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Abstract: The growing interest in renewable energy solutions for sustainable development has
significantly advanced the design and analysis of floating offshore wind turbines (FOWTs). Modeling
FOWTs presents challenges due to the considerable coupling between the turbine’s aerodynamics and
the floating platform’s hydrodynamics. This review paper highlights the critical role of computational
fluid dynamics (CFD) in enhancing the design and performance evaluation of FOWTs. It thoroughly
evaluates various CFD approaches, including uncoupled, partially coupled, and fully coupled models,
to address the intricate interactions between aerodynamics, hydrodynamics, and structural dynamics
within FOWTs. Additionally, this paper reviews a range of software tools for FOWT numerical
analysis. The research emphasizes the need to focus on the coupled aero-hydro-elastic models of
FOWTs, especially in response to expanding rotor diameters. Further research should focus on
developing nonlinear eddy viscosity models, refining grid techniques, and enhancing simulations for
realistic sea states and wake interactions in floating wind farms. The research aims to familiarize new
researchers with essential aspects of CFD simulations for FOWTs and to provide recommendations
for addressing challenges.

Keywords: computational fluid dynamics; floating offshore wind turbines; uncoupled CFD models;
partially coupled CFD models; fully coupled CFD models

1. Introduction

The increase in global population and industrial activities has driven up energy
demand [1]. The rapid depletion of fossil fuels and other non-renewable resources has
shifted attention toward renewable energy, seen as a source of sustainable and affordable
power [2]. Recently, the focus on developing and utilizing offshore wind energy has
intensified, leading to substantial improvements in the designs, construction, operations,
and maintenance of offshore wind turbines. Offshore wind energy, compared to its onshore
counterpart, offers clear advantages such as consistently higher wind speeds, reduced
turbulence, more available space, and no visual or noise pollution [3].

Wind turbines located offshore are categorized into two types: bottom-fixed turbines
and FOWTs. The base of the bottom-fixed turbines is embedded into the ocean floor,
whereas FOWTs utilize buoyant support structures that are linked to the seabed by moor-
ing lines [4]. For bottom-fixed turbines, a key limitation is that they are suited only for
water depths up to 60 m. If the depth exceeds 60 m, known as deep water, the expense
associated with constructing and mounting their foundations escalates sharply, rendering
them economically impractical for commercial use [5]. Interestingly, more than 80% of wind
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resources are found in areas where the water depth is more than 60 m. To economically
exploit these deep-sea wind resources, FOWTs have been crafted and refined. Notably, the
mooring system of FOWTs contributes significantly to costs, with mooring line lengths
typically quadrupling the water depth. Additionally, the technology supporting FOWTs is
less developed when compared to bottom-fixed turbines, resulting in higher levelized costs
of energy (LCOEs), which currently hinders their widespread commercial adoption [6].
Projections indicate that the LCOE for bottom-fixed turbines will see a reduction of 70%
from the levels in 2015 by the year 2025, with FOWTs expected to follow a similar cost
reduction trajectory by 2030 [7].

FOWTs, due to rotation axis, are further categorized into two main types, namely,
vertical axis wind turbines (VAWTs) and horizontal axis wind turbines (HAWTs). The blades
of the turbines in HAWTs rotate around the horizontal axis, which means they are parallel
to the direction of the wind. On the other hand, the blades of the turbines in VAWTs rotate
around the vertical axis, positioning them perpendicular to the wind direction. In terms of
construction, a heavy generator is positioned at the top of the tower in HAWTs, whereas,
for VAWTs, the generator is located at the bottom. HAWTs necessitate a yaw control
mechanism to adjust the rotor’s orientation in alignment with the wind direction. VAWTs,
conversely, have the capacity to produce energy from winds arriving from all directions.
A significant limitation of VAWTs is their reduced effectiveness in energy production
compared to HAWTs [8]. Owing to their superior performance, most floating offshore
structures worldwide prefer HAWT technology. For a more thorough examination of
VAWTs, references [9–11] in the literature offer extensive discussions. Nevertheless, the
central theme of this paper is dedicated to examining HAWTs.

In the upcoming years, FOWTs are anticipated to surpass bottom-fixed turbines regarding
cost-effectiveness for commercial usage, driven by substantial advancements in technology.
Nonetheless, the design process for FOWTs still requires intensive attention and additional
effort in several crucial areas. One significant concern remains the vigorous interaction
among the turbine and its buoyant base. Different from their bottom-fixed counterparts,
FOWTs display pronounced unsteady aerodynamic behaviors caused by the movements of
the floating structures, which are influenced by ocean waves and current [12]. Furthermore,
the motion dynamics of these platforms are heavily impacted by the aerodynamic forces that
act on the turbine blades and are then conveyed through the structure of the tower. Beyond
the dynamics between hydrodynamics and aerodynamics in FOWTs, an additional major
consideration remains the aeroelastic effects that arise from increasing the diameter of the
rotor blades. Although the initial LCOE for FOWTs remains higher than that for onshore
turbines, technological progress in the rated power of offshore turbines is expected to lead to
a reduction in costs by approximately 8.5%, surpassing the benefits seen in improvements
to aerodynamics and the design and setup of floating platforms [13]. This shift towards
larger FOWTs is aimed at making them more economically viable in commercial markets, thus
highlighting the significance of the aeroelastic responses of the blades. Moreover, issues such as
fatigue loads and the potential for structural failures in turbine blades are increasingly critical,
especially under extreme marine conditions. Therefore, with FOWTs moving towards larger
sizes and deeper offshore implementations, there is a pressing need for more comprehensive
and detailed studies on their fully integrated aero-hydro-elastic performance to enhance their
dependability in varied wind and wave conditions.

Research on FOWTs is divided into three distinct segments: prototyping, scaled-down
experimental studies, and numerical simulations, each of which is extensively reviewed
in the academic literature [14–19]. Advances in high-performance computing (HPC) have
significantly enhanced the scope and focus on numerical simulations for FOWTs. Various
specialized codes have been formulated for this purpose [20]. Notably, the use of the
blade element momentum (BEM) approach [21] and potential flow (PF) techniques [22] are
prevalent in the preliminary stages of FOWT design. However, these economical models,
while saving computational resources, fall short in capturing viscous phenomena, which
are crucial for the accurate prediction of aerodynamics associated with turbine blades,
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towers, and hubs, as well as the hydrodynamics of floating platforms. To address these
limitations, additional corrective models are often required to refine BEM outputs to ensure
accuracy [23]. The capability of BEM to predict aerodynamic loads accurately warrants fur-
ther comprehensive study, especially given the complex inflow conditions associated with
FOWTs from platform movements. Moreover, the capacity of potential-based techniques in
capturing the intricate flow dynamics and nonlinear behaviors is limited, as they cannot
effectively represent flow separation around the platforms. By contrast, the application
of high-fidelity CFD can overcome these drawbacks [24]. Although initially costly, the
computational expense of CFD is expected to decrease, becoming more economically viable,
as a result of the continued progress in HPC technologies. Hence, this study prioritizes the
application of high-fidelity CFD techniques in the ongoing development and refinement of
FOWT design strategies.

FOWTs represent a critical focus of contemporary research, with a substantial body
of literature examining their hydrodynamic and aerodynamic characteristics [8,25–30].
Our review uniquely addresses the comprehensive application of CFD in the design and
analysis of FOWTs, focusing extensively on the spectrum from uncoupled to fully coupled
modeling techniques. This detailed focus on CFD differentiates our work from Subbu-
lakshmi et al. [8], who review broader experimental and numerical methods, and from
Wang et al. [17], who concentrate on aerodynamic interactions and platform dynamics.
While Edwards et al. [29] provide a historical perspective on FOWT platform designs, our
review explores the advanced CFD techniques that are crucial for the next generation of
FOWT design. Moreover, although Ojo et al. [31] discuss the optimization frameworks
within FOWT substructures, our review specifically identifies the integration of CFD within
these frameworks to enhance design accuracy and efficiency. Similar to Xu et al. [32] and
Zhang et al. [33], our paper highlights the importance of high-fidelity CFD simulations;
however, we advance the discussion by proposing specific improvements, such as nonlinear
eddy viscosity models and enhanced grid techniques, which are crucial for addressing the
complex dynamics of FOWTs. Our review thereby not only fills a critical gap in detailing
CFD’s role in advancing FOWT technology but also sets forth a clear direction for future
research, offering substantial contributions to both the academic and practical aspects of
renewable energy development.

The remainder of this paper is organized into several key sections: Section 2, “Mech-
anisms and Dynamics of FOWTs”, provides a detailed discussion on the various compo-
nents and dynamic interactions within FOWTs. Section 3, “Numerical Modeling”, presents
methodologies for simulating FOWTs, discussing uncoupled to fully coupled analysis
techniques, and, also, the implications for design and analysis accuracy. Section 4 “CFD
Modelling for FOWTs Analysis”, explores the specific application of CFD in enhancing
the understanding of aerodynamic and hydrodynamic behaviors critical to FOWT perfor-
mance. Section 5, “Challenges and Recommendations”, outlines existing research gaps
and methodological limitations, and proposes strategic directions for advancing the field.
The paper concludes in Section 6, “Conclusion”, summarizing the findings, emphasizing
the importance of CFD in the design of FOWTs, and suggesting future research directions
to improve their effectiveness and efficiency.

