood pressure for PR despite the blood flux, Qaorta, being
larger in size than QR. As various cuts were performed to the diseased kidney, the pressure
in that kidney, PL, was reduced in value (5.11–90.02% reduction) due to the redistribution
of blood flux rates. The redistribution of flux to both the aorta and the healthy (right)
kidney resulted in an increase in their respective blood pressures with the healthy kidney
experiencing a pressure increase of 2.32–39.78% for the cases examined (Table 3), due to its
higher impedance compared to the downstream aorta (1.94–25.24% increase).

Figure 7 illustrates the blood pressure redistribution for a particular case where the
outer cortex and medulla were severed with cuts being made after the nodes at PLL6, PLL9,
PLR2, and PLR10, while the central renal pelvis region was maintained (the equivalent blood
flux distribution is shown in Figure 4). Both PR and Paorta increased in value compared to
the healthy two-kidney model shown in Figure 6, with PR displaying the greater increase
in blood pressure (29.55% for PR vs. 19.42% for Paorta) due to its higher impedance, while
the pressure decreased in the left renal artery post-surgically by 66.93%.

Figure 8 highlights how the blood pressure in each blood vessel was redistributed in
the healthy (right) kidney and the downstream aorta due to a radical renal resection for a
cut being made after the node at PL. The healthy kidney, PR, experienced an elevated blood
pressure, due to an increase in its flux, with PR = 175 mmHg (39.78% increase), while Paorta
increased by 25.24% to Paorta = 12.9 mmHg due to its lower impedance. The pressure in the
left renal artery dropped markedly by 90.02% to 12.5 mmHg.
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Figure 7. Schematic of the blood pressure redistribution due to cross cutting after the nodes PLR2,
PLR10, PLL6, and PLL9 for the two-kidney vascular network.

Figure 8. Schematic of the blood pressure redistribution due to a radical left renal resection with the
severing of the major renal left artery after the node PL.
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4. Discussion

We developed a novel lumped-parameter mathematical model for a complex two-
kidney vascular network, accounting for the non-Newtonian behavior of blood by mod-
elling it as a Carreau fluid. The impedance of each blood vessel was determined using
the three-element Windkessel model. Our model’s originality is that it can quantify blood
loss for a variety of radical or partial unilateral kidney nephrectomy scenarios alongside
determining blood fluxes and pressures for each vessel and accounting for changes in the
total impedance of the two kidneys. The left kidney was used in this work as the diseased
one, but due to the assumed symmetry of the network, the results would be the same if
the surgery concerned the right kidney. We showed that cutting a vessel or several vessels
results in a redistribution of the blood fluxes and pressures from the diseased kidney to
the downstream aorta and the healthy kidney, with the aorta receiving an approximately
1.27 times higher blood flux redistribution compared to the healthy kidney due to its wider
radius and therefore lower impedance. Severing blood vessels in any part of the kidney
vascular network increases the impedance in that region of the altered kidney which results
in a redistribution of the blood flux to the areas of the two-kidney model that exhibit a lower
impedance. This redistribution of the blood flux also leads to changes in blood pressure via
Ohm’s law, with higher blood pressures occurring in both the aorta output and the healthy
kidney. Rosiello et al. [1] showed that there is a strong correlation between blood losses of
over 500 mL and the onset of chronic kidney disease. Our model calculated a blood loss
rate of 150.7 mL/min for cuts after the nodes at QLL6, QLL9, QLR2, and QLR10 implying that
failing to stem the bleeding in a time frame of approximately 4 min may increase the risk of
the patient developing chronic kidney disease. Shvarts et al. [67] assessed the blood losses
associated with radical nephrectomy due to renal cell carcinoma and measured blood losses
in the range of 200 to 555 cc. Our model predicts a blood loss of 59.9 mL/min when the
branch QL is cut which implies minimal and maximal bleeding times of approximately
between 3 and 9 min, respectively, if the surgical procedure is performed off-clamp. To the
best of the authors’ knowledge, this is the first model capable of estimating the perfusion
in both kidneys’ vasculatures and the abdominal aorta and of providing fast and efficient
calculations of blood loss due to surgery, which has a clear clinical significance.

