
• Glass fibres (GFs) account for over 90% of reinforcement fibres used in fibre-reinforced composites 

• Innovation is required in glass reinforced thermoplastics to support the transition to low-carbon vehicle platforms 

• Flat glass fibres (FGFs) developed to improve mechanical & physical properties in injection moulded parts 

• Flat glass fibres are fibres with a ‘flattened elliptical’ cross-section 

• Composite property improvement thought to be related to reported increased in residual FGF length  

• Very little academic literature to support industrial uptake 

• In depth study required to correlate differences in fibre properties to composite microstructure and properties 
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• The cross-sectional area (CSA) of FGFs was characterised & compared against circular fibres of same composition 

• Established that accurate characterisation of FGF CSA only possible using Scanning Electron Microscopy (SEM) 

• Attempts to measure FGF CSA from less resource intensive optical microscopy were unsuccessful 

• With optical microscopy significant edge effects observed; SEM has higher magnification and minimal edge effects 

• Significant difference in tensile properties found depending on CSA observation method used: 

Figure 1: SEM mages of flat glass fibres, highlighting the sometimes-skewed nature of the observed cross-section . 

• Tensile strength characterised at 20mm, 40mm and 80mm gauge lengths 

• Sized flat glass fibres found to be significantly stronger than circular sized fibres (CGFs); PA compatible sizing 

• No significant difference overserved between unsized flat and circular fibres 

• Fibre length degradation occurs throughout the compounding and injection moulding process  

• Tensile strength is directly correlated to the residual fibre length of injection moulded composites  

• Tensile properties assessed in PA6,6 reinforced glass of varying glass weight contents: 30-55  wt% 

• Use of FGF only have significant improvement on properties at high weight fractions when dry as moulded (DaM) 

• SEM is required for accurate characterisation of FGF CSA; FGFs frequently show skewed cross-sections 

• Sized FGFs have improved tensile properties over CGFs; failure behaviour of FGFs is different to CGFs 

• Use of FGFs leads to increased residual fibre length at same wt% of fibre when compared to CGFs 

• Improved DaM composite tensile properties with FGFs only noted at high fibre weight fractions  

• Significant improvement in boiling water conditioned composite tensile properties with FGFs  

 

Optical 

transverse diameter 

Optical 

cross-sectioned 

SEM 

cross-sectioned 

Mean Cross Sectional Area (μm2) 145 ± 6 134 ± 9 143 ± 7 

Mean Fibre Tensile Strength (MPa) 2080 ± 100 2315 ± 158 2345 ± 174 

Figure 2: Tensile strength of flat and circular, unsized and sized fibres, at 20 mm, 40 mm and 80 mm gauge length, with 95% confidence interval error bars 

Figure 3: Failure behaviour of circular and flat, sized and unsized fibres, at 20 mm gauge length, where: S, denotates shattered fibres; C, fibres which broke cleanly 

with remains; B/T, fibres which broke cleanly with remains near the end tabs.  

Table 1: Mean CSA and tensile strength of unsized, circular fibres, 20mm gauge length, with CSA measured by different methods , 95% confidence interval  error. 

Figure 5: Fibre length distributions for virgin input chop and residual fibre length in composite (PA6,6) bars with 30wt% fibre, circular fibres left, flat fibres right. 

Figure 6: Arithmetic and volume mean residual fibre length of circular and flat fibre reinforced polyamide 6,6, composites.   

Figure 7: Tensile strength and modulus (left), and Energy to yield and Failure strain (right), of unconditioned (DaM) flat and circular reinforced polyamide 6,6, at 30-

55wt% fibre content, with 95% confidence interval error bars.  

• After 24 h conditioning in a water bath at 100oC (and subsequently tested at room temperature), FGF have a 
significant influence on room temperature tensile properties 

Figure 8: Failure strain and Failure strength (left), and Energy to yield and tensile modulus (right), of conditioned (24 h boiling water) flat and circular reinforced poly-

amide 6,6, at 30 wt%, 45 wt% and 55 wt% fibre content, with 95% confidence interval error bars.  

• This significant influence after conditioning is consistent with predictions based upon micromechanical modelling 

• In order to fully understand the origins of these differences, characterisation of Interfacial Shear Strength and fibre 
orientation also required in future works 

Figure 4: Fractography analysis using SEM showing different fracture surfaces of glass fibres after tensile testing 

• Residual fibre length found to be greater in flat glass fibre reinforced polyamide 6,6 (PA6,6) than circular fibre 

• Data supports hypothesis that lower fibre second moment of area leads to less fibre breakage during processing 

• Differences in failure behaviour noted for flat and circular fibres across different gauge lengths; FGFs shatter less 

• Fractography observations show the different types of failure behaviour of flat glass fibres  

• Observed that FGF shape is not always ‘perfectly flat’; many fibres show skewed cross-sections 
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