2. Mechanisms and Dynamics of FOWTs
2.1. Overview

The FOWT is composed of multiple components, which include the wind turbine itself
(featuring the rotor, nacelle, and tower for electricity generation), a floating platform that
supports the turbine, and an anchoring system designed to stabilize the platform’s position,
as depicted in Figure 1. Differing from fixed offshore turbines, FOWTs experience contin-
uous motion because they operate in complex environmental conditions. The dynamic
movements of the floating structure are influenced not only by the direct impact of the
wave and current loadings on the platform but also by wind forces impacting the turbine,
affecting the comprehensive system load and the resultant dynamic responses. Moreover,
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the system’s six DOF movements comprising translational movements (surge, sway, and
heave) and rotational movements (roll, pitch, and yaw) alter the turbine’s position and
orientation. These changes affect the relative speed of the wind encountered by the turbine
blades, thereby impacting the aerodynamic performance and energy production capabil-
ities. The integration of the anchoring system adds another layer of complexity, as the
platform is both constrained and supported by the anchoring forces, which are themselves
dependent on the platform’s kinetic behavior. Figure 2 illustrates the interactions among
the various FOWT components. Therefore, it is crucial to consider these interconnected
effects during the design phase of an FOWT to ensure optimal performance and stability.
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FOWTs are categorized by their support structures, with several common types show-
cased in Figure 3. In areas where the water is shallow, offshore wind turbines typically
utilize fixed supports such as monopiles or jackets. Yet, as the depth exceeds 50 m, these
fixed supports prove to be neither reliable nor cost-effective, prompting the development
of floating platforms. The significant benefits of FOWTs in deeper water include more
consistent wind conditions and a reduction in environmental disturbances; they generate
less noise and are virtually unseen from the shore [31]. Furthermore, specific floating
platform designs can be constructed at a port and then towed to their operational locations,
streamlining both installation and ongoing maintenance. With these advantages, FOWTs
are expected to gain a competitive edge in future energy markets.
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2.2. FOWT Assembly and Control System

Major structural elements of a wind turbine include the assembly (tower and the
rotor-nacelle, with the latter comprising blades, a drivetrain, the nacelle, and the hub).
The effective modeling of these components is crucial in order to accurately assess structural
deformations, which directly impact the loads from wind and waves that the FOWTs must
withstand. Commonly, flexible elements like towers and rotor blades are depicted through
a linear modal framework [36]. Mode shapes for these components are established through
eigenvalue calculations, and, typically, only the primary modes are utilized in the analysis.
The drivetrain’s dynamics are captured with a sole torsional mode. The nacelle and hub,
on the other hand, are considered rigid bodies connected through flexible connections.
The approach called lumped mass, incorporating linear stiffness and damping, is applied
to model rigid elements [37]. These methods, while straightforward, are suited primarily
for small-scale deformations. A more advanced method involves employing flexible–rigid
multibody simulations that incorporate various complexities to better understand the
interactions between the FOWT’s different structural modes [38]. This approach, however,
tends to require a greater number of computational resources and time.

FOWTs are equipped with sophisticated control systems that include a range of sen-
sors and actuators. The controller’s main function is to process data from these sensors and
send appropriate commands to the actuators. This enables optimal power extraction from
the wind while maintaining the turbine’s safe operation, mitigating loads, and preventing
malfunctions. The operational modes of the turbine are categorized in different regions, ac-
cording to wind velocity, each with specific control objectives, depicted in Figure 4. Region
1 is characterized by wind speeds that are too low to activate the turbine, keeping it in an
idle state without generating power. In Region 2, which extends from the initiation to the
maximum wind velocities, the power output rises with increasing wind speed. Achieving
maximum power in this area may involve adjusting the rotor’s angular velocity [39,40] or
the torque [41], as discussed in detail by Kumar and Chaterjee [42]. The transition zone
between regions 2 and 3 uses fixed blade pitch angles and closed-loop torque manage-
ment to maintain a steady rotor speed. Region 3 covers wind speeds from the maximum
to the cessation limits, where the output is maintained steady at the maximum power.
Therefore, in this zone, controllers of blade pitch [43,44] modify the pitch to keep the
power output stable, helping control the generator’s speed and minimizing mechanical
strain on the structure. Region 4 involves shutting down the turbine using mechanical
brakes to protect against damage from severe wind gusts. Additional structural stability
is provided by apparatuses like tuned mass dampers [45–48], tuned liquid dampers [49],
and damping elements [50,51]. Each of these control strategies and their purposes are
systematically outlined in Table 1, showcasing the different operational approaches used in
FOWT management.
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Standard control methods are generally appropriate for systems that function with
one input and one output. However, considering multi-input multi-output (MIMO) config-
urations for FOWTs could significantly enhance their efficiency. In pursuit of this, several
sophisticated control approaches tailored to MIMO configurations have been implemented
in FOWT applications. Among these progressive methods are the linear quadratic regula-
tor [52], sliding mode control [53], linear parameter varying control [54], model predictive
control [55], and H-infinity control [56]. These approaches generally depend on a simplified
model of the system, and the presence of unmodeled dynamics might impair the overall
system performance. Presently, there is an increasing exploration of data-driven control
methods, which influence the actual input–output data from the system to formulate con-
trol designs. This area of study is looking into various machine-learning techniques, such as
genetic algorithms, reinforcement learning, and bio-inspired methods, to develop optimal
control strategies for FOWTs [57]. These modern techniques are being examined for their
potential to enhance control precision by utilizing real-time data, thus allowing for adaptive
responses to changes within the system.

2.3. FOWT Floating Platform Types

A standard design does not exist for floating platforms; instead, four main types are
recognized, each tailored for optimal performance in particular environmental conditions
due to distinct advantages and limitations. These types are semi-submersibles, barges,
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tension-leg platforms (TLPs), and spar buoys, showcased in Figure 5. Detailed information
on each platform type is provided in the sections that follow. Additionally, these platforms
are categorized based on their stability mechanisms, which are illustrated in Figure 6.
A comprehensive overview is provided in Table 2.
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Table 2. Design concept comparisons.

Semi & Barge TLP Spar

Mooring Lines 3–5 5–7 3–4
Water Depth (m) 50–300 50–350 100–400

Footprint Large small Large
Seabed Condition Unlimited Limited Unlimited

Assembly Port-side Port-side Offshore
Capital Expenditures Low Medium High

2.3.1. Spar Buoy

The floating platforms called spar buoys employ substantial cylindrical forms, stabi-
lized with ballast and secured using catenary mooring systems. Typically constructed from
steel or concrete, these cylinders are ballasted with water and soil to ensure the substruc-
ture’s lower half is heavier, while the upper half, closer to the surface, remains lighter and
has a large draft. The key benefit of the design of spar buoys is the simplicity and superior
solidity, facilitating easier standardization and normalization. However, the significant
size of these structures tends to increase the overall cost of the platform. Moreover, the
necessity for a substantial draft indicates that these platforms must be positioned in deeper
marine environments [59].

2.3.2. Tension-Leg Platform (TLP)

The TLP utilizes a submerged buoyant structure securely fastened to the seabed using
a taut-leg mooring setup known as vertical tendons, constructed from steel to enhance the
platform’s buoyancy and stability. The primary benefit of this platform type is its relatively
smaller and lighter substructure, which translates to lower material expenses. The taut-leg
system creates vertical tension at the anchoring points and requires a smaller area due
to its compact footprint. Anchor solutions such as gravity anchors, suction anchors, or
anchor piles are selected based on the seabed’s condition and geological characteristics to
handle significant vertical forces. However, should the tendons fail, there is a risk of the
platform capsizing. Stability issues are prominent with the TLP prior to anchorage, and it
is challenging to disconnect once deployed. Moreover, if wind turbines are assembled and
serviced onshore or in a dry dock, considerations for their transportation to the site become
crucial. These aspects increase operational risks and add complexity to the construction
process [60].
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2.3.3. Semi-Submersible

The semi-submersible floating platform combines two distinct design approaches.
It employs a distributed buoyancy-stabilized system and uses a catenary mooring system
to connect to the sea floor, ensuring stability. This type of platform has a shallower draft
compared to the spar-buoy platform, typically less than 10 m. This allows for deployment
in waters with depths of about 40–50 m [59]. Additionally, the reduced draft enables the
wind turbine systems to be installed at harbor facilities and then transported offshore using
tug boats. A key benefit of semi-submersible platforms is their adaptability to various water
depths, utilizing internal ballast for stabilization adjustments. Regarding operation and
maintenance (O&M), this structure considerably reduces the requirement for employees
and machinery [59].