4.1. Clinical Relevance

The clinical relevance of this model lies in the management of blood flow and blood
loss related to kidney surgeries, particularly nephrectomies. The primary surgical treat-
ments for renal cancer include radical and partial nephrectomy, which can be performed
laparoscopically or through open surgery. Recently, robotic-assisted partial nephrectomy
gained prominence and is considered a gold standard in the field. A critical aspect of
these surgeries is accurately mapping the blood vessels, as their configurations can vary
significantly from patient to patient. Variations in the renal artery, renal vein, and surround-
ing vessels can complicate both the planning and execution of the surgery [68,69]. The
proximity of the blood vessels to the tumors requires extensive planning due to the risk of
significant bleeding during resection. Additionally, the tumors often develop their own
extensive blood supply, which can be prone to further bleeding. Effective control of the
bleeding is crucial, and surgeons must be prepared with strategies for rapid hemorrhage
management, including vessel clamping, use of hemostatic agents, or even transitioning to
a partial or radical nephrectomy if necessary [70,71].

The model developed in this work aims to assist surgeons by predicting the blood
loss for different types of nephrectomies (partial or radical) and specific blood vessel
cuts. Understanding which vessels, when cut, will lead to minimal blood loss can help
guide surgeons and potentially reduce overall surgical risks. Furthermore, this model
can be integrated into surgical navigation systems and intraoperative monitoring systems
to provide real-time feedback on the blood flow and pressure redistributions during the
surgery, allowing for dynamic adjustments to minimize blood loss and optimize patient
outcomes. It also serves as a valuable educational and training tool, offering surgeons a
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deeper understanding of renal hemodynamics and the implications of different surgical
techniques [72]. The model has a direct potential to be used in a real clinical environment
due to its fast processing speed, thus allowing surgeons to access the relevant data rapidly
and efficiently. Incorporating this model in advanced planning tools, such as virtual reality
(VR) systems, could predict areas of high risk for significant blood loss, leading to more
personalized and less invasive surgical approaches.

This model can further be incorporated into surgical training programs, where trainees
can use it to simulate different nephrectomy scenarios and learn how various surgical
decisions impact blood flow and patient outcomes. This hands-on experience can improve
decision-making skills and preparedness for real surgeries. By implementing this model in
real-world practice, surgeons can enhance their decision-making process, reduce risks, and
improve outcomes for patients undergoing kidney surgeries.

This model has, thus, the capacity to improve the efficacy of renal surgery by iden-
tifying the appropriate pre-surgical protocols required to minimize blood loss to below
the threshold of 500 mL [1]. The results of this study on expected blood loss rates can
guide surgeons as to whether an off-clamp partial or radical nephrectomy is both safe
and pragmatically feasible. This model also highlights the regions of the vascular net-
work where tissue necrosis is more likely due to high blood loss and subsequent oxygen
deprivation [73].

4.2. Limitations

We made several key assumptions in the presented model, based on extremely lim-
ited clinical data obtained via a thorough literature search. The vessel lengths, radii, and
impedances in the complex human two-kidney vascular network were based on approxi-
mations, particularly the lengths being all equal in size since the primary and secondary
blood vessels are of a similar order of magnitude. However, a previous sensitivity analysis
by [55] showed minimal influence of these variables on the flux rate calculation; thus, more
precise anatomical data are not expected to modify the results of the present model. Further,
our model neglected the viscoelastic behavior of blood vessels, considering they were rigid.
This assumption was made to simplify the modelling, primarily due to the complexity and
scale of the two-kidney vasculature.

The presented model was designed to focus on short post-severing time intervals,
since we are primarily interested in the immediate, transient blood loss at the initial point
of cutting. This study did not consider extended post-surgery time intervals since these
would result in significant blood losses, which could be controlled and minimized locally
by the renal surgeon (s). The short post-cutting time intervals assumption implies that
the influence of autoregulation [14,15] and coagulation [74] can be neglected since both
these processes necessitate longer time frames. In addition, the model assumed a steady
blood flow; however, we do not anticipate major differences with using unsteady flow
since pulsatility attenuates further downstream in the periphery [75].

The human body is inherently a complex system with multiple interconnected vascular
networks. Using a fully three-dimensional computational model of such a complex vascular
network would be memory intensive and computationally costly. It would extend the
calculation times considerably, making it inefficient and impractical to implement in a
real-world clinical setting.

There is further the assumption that the left and right kidney are identical in the
presented model. There are anatomical and physiological differences between left and right
kidneys that could affect model predictions. These differences include variations in size,
position, blood supply, and the presence of congenital anomalies. For instance, the left
kidney is typically slightly larger and positioned slightly higher (proximally) than the right
kidney due to the presence of the liver on the right side. The left kidney has been reported
to be around 10–15% larger than the right kidney in terms of volume [76]. Furthermore,
the superior mesenteric artery, which originates superiorly from the renal arteries, was
not included in the model. Further refinements are therefore necessary for personalized
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medicine. Incorporating patient-specific data into the model could enhance its accuracy
and clinical applicability. Future research could focus on documenting and integrating
these variations to improve the model’s predictive power in diverse clinical scenarios.

