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Abstract. The plastic injection moulding process is a critical manufacturing 

technique renowned for its high productivity, cost-effectiveness, and ability 

to produce intricate plastic components for various industries including 

medical and aerospace. The quality of the manufactured parts is influenced 

by several parameters, such as machine settings and mould characteristics, 

particularly thermal aspects. This paper specifically investigates the 

influence of primary machine parameters on part quality, excluding 

considerations of time, mould features, and cooling channel geometries. By 

focusing on the machine parameters and employing advanced machine 

learning methods, a comprehensive understanding is developed on how 

these factors can be utilised to predict the quality of the parts produced. The 

findings provide valuable insights into optimising the injection moulding 

process to enhance product quality and consistency. 

1 Introduction 

The quality of plastic parts is paramount in mass production, playing a critical role in 

industries such as medical equipment, aerospace, and micro and nano manufacturing. This 

importance has spurred extensive research into the plastic injection moulding process and the 

impact of various parameters on part quality. These parameters originate from both machine 

and mould characteristics, with cavity parameters intricately linked to machine settings. 

Consequently, this study focuses on machine parameters to determine their influence on part 

quality, employing Machine Learning (ML) techniques for quality prediction. 

 

The following sections outline the stages of the injection process and highlight the key 

parameters involved. Certain parameters remain fixed after cavity and cooling channel design, 

emphasising the importance of monitoring modifiable parameters during the injection 

process for quality prediction. The impact of process parameters on quality criteria has been 

widely studied in manufacturing. For example, one study [1] examined the effects of nozzle 

temperature, screw rotational speed, mould temperature, and cooling time on energy 

consumption. Other research [2][3] examined the impact of melting temperature, injection 

pressure, packing pressure, and packing time, concluding that packing pressure is optimal for 
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maximising tensile strength.Additionally, the Taguchi method has been employed to analyse 

the optimal parameters affecting part quality [4], including mould temperature [5]. Further 

studies [6] have focused on the effects of pressures at various stages of the process—such as 

injection pressure, holding pressure, and back pressure—on the final product quality. 

Moreover, Artificial Neural Networks and Support Vector Machines have been utilised to 

classify the quality of produced parts [7]. 

 

2 Experimental setup 

The plastic parts were initially designed and simulated using SolidWorks Plastic software. 

This software facilitated virtual simulations to optimise parameters such as mould filling, 

cooling times, and material flow characteristics. SolidWorks Plastic was used to identify and 

theoretically implement optimal moulding conditions. These theoretical findings were then 

used to inform the physical experimental setup with targeted parameters for validation. The 

virtual 3D model was subject to the same conditions and environment as the physical model, 

with identical physical properties applied to the simulation model. Data from both models 

were then analysed. The design and simulation of the part, as shown in Fig1, were prepared 

using SolidWorks Plastic software. The material for this mould was ABS MAGNUM 3453 

by Trinseo, with a melt temperature range of 230–270°C and a mould temperature range of 

30–70°C, as presented in Table 1 as indicated in the software's material database. 

 
                                                                               Table 1. The results of simulations 

 
Fig. 1. The design and simulation of the part  

 

 

The mould used consisted of two cavities, a cold runner, cooling channels, and a mould 

base. Its dimensions were 296 x 246 x 278 mm, with a cavity volume of 13.746 cm³ and a 

runner volume of 0.66 cm³. The two mould cavities were identical, so most quality and 

imbalance problems during the filling or packing phases were attributed to the cooling system. 

A Battenfield 60T plastic injection moulding machine was utilised, equipped with a set 

of sensors for monitoring both machine and mould conditions. Key sensors installed on the 

machine included those measuring hydraulic pressure (HP), screw position (SP), nozzle 

temperature (NT), and heating water temperature (HWT). Concurrently, each mould cavity 

was outfitted with integrated pressure-temperature sensors to capture real-time data during 

production cycles. This dual-sensor approach aimed to provide comprehensive insights into 

both macroscopic machine operations and micro-level mould conditions influencing part 

quality. Sensor data were systematically collected using the Data Acquisition System 

(ComoNeo) developed by Kistler. This system facilitated precise monitoring and recording 

of process variables throughout the injection moulding process. Data were captured at high 

frequencies and stored in CSV format, ensuring compatibility with subsequent data analysis 

software. The injection moulding machine underwent rigorous calibration to ensure optimal 

performance and accuracy of sensor readings. The machine settings were standardised to 

maintain consistency across experimental trials, minimising variability and enhancing data 

Variables Values 

HP 24 

SP 16 

NT 20 

HWT 20 

Quality 0/1 
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reliability. During operation, the ComoNeo system continuously collected sensor data, 

including hydraulic pressures, screw positions, nozzle temperatures, and heating water 

temperatures from the machine, as well as pressure and temperature readings from each 

mould cavity. These data streams were synchronised and recorded in real-time, allowing for 

a comprehensive analysis of process dynamics and correlations between machine settings 

and mould conditions. 

3 Data and methodology 

 

Three experimental trials were conducted on a plastic injection production line, each 

comprising 400 cycles. These trials involved varying parameters at various stages of machine 

operation to evaluate their effects on the quality of the produced parts. Data were collected 

using a DAQ system and saved as CSV files. 