2.3.4. Barge-Type

The design of the barge floating platform is an expanded version of the semi-submersible
model. This platform comprises either a concrete or steel hull that maintains buoyancy with a
shallow draft, specifically structured to sustain wind turbine systems. It employs a distributed
buoyancy-stabilization approach, utilizing a broad, weighted water plane area for stability.
The barge’s layout features either a square or ring-like shape with a central area known as the
moon pool, which mitigates wave-induced movements by absorbing wave loads. Due to its
geometrical design, the extensive surface area of the platform is well-suited to accommodating
transmission equipment. The design also facilitates straightforward maintenance and repair
activities [61].
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2.4. Mooring Lines

Mooring lines are essential for stabilizing floating platforms in the ocean, helping
to secure their position and provide stability against environmental loads. These lines
fall into two primary categories: taut and catenary mooring. FOWTs typically utilize a
multi-point mooring setup, incorporating numerous attachment points for the mooring
cables. Recently, single-point mooring (SPM) configurations, which connect mooring cables
at a single attachment point, have been implemented for FOWTs [63]. A novel SPM system
proposed by Nihei et al. [64] functions as a weathervane, allowing a floating structure with
a downwind rotor to rotate unrestricted, thereby eliminating the need for a yaw control
system. The dynamic behavior of mooring lines is depicted through various models of
differing complexity. These models and their features are illustrated in Figures 7 and 8.
Figure 7 details the quasi-static mooring model, considering seabed interaction and line
elasticity. Figure 8 describes dynamic models that incorporate additional factors such as
seabed interaction, line elasticity, bending stiffness, inertia, and damping. Further details
about these models are explored in the sections that follow.
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2.4.1. Quasi-Static Approach

These frameworks calculate the tension analytically in the mooring cables and op-
erate under a quasi-static framework, treating each mooring cable as a singular linear
element [65]. They integrate effects such as buoyancy, line elasticity, and seabed friction.
However, these frameworks omit considerations of inertia, hydrodynamics, and damping
effects on the mooring cables. One significant limitation of these frameworks is that they
only provide restoring forces constrained to the plane aligned with the mooring cable.
To address this restriction, Masciola et al. [66] developed a method using multi-segment
line elements for the mooring cables, which allows for assessing the restoring forces in
multiple directions, thus enhancing their suitability for practical anchoring configurations.

2.4.2. Lumped Mass Approach

In modeling, mooring cables are considered as multibody elements that are connected
by dampers and springs [67]. The interaction between the mooring cable and the seabed is
represented through a Coulomb friction element. To calculate the restoring forces exerted
by the mooring cables, a series of differential equations that ensure dynamic equilibrium
and continuity at each multibody system node are formulated and resolved. One limitation
of the lumped mass frameworks is their lack of consideration for the torsional stiffness
in mooring cables. However, the benefit of using lumped mass frameworks lies in their
utilization of the same mathematical approach for representing the equilibrium of the
structural dynamic, which is similarly employed in modeling turbine towers. This uni-
formity allows for a single module to simulate both the towers and the mooring cables
effectively. The simplicity of these frameworks has led to their widespread adoption among
researchers [12].

2.4.3. Finite Element Modeling Approach

Hydrodynamic and inertia effects, which are neglected by the quasi-static approach,
can impose additional forces on mooring cables. Situations such as snap loading caused
by mooring cable failure necessitate the use of dynamic models for proper evaluation.
Adopting finite element methods (FEMs) allows for a more sophisticated approach to
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accurately simulating mooring cable behavior in these instances. FEM models are capable
of incorporating both torsional and bending stiffness into the mooring line calculations.
Although utilizing finite elements for the detailed discretization of mooring lines enhances
model accuracy, it also significantly increases computational time and costs. Numerous
studies have examined the critical role of the dynamic modeling of mooring lines, partic-
ularly their responsiveness across various water depths. Ishihara et al. [68] evaluated a
semi-submersible platform’s behavior using both a linear spring-damper model and an
FEM model of mooring lines alongside experimental data, pinpointing the deficiencies
of linear approaches. Hall et al. [69] explored how mooring line fidelity affects FOWT
response, discovering that quasi-static models could lead to a 30% error in assessing
damage-equivalent and extreme loads during significant platform movements. Azcona
et al. [70] developed software that utilizes an FEM model for mooring lines, which accounts
for axial elasticity, nonlinear hydrodynamics, and interactions with the seabed. Due to
their intensive computational demand, these models are generally recommended for use
only in the latter stages of design. In addition to these, the MooDy FEM mooring code,
which is based on a discontinuous Galerkin FEM formulation [71], has been applied in
the coupled mooring analysis for floating wave energy converters (WECs) using CFD.
This approach enables the detailed and accurate modeling of the dynamic interactions
between the mooring lines and the floating structures, improving the reliability of the
simulations for WEC applications [72].

2.5. Anchoring System

The selection of an anchoring system is influenced by the type of mooring system in
use, the necessary anchoring capacity, and the seabed conditions. Drag-embedded anchors
typically support catenary mooring lines. For taut mooring lines, which are subjected to
substantial vertical loads, the preferred choices are gravity or drive/suction piles anchors.
The anchoring system’s capacity is determined by the sizes of the anchor as well as the
condition of the seabed. Notably, the anchoring strength in sand and hard clay surpasses
that in soft clay. Detailed information on various anchoring systems is documented in the
reference [73]. The different anchoring systems applicable to FOWTs are outlined in Table 3.

Table 3. FOWT anchoring systems. Reproduced with permission from [8], Elsevier, 2022.

Anchors Properties

Gravity anchor
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proach enables the detailed and accurate modeling of the dynamic interactions between 
the mooring lines and the floating structures, improving the reliability of the simulations 
for WEC applications [72]. 

2.5. Anchoring System 
The selection of an anchoring system is influenced by the type of mooring system in 

use, the necessary anchoring capacity, and the seabed conditions. Drag-embedded an-
chors typically support catenary mooring lines. For taut mooring lines, which are sub-
jected to substantial vertical loads, the preferred choices are gravity or drive/suction piles 
anchors. The anchoring system’s capacity is determined by the sizes of the anchor as well 
as the condition of the seabed. Notably, the anchoring strength in sand and hard clay sur-
passes that in soft clay. Detailed information on various anchoring systems is documented 
in the reference [73]. The different anchoring systems applicable to FOWTs are outlined in 
Table 3. 

Table 3. FOWT anchoring systems. Reproduced with permission from [8], Elsevier, 2022. 

Anchors  Properties 

Gravity anchor 
 

Installation and retrieval are easy 
Capacity is governed primarily by soil type and weight 

Drag anchor 

 

Installation is fast 
Capacity depends on soil type, and penetration depth achieved 

Retrievable 

Suction anchor 

 

Not suitable for very stiff clay/thick sandy stratum 
Capacity is governed by suction anchor size 

Installation is aided by underwater remotely operating vehicle 
Retrievable 

Driven pile 

 

Pile drivability analysis is required to ensure the capacity 
Installation is aided by hammer 

Recovery is difficult 

  

Pile drivability analysis is required to ensure the capacity
Installation is aided by hammer

Recovery is difficult

3. Numerical Modeling
3.1. Background

For numerical modeling purposes, the FOWT is typically analyzed across three inter-
related domains: hydrodynamics, structural dynamics, and aerodynamics, as shown in
Figure 9. These domains are modeled using various approaches (uncoupled, partially cou-
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pled, and fully coupled), different levels of fidelity (low, medium, and high), and software.
An explanation is provided in the following sections.
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3.1.1. Analysis Approaches

(A) Uncoupled: FOWTs face the dynamic environmental forces of wind and waves. To
thoroughly understand the global structural behavior of FOWTs, it is important to consider
the simultaneous impacts of the forces of wave and wind using an integrated analysis
approach. Yet, incorporating the movement of both the turbine and the floating structure
adds complexity to the experimental setups and numerical models. The capability to
perform these complex experiments is often limited by the existing facilities, both in terms
of computing and practical experiment resources. To avoid these limitations, an uncoupled
analysis method is utilized for FOWTs. This method simplifies the process by analyzing
the effects of wave and wind conditions separately rather than together. For instance,
the hydrodynamic behavior might be studied by subjecting the floating structure with a
turbine model to wave conditions only, either in a wave-testing facility or through targeted
numerical models. Similarly, the aerodynamic behavior can be analyzed by testing a scaled
model of the turbine in an aerodynamic testing facility or through models that specifically
exclude wave and floating structure effects.

(B) Partially coupled: In the analysis of a partially coupled approach, both aerodynamic
and hydrodynamic factors are considered, although one is typically streamlined to enhance
the examination of the other. For instance, when evaluating the hydrodynamic behavior
of a floating structure equipped with a turbine, the aerodynamic elements are estimated.
Conversely, when the emphasis is on aerodynamics, the motion of the floating structure
is simulated in a systematic way using an induced oscillation technique. This method
effectively simplifies the analysis. Employing this technique, the overall behavior of the
FOWTs facing combined wave and wind forces can be assessed, either via scale-model
experiments in a wave-testing facility or through numerical simulations conducted under
partially coupled conditions. In these tests, the floating structure with a turbine model
is exposed to both wave and wind impacts, although with some wind load estimates.
Likewise, the response of the floating structure to wave influences can be replicated as
induced oscillations in specific DOF on a scaled turbine model within an aerodynamic
testing facility.

(C) Fully coupled: The analysis of partially and uncoupled FOWTs do not entirely
capture the intricate interactions involving the movement of the floating platform and wind
turbine, as these methods tend to approximate either the aerodynamic or hydrodynamic
aspects. Therefore, to accurately assess the true behavior of FOWTs under simultaneous
wave and wind forces, a completely coupled analysis is essential. This comprehensive
analysis typically involves numerical simulations, which can be conducted through CFD
or via other simulation tools such as HAWC2 [74], FAST [75], and Bladed [76]. In exper-
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imental settings, hybrid methods are employed to effectively merge aerodynamic and
hydrodynamic studies.