4.3. Future Work

Future research will focus on procuring more accurate data by utilizing clinical infor-
mation obtained via both magnetic resonance imaging and high-frequency ultrasound in
conjunction with ultrasound contrast agents as discussed by Kalantarinia et al. [10]. Access-
ing rigorous clinical data such as the pulse velocities, radii, and lengths of the numerous
arteries will allow accurate determination of the impedances and compliances as discussed
by Hyde-Linaker et al. [44]. Future work will also include the effects of viscoelasticity in
our vascular network model via numerical analysis techniques as discussed by Piccioli et al.
and Watanabe et al. [43,77]. Another future direction is to extend our current work from a
lumped-parameters first approximation to a 1D time-evolving model with viscoelasticity
that accounts for time evolution of the blood vessels, cross-sectional areas, and blood flux
rates based on clinical data obtained via extensive medical imaging. A further potential
area of future research is to construct a mathematical model that accurately accounts for
asymmetry in the two-kidney network in conjunction with rigorous clinical data obtained
via medical imaging. A physical model (phantom) of the two-kidney vascular network
could also be developed to compare with our mathematical model. Finally, another poten-
tial area of future work is the employment of advanced microfluidic systems which may
provide a more systematic approach to both computation and validation. Such systems
would allow for a detailed study of the microvascular environment surrounding tumors;
however, their implementation would be challenging in a clinical setting with respect to
both space and processing time.

5. Conclusions

We present, for the first time, a novel mathematical lumped-parameter model of a
complex vascular network, specifically addressing the vasculatures of the two kidneys
and the abdominal aorta, which enables near real-time estimation of the blood loss and
flow–pressure redistributions arising from various scenarios of radical or partial unilateral
nephrectomy. The model accounts for the transient change in the total impedance of the
two-kidney vasculature immediately following the severing of multiple blood vessels,
prior to any autoregulation recovery or blood coagulation. While acknowledging the
limitations of our model (see Section 4.2), a significant finding is that in nearly all examined
cases, the downstream aorta received an approximately 1.27 times higher percentage of
the redistributed flow from the diseased kidney compared to that received by the healthy
kidney. Future work will focus on acquiring more accurate clinical data and on further
refining the modelling assumptions (see Section 4.3).

Usage of this model allows a fast estimation of the blood loss due to the severing of
blood vessels and can help renal surgeons determine the need for intraoperative arterial
clamping or preoperative embolization, which can effectively limit bleeding in high-risk
cases, thus allowing minimization of potential cellular necrosis. The presented model can
be applied to real-life scenarios, such as in robotic partial nephrectomy, where detailed plan-
ning using 3D models has been shown to improve surgical outcomes, reduce conversion
rates to radical nephrectomy, and lower blood loss [78]. The model’s predictive capability
is crucial, particularly for patients with compromised renal function, as excessive blood
loss can further exacerbate kidney health deterioration and increase the risk of post-surgery
chronic kidney disease. This comprehensive mathematical model has the potential to
enhance surgical precision, guiding surgeons in selecting the most appropriate procedure
for individual patients and optimizing patient recovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Nomenclature
µCT, micro-computed tomography; φ, hematocrit; ω, angular frequency; Ck, compliance of the

blood vessel; CO, cardiac output; L, left; LL1, the first left branch of the left renal artery; LR1, the first
right branch of the left renal artery; LR4, LR6, and LR7, branches labelled on the right branching of
the left renal artery; MRI, Magnetic Resonance Imaging; OPT, optical projection tomography; Paorta,
blood pressure at the downstream aorta; ∆Pk, pressure gradient in blood vessel k; Pk, pressure; PL,
pressure in the left renal artery; P0, pressure amplitude; PR, pressure in the right renal artery; Qaorta,
inlet flow rate in the abdominal aorta; Qk, the flux of blood vessel k; QL, the flux in the left renal
artery; QR, the flux in the right renal artery; R, right; RL1, the first left branch of the right renal
artery; RR1, the first right branch of the right renal artery; t, time; ∆Vk, change in vessel volume;
UCAs, ultrasound contrast agents; Zk, impedance of the blood vessel; Zk1 and Zk2, resistors of the
three-element Windkessel model.
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