Initially, several outliers were identified, particularly during the initial stages of 

production when the temperatures of the barrel, nozzle, and mould were too low and needed 

time to increase. Another issue was observed when the heating water temperature was 

reduced from 93°C to 40°C to study its impact on the quality and production process. Scatter 

plots of Time versus Hydraulic Pressure (HP), Screw Position (SP), Nozzle Temperature 

(NT), and Heating Water Temperature (HWT) were created to detect and remove outliers 

and missing values from the dataset. Fig 2 presents the scatter plot of various machine 

parameters recorded over time. After removing the outliers and missing values, the data were 

prepared for training. 

 

 

Fig. 3. Scatterplot of time vs HP, SP, NT, HWT. 

 

A simple classification method was employed to predict the quality of the injection-

moulded products. For this classification, the produced parts were labelled as good or bad, 

with each defective part marked as bad. Good parts were labelled as (0), and bad ones as (1). 

 

The logistic regression model can be represented as: 

log (P (0)/P (1)) = β0+β1⋅HP+β2⋅SP+β3⋅NT+β4⋅ 

Where: 
• P (0) and P (1) are the probability of the good parts and bad parts, 

respectively. 
• β0 is the intercept. 

• β1, β2, β3, β4 are the coefficients for the independent variables HP, SP, NT, and 

HWT, respectively. 

Using Minitab statistical software, the values of the intercept and coefficients were estimated 

for the logistic regression model, along with their standard errors and p-values. The analysis 

produced the following equation: 
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Y = 190.8 + 0.1373 HP + 0.831 SP - 0.983 NT + 0.0630 HWT 

The test results confirm that the logistic regression model, along with each factor (HP, SP, 

NT, HWT), significantly affects the quality of the produced parts, with the p-value of each 

factor being <0.05. This reinforces the importance of these factors in the manufacturing 

process and provides a solid basis for optimising these variables to improve product quality, 

The results also assessed the significance of the logistic regression model as a whole and the 

individual predictors included in the model, as presented in Table 2. 

 

 
Table 2 Analysis of variance (ANOVA) for all factors. 

 

4 Data training 

4.1 Machine learning (ML) Models 

     To train the data, it was split into three sets: 60% for training, 20% for validation, and 20% 

for testing. To ensure that all continuous factors are on the same scale, standardisation was 

applied to all factors, which can improve model performance. Four ML models were applied 

to the dataset: Logistic Regression, Random Forest, Support Vector Machine (SVM), and 

Gradient Boosting Classifier (GBC). The Table 3 present the results of the four ML models 

that applied in this study. 

 

Table 3. The results of ML models. 

 

 

Random Forest: This model demonstrated high precision, recall, and F1 scores for both 

classes, indicating excellent performance in distinguishing between good and bad parts. The 

confusion matrix provided insight into specific classification errors, showing very few 

misclassifications (only 4 false positives and 0 false negatives). 

Gradient Boosting Classifier: This model achieved an impressive accuracy of about 98.55%, 

correctly classifying all the test data. The confusion matrix showed very few 
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misclassifications (only 2 false positives and 0 false negatives), indicating the model's 

exceptional reliability. 

4.2 Receiver Operating Characteristic (ROC) curves  

 

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR). 

AUC for Training Data: 0.9824, indicating excellent performance on the training set. 

AUC for Test Data: 0.9434, indicating particularly superior performance on the test set. 

The model performs much better than random guessing. The high AUC values for both 

training and test datasets suggest that the model is highly effective at distinguishing between 

positive and negative classes. The slight drop in AUC from training to test set indicates some 

overfitting, but the model still generalises well to unseen data. 

In Fig 4, the ROC curve in the left panel shows the model's performance in distinguishing 

between positive and negative classes, with an AUC of 0.9824 for the training set and 0.9434 

for the test set, indicating excellent performance. The gain chart in the right panel illustrates 

the model's effectiveness in capturing true positives, with both the training and test sets 

showing high true positive rates, demonstrating the model's reliability and predictive power. 

 

 

                  Fig.4. Area Under the Curve (AUC): 

4.3 Model improving 

 

To improve the selected ML model, enhancements in hyperparameter tuning and cross-

validation were applied. Hyperparameter Tuning: This process identifies the best 

combination of hyperparameters for a model. Cross-Validation technique ensures that the 

model generalises well to unseen data by validating it on different subsets of the data. The 

Table 4 shows that both Random Forest and Gradient Boosting models were subjected to 

these improvements.  

 

Table 4. hyperparameter tuning and cross-validation parameters for RF and GB 
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The results indicated that Gradient Boosting slightly outperformed Random Forest in terms 

of accuracy and F1-score for Class 1, but Random Forest showed a better balance across all 

metrics. 

5 Conclusions  

 

This study demonstrates the significant impact of machine parameters on the quality of 

plastic injection moulded parts. Using Machine Learning (ML) techniques, including logistic 

regression, Random Forest, SVM, and Gradient Boosting Classifier (GBC), The part quality 

was predicted effectively. Data from a calibrated injection moulding machine confirmed that 

hydraulic pressure (HP), screw position (SP), nozzle temperature (NT), and heating water 

temperature (HWT) are key factors. Among the ML models, Gradient Boosting Classifier 

achieved the highest accuracy at 98.55%, with both Gradient Boosting and Random Forest 

showing excellent performance and minimal misclassifications. ROC analysis validated the 

models' effectiveness, and hyperparameter tuning further refined their accuracy. 

In conclusion, advanced ML techniques can significantly enhance the prediction and 

improvement of part quality in plastic injection moulding, providing a solid foundation for 

process optimization in various industries. 
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