3.1.2. Fidelity

(A) Low fidelity: In the initial phases of the design, these models are extensively
employed to establish the preliminary sizing and formations for FOWTs. They typically
rely on steady-state, quasi-static, or static analyses. Examples of low-fidelity models used
in this context are analyses focused on hydrostatic stability and equilibrium, hydrodynamic
assessments in the frequency domain, empirical methodologies, and simplified state-space
models. These models are crucial for setting initial parameters and configurations in the
design process.

(B) Medium fidelity: In the phases of design validation and optimization, these mod-
els are employed to primarily capture the essential behaviors of FOWTs. The models are
designed to be less detailed, prioritizing speed over precision in simulations during these
critical design stages. Techniques such as model testing, forced oscillation, and comprehen-
sive aero-hydro-servo-elastic simulations are typical examples of partially coupled methods
included in this approach. These methods strive to achieve an optimal balance between
rapid simulation capabilities and the necessary accuracy for effective design evaluation.

(C) High fidelity: These are the models employed during the ultimate phase of design
verification. The core governing equations are implemented with minimal simplifications.
Due to their complexity and the time required, these methods are primarily utilized to
refine the design. High-fidelity approaches include coupled FEM and CFD simulations,
as well as real-time hybrid simulations (RTHSs). These advanced methods offer detailed
insights essential for precise design adjustments.

Furthermore, the methods mentioned in Figure 9 are categorized according to their
fidelity levels in Table 4.

Table 4. FOWT numerical methods and their fidelity.

References Methods Fidelity Category

[77] Boundary Element Momentum Theory (BEMT) Mid Aerodynamic
[78] Potential Flow (PF) Mid Aero-/hydrodynamic
[79] Free Vortex Wake Method (FVW) Mid Aerodynamic
[80] Generalized Dynamic Wake Method (GDW) Mid Aerodynamic
[81] Finite Element Method (FEM) High Structural
[82] Quasi-Static Method (QS) Low Structural
[83] Dynamic Method (Dyn) Mid Structural
[84] Morison Equation (ME) Mid Hydrodynamic
[85] Boundary Element Method (BEM) Mid Hydrodynamic
[86] Computational Fluid Dynamics (CFD) High Aero-/hydrodynamic

3.1.3. Software

Analysis programs designed for FOWTs employ specialized components to tackle differ-
ent aspects such as mooring dynamics, structural dynamics, hydrodynamics, and aerodynam-
ics. The structural dynamics components simulate the flexible segments of the FOWTs, which
can be modeled with rigid components, modal foundations, multibody systems integrated
with dampers and springs, or the FEM. Aerodynamic forces are evaluated using methods like
BEMT, GDW, or dynamic stall models. For hydrodynamic analysis, a hybrid methodology is
often utilized, combining PF theory with ME. Mooring dynamics are represented using QS
models, lumped mass strategies, or the FEM. Tables 5 and 6 provide a detailed comparison of
the abilities of numerous engineering analysis programs for FOWTs, and list several of the
most widely recognized high-fidelity programs in the field.
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Table 5. Capabilities for modeling in various engineering software.

References Code Structure Aerodynamics Hydrodynamics

[74] HAWC2 Dyn + FEM GDW + BEMT ME + PF
[75] OpenFAST FEM/Modal + QS/Dyn + RB FVW/GDW + BEMT ME + PF
[76] Bladed Modal GDW + BEMT With SIMA
[87] Orcaflex FEM + RB + Dyn With OpenFAST ME + PF
[88] Flexcom FEM + RB + Dyn With OpenFAST ME + PF
[89] SIMPACK FEM AeroModule/AeroDyn With HydroDyn
[90] SIMA Dyn + FEM BEMT ME + PF

Table 6. High-fidelity software.

References Code Numerical Method

[91] OpenFOAM CFD
[92] Ansys FEM + CFD
[93] Abaqus FEM + CFD
[94] Star CCM+ CFD
[95] CFDShip-Iowa CFD
[96] Code Saturne CFD
[97] REEF3D CFD

3.2. Hydrodynamics

Numerical modeling techniques for fluid dynamics challenges have primarily evolved
from maritime and offshore oil and gas sectors but are also relevant to FOWT platforms [98].
PF methods, ME, or a hybrid of both, are employed to compute wave excitations of the first
and second order. These mid-fidelity methods generally provide a good balance between
accuracy and computational efficiency but may encounter difficulties with intricate shapes
where the flow interference among components is not adequately addressed. The PF
technique [99] is utilized to determine the diffraction and radiation forces. The drawbacks
of PF include disregarding viscous forces and assuming minor vibration amplitudes com-
pared to the floating structure’s cross-sectional area. Numerical applications based on PF
theory utilize the BEM, which segments the floating structure into sections, calculating
fluid dynamics forces by integrating dynamic pressure across these submerged sections.
For frequency-domain PF solvers, the submerged form is established at hydrostatic equi-
librium in still water. In contrast, time-domain PF solvers often require pre-processed
hydrodynamic coefficients from frequency-domain PF solvers to establish the submerged
structure sections [26]. ME is typically employed for frameworks with slender cylindrical
components. It computes both inertial and viscous forces, making it suitable for structures
exposed to waves and currents, unlike PF, which only accounts for inertial forces. ME, ini-
tially introduced by Morison et al. [84] for stable, elongated cylindrical offshore structures,
is also applicable to FOWTs. However, ME does not consider changes in the wave pattern
caused by the floating entity. A hybrid strategy using PF methods and ME is implemented
when a single method alone cannot encompass all hydrodynamic effects. This combined
strategy is a computationally efficient alternative to complete the CFD modeling [100],
particularly valuable for FOWT platforms with substantial columns and thin supports, or
when viscous drag impacts are significant in harsh marine environments.

High-fidelity CFD models [101] solve complex flow problems using the Navier–Stokes
equation (NSE). CFD is generally employed for particular nonlinear issues, such as impact
loads from massive waves and detailed flow dynamics like vortex shedding near heave
plates. Additionally, CFD models can fine-tune parameters for lower-fidelity models
numerically, serving as an alternative to physical decay tests [102]. Comparing CFD models
directly with PF + ME models is complex [103]. The accuracy of each model depends
on various factors, including the load cases, whether steady-state or transient equations
are utilized for CFD, the tuning of hydrodynamic coefficients, mesh characteristics, user
expertise, and ensuring a converged solution. Achieving accurate results with PF + ME
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solutions requires several components, such as calculating second-order PF solutions, wave
stretching (considering wave forces beyond the free surface), and incorporating proper
viscous damping, especially when second-order PF forces are considered.

3.3. Aerodynamics

One of the most complex aspects of airflow dynamics for FOWTs involves changes
in relative wind speed due to the platform’s motion [104,105]. This phenomenon, known
as dynamic inflow or unsteady dynamics, can lead to an increase in rotor thrust loading,
also known as negative damping. Mid-fidelity, quasi-steady BEMT models [106] struggle
with accurately representing the dynamic inflow [107]. BEMT merges the momentum
and blade element theories, segmenting turbine blades into smaller divisions. The airflow
characteristics for each division are determined individually, and the overall rotor charac-
teristics are obtained by integrating these values. Quasi-steady BEMT models presume
the immediate balance of the turbine wake. Research, including studies by Henriksen
et al. [108] and Ferreira et al. [109], indicates that integrating a straightforward dynamic
inflow model enables BEMT models to effectively represent dynamic inflow effects while
keeping computational proficiency.

Advanced models utilizing PF and CFD techniques [110,111] can address dynamic inflow,
although this comes with a trade-off in computational speed. Recently, simulation tools have
started to include the FVW technique for airflow modeling [112,113]. With the growth in
rotor dimensions, it is increasingly crucial to accurately model airflow disturbances caused
by significant blade bending. The FVW technique offers a compromise in terms of precision
and computational speed between the CFD and BEMT methods. This method provides
in-depth wake modeling, which influences airflow dynamics on the rotor, through Lagrangian
vorticity discretization. The FVW technique has been incorporated into OpenFAST and other
industry software [114]. Additionally, the progression of the turbine wake and its influence
must be evaluated for their impact on FOWT dynamics, downwind turbines, and wind farm
configuration [115,116]. As mentioned earlier, choosing the right numerical method during
the design stages requires balancing the available resources and time against the desired levels
of precision and reliability in the model. Other factors include the specific load scenarios to be
investigated, the particular FOWT configuration, and the current stage of the design process,
whether in initial assessments or detailed analyses.

3.4. Structural Dynamics

The evolution from low to high fidelity in the structural modeling of FOWTs depends
on the scope, variety, intricacy, and precision of the responses they effectively address.
Low-fidelity models, in their simplest configuration, capture the overall rigid-body move-
ments or the actions of individual rigid components, making them suitable for comprehensive
stability evaluations but not for intricate deformation analysis [117]. These models are par-
ticularly advantageous for early-stage, rapid conceptual designs or evaluations. Sometimes,
certain segments of the system may be modeled stiffly while others are treated as flexible.
Mid-fidelity models are commonly characterized by components such as beams, cables, and
connectors, possessing both linear and nonlinear characteristics [118]. These models have
been utilized to analyze aerodynamic consistency and predict dynamic outcomes concerning
deformation and material properties [119–121]. They are formulated using differential equa-
tions and can be validated through scaled model tests, as a result of their non-dimensional
forms. Numerical implementation can incorporate factors such as damage due to chemical
or physical influences (e.g., corrosion) and biological accretions [122,123]. These mid-fidelity
models are also essential for evaluating safety concerning fatigue and ultimate limit states
(ULSs) via standardized evaluations [124]. Static analysis is used in the initial design phase to
assess loads, while time-domain modeling is necessary later to examine fatigue and significant
loads under varying operational, severe, and fault/start-up scenarios.

A prevalent technique in structural dynamics is the modal method, wherein certain
flexible DOF are characterized by their modes and mode shapes. This technique is employed,
for instance, to simulate blades and towers using FAST. At the most comprehensive fidelity
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level, FEM is applied to depict one or all aspects of the structure, encompassing the platform,
tower, blades, and mooring lines [125,126]. Different elements of the system are often modeled
with varying levels of fidelity based on the analysis goals and the comparative flexibility of
the elements. FEM models involve numerous DOF, and dimensional reduction is frequently
necessary in order to enhance computational efficiency [127]. For linear assessments or
approximations, a modal superposition method often yields a reliable response prediction
utilizing state-space models [128]. However, the effectiveness of these models depends on
precisely selected system parameters and suppositions regarding the physics and loading
excitation. Deviations from these suppositions can result in notable errors, as the response
data are expressed through a limited set of generalized modal coordinates.

Reduced DOF can also be obtained by calculating the rigid body kinematics of struc-
tural components and integrating them with pre-calculated elastic properties to estimate
deformations [38]. The BEM is another method frequently utilized for understanding
fluid–structure interactions, typically involving low-order meshing appropriate for rigid
structures [129–131]. Recently, the finite volume method (FVM) in a Simo–Reissner format
has been applied to significantly deformable structures [132,133]. The dynamic nonlinear
properties of mooring lines and power cables, including their long-term effects, inter-
connections, buoyancy elements, and ballasting impacts, are active research areas [134].
Traditional quasi-static models, computed based on the correspondence of relevant param-
eters at each time step, are employed for mooring dynamics due to their computational
simplicity. However, these models tend to underpredict restoring forces, especially in
severe sea conditions, and are less effective for platforms with catenary moorings and
natural frequencies close to peak wave frequencies [135,136]. Dynamic analyses, despite
higher computational demands, are preferred as they more accurately reflect experimen-
tal results. Efforts to enhance computational performance in these methods, including
frequency-domain techniques, are ongoing [137,138]. Structural modeling has evolved
to include complexity and detail, capturing a wide range of phenomena, responses, and
stochastic elements across different spatial and temporal scales through various discretiza-
tion techniques. Over time, the focus on computational simplicity has diminished with the
growth of computing capabilities and the increased availability of large-scale computing
resources for such analyses.

4. CFD Modelling for FOWT Analysis
4.1. CFD-Based Aerodynamics and Hydrodynamics

The dynamics of fluid flow around FOWTs can be most precisely described by re-
solving the NSE using CFD techniques [139]. These equations can be adapted to both
incompressible and compressible flow scenarios, depending on the physical characteristics
and the flow conditions of the study.

Compressible Flow
For scenarios where the fluid density varies significantly with pressure or temperature,

such as high-speed gas flows, the NSE are modeled for compressible flow:
The continuity equation is as follows:

∂ρ

∂t
+∇·(ρu)= 0 (1)

where ρ is the fluid density and u is the velocity vector of the fluid.
The momentum equations are as follows:

∂(ρu)
∂t

+∇·(ρu ⊗ u) = −∇p +∇τ + ρ f (2)

where p is the pressure, τ is the stress tensor, and f represents body forces
Incompressible Flow
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In scenarios where the fluid density does not significantly change, such as in many
hydrodynamic and aerodynamic applications related to FOWTs, the fluid is modeled as
incompressible. The incompressible NSE include the following:

The continuity equation is as follows:

∇·u= 0 (3)

The momentum equations are as follows:

∂u
∂t

+ (u·∇)u = −1
ρ
∇p + ν∇2u + f (4)

where ν represents the kinematic viscosity (ν = µ
ρ ), and µ is the dynamic viscosity.

In the modeling of FOWTs, the assumption of incompressible flow is extensively
utilized for both hydrodynamic and aerodynamic simulations. For hydrodynamics, this
assumption is justified by the properties of water and the low flow velocities typically
encountered around the turbine structures. These lower velocities mean that the water’s
density remains relatively constant, making it feasible to treat the water as an incompress-
ible fluid [78]. For aerodynamics, considerations of compressible flow become necessary
only if Mach numbers approach or exceed 0.3 [140]. However, the operational speeds of
wind turbine blades typically result in Mach numbers below this threshold. Therefore,
incompressible flow models are effective and accurate for both air and water interactions
with FOWTs, facilitating precise simulations of load predictions, motion responses, and
overall turbine dynamics [24,34,103,111,139]. This approach simplifies the analysis process
while ensuring an efficient and accurate assessment of FOWT performance.

The accurate aerodynamic analysis of FOWTs relies heavily on precise turbulence
modeling around the turbines [141]. For turbulent flow conditions, CFD uses three primary
methods to solve the NSE (unsteady Reynolds-averaged Navier–Stokes (RANS) equations,
large eddy simulation (LES), and direct numerical simulation (DNS)). DNS, when accurately
implemented, resolves turbulence up to the Kolmogorov scale with a very fine grid [142],
which is impractical due to its extremely high computational cost. Therefore, RANS and
LES are generally employed to either fully or partially simulate the effects of turbulence in
the flow [143].

LES captures the dominant energetic large eddies and parameterizes the effects
of smaller eddies, which have more universal properties, using a subgrid-scale model
(SGS) [144]. LES employs a spatial filter to separate the scales into large eddies and small
eddies [145]. Using this filter modifies the NSE in the following way:

∂ũi
∂xi

= 0 (5)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −1
ρ

∂ p̃
∂xi

+ ν
∂2ũi

∂xj∂xj
−

∂τij

∂xj
+ f̃i (6)

where the variables p̃ and ũi represent the pressure and filtered components of veloc-
ity. The term τij represents the SGS stress tensor that emerges in the NSE as a result of
spatial filtering. This tensor accounts for the effects of the unresolved smaller eddies.
The Smagorinsky model is the most prevalent method for computing τij [146]:

τmodel
ij ≈ −2νtS̃ij +

1
3

τkkδij (7)

where νt represents the eddy viscosity, defined based on the resolved velocity field; S̃ij is

the filtered strain rate tensor, defined as S̃ij =
1
2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
; and δij is the Kronecker delta.

Nevertheless, this model fails to address secondary flows and anisotropy in turbulence
because it relies on the Boussinesq hypothesis [147,148]. To overcome such shortcom-
ings, various additional SGS turbulence models have been suggested, including dynamic
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Smagorinsky models, anisotropic minimum dissipation models, scale-dependent dynamic
models, and mixed SGS models [149,150].

Given the rigorous requirements of LES for grid refinement in all three spatial dimen-
sions near solid surfaces to effectively model the turbulent boundary layer, its application
to turbine blades is typically deemed impractical. Consequently, LES is more commonly
utilized for modeling the wakes of turbines, where the turbine rotor is represented through
various actuator techniques such as the actuator surface (AS), actuator line (AL), and
actuator disk (AD) depicted in Figure 10 [151–153]. The adoption of actuator techniques
significantly reduces computational expenses by foregoing the detailed resolution of the
boundary layer adjacent to the blades. Additionally, to lessen the computational load of
LES, hybrid RANS-LES approaches are adopted, where the RANS equations model the
boundary layer close to the surface, and LES is applied to the unsteady separated regions
that are distant from the surface [154–157].
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Simulations utilizing RANS equations are among the most common methods for
assessing turbine aerodynamics with CFD techniques [158,159]. Likewise, hydrodynamic
forces exerted on FOWTs are typically determined using RANS equations combined with a
turbulence model, computed numerically via the FVM [160–162]. The equations known as
RANS, derived from the collective averaging of the NSE equations, are presented thus [163]:

∂ui
∂xi

= 0 (8)
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′
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where p and ui represent the ensemble pressure and components of mean velocity, varied
with spatial coordinates (xi) and time (t). The symbols ν and ρ correspond to kinematic
viscosity and fluid density, respectively. The Reynolds stress tensor u′

iu
′
j captures the effects

of turbulence. It is frequently modeled with the eddy viscosity (EV) technique which relies
on the Boussinesq hypothesis [164]:

u′
iu

′
j = −νt

(
∂ui
∂xj

+
∂uj

∂xi

)
+

2
3

kδij (10)

where k denotes turbulent kinetic energy and νt refers to the EV. The EV could be resolved
without resolving extra transport equations, as in Prandtl’s mixing-length model [165].
More advanced turbulence models (one-equation and two-equation) have been created
to compute EV more precisely [166–168]. The models (e.g., two-equation) k − ω shear
stress transport (SST), and k − ε are the most widely used for hydrodynamic assessments of
FOWTs [169,170], solving two transport equations to model turbulence. For aerodynamic
assessments of FOWTs, the models (two-equation), notably, k − ω SST and k − ω, are
also popular [171–175]. However, these models, relying on the Boussinesq hypothesis,
cannot capture turbulence anisotropy [176,177]. Therefore, more advanced models such
as realizable models, Reynolds stress turbulence (RST) models, and nonlinear EV models
are advised for precise aerodynamic load predictions [178–180]. RSMs provide the most
accurate results by solving separate transport equations for each Reynolds stress compo-
nent, although they demand more computational resources [181]. Nonlinear cubic and
quadratic EV models offer a more cost-effective alternative, effectively capturing turbulence
anisotropy. To further decrease computational demands, actuator methods are commonly
utilized to represent turbine rotors in the RANS framework [182–185].

In addition to deterministic methods, it is critical to incorporate stochastic methodolo-
gies to account for the random processes inherent in the marine environment. Stochastic
differential equations (SDEs) can be employed to simulate the variability in environmental
loads such as wind and waves, integrating these random fluctuations directly into the
NSE [186,187]. Furthermore, Monte Carlo simulations can assess the probabilistic responses
of turbine structures to these loads, enhancing the reliability analysis of FOWTs [188,189].
For non-stationary random processes, methods such as empirical mode decomposition
provide insights into the time-varying nature of environmental inputs, offering a dynamic
perspective on load modeling [190]. Additionally, advanced turbulence models that con-
sider the stochastic nature of turbulence can be integrated into the CFD framework, thereby
improving the accuracy of flow simulations around FOWTs [191,192]. These enhance-
ments are crucial for developing robust designs that can withstand the unpredictable ocean
environment, ensuring both the efficiency and safety of wind energy systems.

To represent the free surface in CFD, two primary techniques are utilized: interface-
capturing and interface-tracking. The interface-tracking technique, as indicated by its
name, follows the free surface using a Lagrangian grid that conforms to the interface.
However, when the interface undergoes significant motions, tracking becomes challenging
and requires remeshing techniques. This approach not only increases computational
demands but also can lead to errors in the numerical solutions. Conversely, the interface-
capturing technique, also known as the Eulerian grid method, locates the free surface by
calculating the volume within a computational domain that encompasses the free surface.
Unlike the interface-tracking technique, this method does not require the grid to follow
changes in the free surface over time.

For modeling the free surface in FOWTs, the level set and volume of fluid (VOF) meth-
ods are most commonly employed, both of which are categorized as interface-capturing
techniques [193–195]. Capturing the free surface profile with these methods requires an
increased cell density near the interface. This is typically achieved by using a specific
number of cells aligned perpendicular and parallel to the free surface for spatial discretiza-
tion [196]. Enhanced cell concentration at the free surface can also be influenced by kinetic
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wave energy [197]. To prevent wave reflection at the edges of the numerical domain,
two methods are used. One method dampens the waves by making the grid course to-
ward the edges [196]. Another strategy utilizes a damping (relaxation) function within
a relaxation zone near the edges to steer the wave field towards an uninterrupted free
surface [198].

4.2. FOWT CFD Analysis
4.2.1. Uncoupled Analysis

In the field of fluid–structure interactions and wind turbine analysis, numerous studies
have concentrated on uncoupled simulations to describe and understand different hydro-
dynamic and aerodynamic behaviors. These investigations commonly utilize CFD tools to
simulate the performance of FOWTs. Uncoupled analysis, in this context, refers to the sepa-
rate examination of hydrodynamic and aerodynamic forces acting on the structure, without
accounting for their mutual interactions in a single coupled framework. This approach
allows researchers to focus on specific aspects of the FOWT’s behavior under various
conditions, making it a valuable tool for preliminary analysis and design optimization.

While uncoupled analysis offers the advantage of simplicity and reduced computa-
tional cost, it has limitations. It may not accurately capture the combined effects of wind
and wave forces, potentially leading to oversimplified results. Nevertheless, it provides de-
tailed insights into specific phenomena, laying the groundwork for more advanced coupled
analyses. Table 7 highlights the existing studies based on uncoupled analysis, showcasing
the methodologies and findings that have significantly contributed to the understanding of
FOWT dynamics.

Table 7. Uncoupled models summary.

References Tools Key Findings

[169] Open-source CFD code ReFRESCO Conducted analysis of surge decay for the platform (OC5 DeepCwind).

[163] OpenFOAM Verified the results of regular wave and free decay tests for the platform (OC5
DeepCwind) by comparing them with established literature.

[160] STAR-CCM+ Executed regular wave and free decay testing on the model (OC4 DeepCwind).
[199] STAR-CCM+ Increased fatigue load at lower wind speeds; effect diminishes at higher speeds.
[200] ANSYS-FLUENT Evaluated aerodynamic power and thrust for wind speeds 8 m/s to 25 m/s.
[201] ANSYS-FLUENT Significant aerodynamic load on the tower due to blade rotation.
[171] STAR-CCM+ Comparable power and thrust coefficients at full scale and model scale (1/50).

4.2.2. Partially Coupled Analysis

CFD simulations were performed on the system with simplified dynamics by account-
ing for specified movements in certain DOF. The majority of the CFD studies listed in
Table 8 employed the overset meshing technique, which consists of a background grid com-
bined with a refined overlapping mesh approach. The phenomena exhibited by the FOWTs
during forced oscillations are outlined in Table 8. The surge and pitch DOF of the platform
significantly affect the aerodynamic behavior of the FOWTs [117,202]. These DOF, together
with yaw, lead to uneven and angled wind forces on the rotor [91]. Wen et al. [203] used
the free vortex approach to examine how surge dynamics influence the power and thrust
properties of the wind turbine (National Renewable Energy Laboratory (NREL) 5MW).
The study applied surge dynamics with varying amplitudes (0 m to 2.5 m) and frequencies
(0 Hz to 0.2 Hz) on the FOWTs. The results showed that power output diminishes at lower
tip–speed ratios (TSRs) and rises at higher TSRs. Jeon et al. [204] investigated the aerody-
namic conditions of the wind turbine (NREL 5MW) model exposed to platform pitching
motions using the vortex lattice method (VLM). They noted tip vortex shedding when the
platform pitches in the upwind direction. The VLM considered the wake generated by the
turbine and its corresponding non-induced effects. Further examples in the literature is
summarized in Table 8.
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Table 8. Partially coupled model’s summary.

References Tools Key Findings

[110] OpenFOAM
Discrepancies observed between FAST/BEM outcomes and

CFD method predictions for large-scale platform motions and
elevated frequencies.

[205] ANSYS-FLUENT
Alterations in mean thrust force attributable to surge dynamics;
intense interactions between rotor wake and frequencies and

higher surge amplitudes.

[206] OpenFOAM
Dependence of blade twist on the occurrence of propeller states

along the blade radius; adjustments in wind angle attack
leading to negative lift coefficients.

[111] OpenFOAM
A 5% reduction in aerodynamic thrust and power due to blade

elasticity; fluctuations in aerodynamic power and thrust
resulting from variations in angle and wind speed.

[207] STAR-CCM+

Instability of blade tip vortices and significant interactions with
the tower triggered by surge movements; modifications in the
stall angles of airfoil sections due to surge dynamics and wake

interactions varying by amplitude and frequency.

[208] STAR-CCM+
Sensitivity of changes in aerodynamic power and thrust

coefficients due to pitching movements is 12 to 16 times greater
than those caused by yawing.

[209] STAR-CCM+
Fluctuations in wake strength due to platform’s oscillatory
movements; augmentation of blade–wake interactions with
increases in displacement amplitude and angular frequency.

[210] STAR-CCM+ and ANSYS-FLUENT
Pitching movements lead to variations in additional velocities

on rotor blades, altering non-axial wind angles; enhanced
aerodynamic power and thrust as pitching amplitude escalates.

[16] ANSYS-FLUENT

High-frequency oscillations in surge and pitch DOF result in
greater power and thrust fluctuations due to induced velocity

changes; elevated thrust observed in platform pitching
movements compared to surging; intensified vortex activity

under combined surge–pitch dynamics.

4.2.3. Fully Coupled Analysis

(A) Aero-Hydro-mooring: In comparison to predefined platform movements, fully
integrated aero-hydrodynamic behaviors of FOWTs influenced by prevailing wind and
waves are more representative. Ren et al. [211] developed an integrated dynamic model
(5MW TLP) utilizing Fluent software, confirming their findings with experimental evidence.
They concluded that hydrodynamic forces primarily govern the dynamic surge motion,
while aerodynamic loads mainly influence the average surge value. Tran and Kim [24] de-
vised a computational model for the integrated aero-hydrodynamics of a semi-submersible
FOWT using STAR CCM+ with the overset mesh technique. Figure 11 illustrates the do-
main and mesh distribution of the FOWTs. They identified a notable discrepancy of 19.6%
in surge response between FAST code and CFD, while pitch and heave responses were more
aligned across both methods. They observed that the unsteady aerodynamic performance
predicted by FAST needs more examination due to significant differences when utilizing
various aerodynamic approaches. Specifically, the variations in thrust coefficient for BEM
and GDW were 24.0% and 33.3%, respectively, relative to CFD results. In another study,
Tran and Kim [212] employed a similar approach in order to analyze the interactions of
aero-hydro-mooring–wake dynamics in an FOWT. They visualized blade tip vortices and
vortices detaching from the hub, tower, and platform, as displayed in Figure 12. Zhang and
Kim [213] performed an integrated CFD analysis for a semi-submersible FOWT, disclosing
that the rotor thrust was 7.8% higher than that of an onshore wind turbine, while the rotor
power was reduced by 10%, likely due to the reduced windward area and relative wind
speed from the inclined platform. Quallen and Xing [214] address the 6-DOF motions
of the FOWTs and implemented a variable speed generator-torque controller to manage
power generation. Increased mooring forces were shown to aid in keeping the FOWTs
within an optimal variable speed control range. Liu et al. [215] examined the dynamic
responses of a semi-submersible FOWT with pitch, heave, and surge DOF using the sliding
mesh technique to accommodate the relative movement between the rotating turbine and
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the platform. They noted that mooring tension forces were significantly amplified by the
substantial platform surge response. Zhou et al. [216] investigated the dynamic responses
of an FOWT under three types of incident waves: the irregular wave, focused wave, and
reconstructed focused wave. They observed that hydrodynamic characteristics stimu-
lated by reconstructed focused and irregular waves were comparable, but both displayed
significant deviations from focused waves. Additionally, tower bending moments and
mooring tension forces exhibited dynamic responses at multiple frequencies, correlating
with the first-, second-, and higher-order natural frequencies of the structure, highlighting
the system’s nonlinear characteristics. Feng et al. [217] created an integrated model based
on CFD, using the dynamic fluid body interaction (DFBI) method. They conducted several
integrated dynamic simulations under power production, shutdown, and startup condi-
tions. The results from the power production scenario showed that blade pitch motion
reduces aerodynamic loads and raises the response amplitude of the platform, introducing
negative damping into the FOWT system. Simulations for shutdown and startup scenarios
revealed that extreme motion responses are intensified, and mooring line tension fluctuates
once in a high-tension state.
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Blade-resolved modeling for integrated aero-hydrodynamic simulations of FOWTs re-
quires substantial computing power. To tackle this, Cheng et al. [218] introduced a unique
solver (FOWT-UALM-SJTU) based on CFD, which merges the unsteady actuator line method
(UALM) with their proprietary CFD solver (naoe-FOAM-SJTU), to effectively simulate plat-
form hydrodynamics. Their research focused on the integrated behavior of the wind turbine
(NREL 5 MW) on a semi-submersible platform. In a related study, Huang et al. [219] utilized
the UALM in their solver (FOWT-UALM-SJTU), to simulate the wind turbine’s dynamics.
Their investigation comprehensively assessed the interactions between the wind turbine and
the spar-buoy platform under simultaneous wind and wave influences, considering various
platform DOF and turbine operational states. Their findings indicated that the aerodynamic
forces significantly intensified the platform’s pitch and surge movements, whereas the heave
motion was reduced by the rotor’s vertical thrust component.

(B) Aero-Hydro-Elastic-mooring: To investigate rotor–wake dynamics in FOWTs,
Rodriguez and Jaworski [220] integrated the FVM within an aeroelastic computational
framework featuring robust bi-directional interaction between the fluid and structural
domains. Due to a shortage of aeroelastic experimental benchmarks for FOWTs, validation
processes for aerodynamic efficiency and structural integrity were conducted using sep-
arate sets of experimental data. This validated model was subsequently used to analyze
rotor–wake dynamics and aeroelastic properties of FOWTs across a range of operational
scenarios [221]. This integrated model using FVM provides reliable predictions for wind
turbine aerodynamics in complex environments; it faces challenges in modeling flow de-
tachment on blade surfaces, lacking fluid viscosity effects. Therefore, further validation
is essential, especially for intricate aeroelastic simulations of FOWTs. Advanced CFD
tools are crucial for exploring the comprehensive aero-hydro-elastic performance of these
turbines. Liu et al. [111] combined an advanced CFD solver with the structural analysis
tool MBDyn to evaluate aeroelastic responses under controlled surge motion scenarios.
MBDyn computes blade deformations from the fluid dynamics predictions made by the
solver pimpleDyMFoam, and these deformations are reintroduced into the fluid dynamics
model through an updated mesh. Their studies highlighted the detrimental effects of blade
deformations on aerodynamic efficiency and examined the impact of surge motion on the
behavior of flexible turbine blades, noting that surge motion intensifies variations in rotor
thrust and power output. They also developed an integrated aero-hydro-elastic simulation
tool for FOWTs in combined wave and wind conditions [222], which was validated using
data from semi-submersible FOWTs to examine blade deformations, aerodynamic effects,
platform movements, and mooring line tensions.

Owing to the substantial computational demands of blade-resolved CFD analyses,
Yu et al. [223] examined the aeroelastic behaviors of the wind turbine (NREL 5 MW) un-
der both isolated and complex interaction scenarios using the actuator line model (ALM)
integrated with a beam solver. Their findings highlighted that blade flexibility amplifies
the impact of tower shadows and introduces stability challenges. In a subsequent project,
Yu et al. [224] formulated a composite numerical model employing the potential–viscous
flow model qaleFOAM, aimed at stimulating the interconnected dynamics of FOWTs.
This model emphasized the complex interplay between the aero-elastic-hydro-mooring–
wake dynamics. In their simulations, turbine components such as the blades, hub, and
tower were depicted through respective actuator lines, as shown in Figure 13a, with the
domain’s computational mesh illustrated in Figure 13b. Their analyses demonstrated that
the predictions of aerodynamic efficiency, blade tip displacement, platform movement, and
mooring cable stresses aligned well with outcomes from alternative approaches. Addition-
ally, they noted that the model effectively captured the interdependent dynamics among
blade deformations, platform movements, and wake flows, as evidenced in Figure 14.
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(C) Other Coupled Models: In FOWT dynamic analysis, the coupling of numerous
numerical models plays a critical role in accurately predicting system responses under
different environmental conditions. Beyond the initial models discussed, several other
sophisticated coupling schemes have been developed to further enhance our understanding
and capability in this area. The specifics of these models, including their applications and
the distinct methodologies employed, are detailed in Table 9. This table provides an
essential overview of these coupled models, highlighting their unique contributions to the
field of FOWT research.
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Table 9. Summary of other coupled numerical models.

References Coupling Scheme Model Description

[225] CFD-BEM-MBD Coupled CFD model with aero-servo-elastic OpenFAST code
for simulating OC4 DeepCwind FOWTs dynamic responses.

[226] CFD-PF

Introduced a coupled fluid–structure interaction approach
utilizing LES to examine FOWT behaviors in wave

environments. The analysis domain is segmented into a
near-field area employing a two-phase LES solver and a

far-field zone utilizing an aerodynamic LES model, which
integrates non-viscous dynamics with PF.

[227] CFD-PF-MBD

Explored the wake dynamics of the FOWT (OC4
semi-submersible) compared to its fixed-base version under

atmospheric boundary layer (ABL) conditions through an AL
method employing the SOWFA LES solver.

[228] Linear diffraction theory and FEA
Investigated the hydro-elastic properties of an innovative

triangular floating platform designed to support three wind
turbines at its corners.

[229] Coupled linear PF-FEA

Assessed the potential collision between ships and FOWTs. The
aerodynamic thrust force is modeled as a point load at the

turbine hub, derived from the thrust curve for the wind turbine
(NREL 5 MW).

5. Challenges and Recommendations
5.1. Modeling Turbulence and Atmospheric Interactions

One critical issue in CFD simulations of FOWTs is the selection of a suitable turbulence
model. Typically, these simulations are conducted using RANS equations, with the k − ω
SST model being the most popular due to its reliability and efficiency. This model, along
with the Spalart–Allmaras model, depends on the Boussinesq approximation, which,
unfortunately, overlooks turbulence anisotropy, and this can be a significant limitation as it
may not fully capture the complex flow characteristics around the turbines. To address this,
it is advisable to consider nonlinear EV models, which represent a promising alternative.
These models provide improved precision in capturing the turbulent flow properties,
particularly regarding anisotropy, without dramatically increasing computational costs.
Adopting such advanced models could significantly enhance the predictive capabilities of
CFD simulations, ensuring that the simulations not only reflect more realistic conditions
but also boost the overall design and efficiency of FOWTs.

A critical aspect that remains under-assessed is the accurate depiction of the turbulent
boundary layer near the bodies of FOWTs in coupled simulations. Typically, a finely
detailed grid with a y+ value under 5 is necessary for this. Yet, such refinement results in
a high count of mesh cells, escalating computational costs considerably. An alternative
approach involves using wall functions with a coarser grid, where y+ values range between
30 and 100, to approximate the turbulent flow within the boundary layer. In many coupled
CFD studies of FOWTs, such as those documented in references [24,162,207,208,230], the
treatment of the turbulent boundary layer adjacent to the turbines is often unspecified.
A significant number of studies bypass the detailed modeling of the turbulent boundary
layer near the rotor blades by employing methods like the AL [218]. Furthermore, numerous
studies apply wall functions [215,231], and few have achieved boundary layer resolution
down to the viscous sublayer using grids with a y+ under 1 [213,232]. Notably, one of
the limited investigations assessing the influence of near-wall grid resolution on FOWT
CFD simulations was carried out in [110], where the aerodynamic performance of the
reference wind turbine (NREL 5 MW) was evaluated with y+ values ranging from 10 to 100.
This study utilized the k−ω SST turbulence model, incorporating wall functions to simulate
turbulence effects. The findings revealed that optimal predictions occurred with y+ values
around 30, aligning well with the buffer and logarithmic law regions of the boundary layer
where wall functions are most effective.

As FOWTs scale up, they encounter increasingly complex atmospheric inflow con-
ditions above the rotor, prominently featuring wind shear where the wind velocity rises
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with altitude. While some detailed CFD studies on FOWTs incorporate wind shear ef-
fects [139,219], these scenarios are often simplified. Critical aspects like the turbulence
characteristics of atmospheric inflow, pivotal to understanding fatigue loads and potential
structural failures in turbines, are frequently overlooked. Moreover, the omission of exten-
sive atmospheric turbulence modeling hinders the accurate depiction of wake meandering
phenomena, which significantly influence lateral oscillations affecting downstream turbines.
The International Electrotechnical Commission (IEC) recommends two turbulence models
for simulating atmospheric inflow for wind turbines: the Mann spectral tensor model,
and the Kaimal spectral and exponential coherence model [233,234]. Li et al. [235] applied
the Kaimal model to study its effects on the aerodynamics of a semi-submersible FOWT,
finding that atmospheric turbulence reduced rotor power stability. However, these models,
originally designed for smaller, onshore turbines, lack validation for application to larger-
scale FOWTs. Doubrawa et al. [236] utilized these models alongside high-fidelity LES to
generate atmospheric inflow conditions for spar-buoy FOWTs, observing an overestimation
of fatigue loads under high-wind conditions, and underestimation otherwise. Additionally,
Nybø et al. [237] highlighted potential inaccuracies in FOWT dynamic response predic-
tions caused by these models. Given these challenges, future research should prioritize
enhancing LES methodologies to more accurately simulate atmospheric inflow conditions
and extend the validation of the Mann and Kaimal models to better suit large-scale FOWTs,
taking into account factors like the atmospheric stability crucial for wake recovery.

In conducting CFD simulations of FOWTs, it is essential to effectively represent both
viscous effects and the turbine’s detailed geometry to accurately predict the dynamic
behaviors of these systems. A significant challenge lies in accurately simulating the ABL,
which has a profound impact on the wind loads and the dynamic responses of FOWTs.
For improved accuracy in simulations, the LES technique is favored. It typically employs
a precursor method where the ABL is initially modeled in a standalone domain devoid
of the turbine, creating realistic inflow conditions. These conditions are then applied to a
subsequent CFD simulation incorporating the turbine’s geometry [238,239]. Additionally,
in RANS simulations, maintaining a consistent wind profile as it approaches the turbine is
critical. This consistency can be ensured through a strategic mix of boundary settings and
the integration of novel source terms within the momentum equations [240–244].

5.2. Aero-Hydro-Elastic Simulations

FOWTs are intricate systems that integrate various components such as wind turbine
blades, towers, hubs, nacelles, mooring systems, and floating platforms. The design and
development of FOWTs demand interdisciplinary knowledge due to the complex interac-
tions between these components. Despite this complexity, current CFD research into the
aero-hydro-elastic performance of FOWTs is limited, often overlooking the critical exami-
nation of aeroelastic characteristics. As a result, it is essential to focus more on studying
the aero-hydro-elastic behaviors of FOWTs, particularly with respect to large-scale blades
and challenging maritime conditions. Incorporating structural models within the aero-
hydrodynamic frameworks is vital for addressing blade deformations in FOWTs. The most
comprehensive method for aeroelastic analysis involves the use of a three-dimensional
(3D) FEM coupled with blade-resolved aerodynamic modeling to capture detailed blade
stress and strain accurately. However, this approach faces challenges such as discrepancies
between the fluid and structural domain meshes, the necessity for mesh updates due to
blade deformations, and elevated computational demands. An alternative method, the
1D equilibrium beam model (EBM), combined with blade-resolved modeling, offers a bal-
anced solution by conserving computational resources. Moreover, the elastic actuator line
(EAL) aeroelastic framework presents an efficient strategy by substituting blade-resolved
modeling with the AL method and integrating it with the 1D EBM. This approach is partic-
ularly effective for reducing the computational overhead in CFD simulations focusing on
the aero-hydro-elastic dynamics of FOWTs. Ultimately, the selection of aerodynamic and
structural models for an aero-hydro-elastic framework in FOWTs depends on the specific
outcomes sought and the computational expenses deemed acceptable.
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5.3. Wake Interactions in Multi-FOWT Systems

FOWTs are typically installed in marine wind farms for commercial use. Given
the limited sea space and the presence of mooring cables, downstream FOWTs often
operate within the wake of upstream turbines, experiencing wake effects. These effects
can decrease power output and heighten fatigue loads. Furthermore, floating wind farms
tend to face more substantial power reductions due to the low turbulence intensity of
high-quality wind resources, compared to their onshore counterparts. Hence, studying the
interactions among multiple FOWTs is essential in order to understand the wake dynamics
and devise strategies to reduce power losses and fatigue loads in these marine settings.
Rezaeiha and Micallef [158] conducted a detailed analysis of wake interactions involving
two tandem FOWTs using CFD simulations and the AD method. They examined the effects
of three different surge motions of the upstream FOWTs on the power output and wake
dynamics between the turbines. Their results showed a modest improvement in average
power production from both turbines and an accelerated wake recovery, attributed to
enhanced flow mixing caused by the surge movements of the upstream FOWTs. Meanwhile,
Zhang et al. [245] explored the dynamics of two FOWTs through blade-resolved modeling,
focusing on rotor power, torque, and platform movements. Despite these studies, research
on wake interactions among multiple FOWTs remains sparse. For the effective operation
of commercial floating wind farms, further in-depth studies on the wake effects across
multiple FOWTs are critically needed in order to optimize their performance and durability.

5.4. Simulation of Realistic Sea States

The coupled analyses of FOWTs often focus on regular wave scenarios, examining the
system’s response under various monochromatic wave conditions. Conversely, simulating
realistic, irregular sea states is less frequent, primarily due to the substantial computational
resources required. These simulations generally necessitate extended durations, often
up to 3 h, to adequately capture all essential nonlinearities and low-frequency dynam-
ics [246]. More recently, however, such simulations have become increasingly prevalent
for evaluating the behavior of floaters in authentic marine environments. In these cases,
the irregular sea conditions are typically modeled using a low-order approach based on
the nonlinear PF theory. The generated sea states are then integrated into a CFD model
through a one-way coupling process. This method helps confine the computational domain
of the CFD simulations, thereby lessening the overall computational burden [246,247].

6. Conclusions

FOWTs are essential for exploiting offshore wind energy resources. Unlike onshore
turbines, floating turbines must operate in a more complex marine environment: the upper
section of the turbine experiences wind loads, while the floating base and mooring system
withstand the combined effects of waves and ocean currents. These interconnected environ-
mental forces present significant challenges to FOWT design and development. Therefore,
accurately predicting the various environmental loads on FOWTs is critically important. This
review paper reviewed a thorough evaluation of advancements in CFD related to FOWT
design, focusing on the hydrodynamic, aerodynamic, mooring, and structural dynamics.
It includes different modeling strategies such as uncoupled to fully coupled approaches.

In wind turbine aerodynamics, the most precise method involves blade-resolved
modeling, which captures detailed flow fields on blade surfaces but requires significant
computational resources. The parametric modeling of turbine blades, known as actuator
models, is more efficient and includes AS, AL, and AD models. The AL-based aeroelastic
framework can forecast blade deformations under typical conditions. For a more in-
depth analysis, such as evaluating stress and strain in blade structures, blade-resolved
modeling using 3D FEM is preferred. Research on streamlined aerodynamics to understand
the influence of aerodynamic loads on floating platform dynamics is limited compared
to studies employing designated platform motions to explore the unsteady behavior of
turbine aerodynamics. Among the six DOF of floating platforms, defined surge and pitch
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motions with various frequencies and amplitudes are extensively studied, with the yaw
motion examined less frequently. For more realistic conditions, combined wave and wind
scenarios are utilized to evaluate the integrated aero-hydrodynamic performance of FOWTs.
The structural model is incorporated into the aero-hydrodynamic framework to account for
blade deformations of FOWTs. However, detailed CFD simulations of the aero-hydro-elastic
behavior of FOWTs are still relatively scarce in research.

Therefore, based on the thorough review conducted in this article, several potential
future research directions are suggested to address ongoing challenges in modeling the
dynamics of FOWTs:

• Investigate and validate nonlinear EV models for better accuracy in capturing anisotropy
in turbulent flows around FOWTs;

• Explore the efficacy of highly refined grid techniques or alternative methods like wall
functions to accurately simulate the turbulent boundary layer near FOWT bodies
without excessive computational costs;

• Conduct high-fidelity CFD simulations using LES to generate more realistic atmo-
spheric inflow conditions, particularly assessing the effects of large-scale atmospheric
turbulence on turbine performance and wake dynamics;

• Assess the impact of different simulation methods for the atmospheric boundary
layer on the dynamic responses of FOWTs to ensure an accurate representation of
environmental conditions;

• Focus on the integration of aerodynamic, hydrodynamic, and structural dynamics
within CFD simulations to address the complex interactions in large-scale FOWTs,
especially under severe sea conditions;

• Investigate the physical mechanisms of wake interactions in floating wind farms to
optimize the layout and operational strategies, aiming to reduce power deficits and
fatigue loads;

• Enhance the simulation models to incorporate realistic, irregular sea states for a better
understanding of FOWT behavior under varied wave conditions, which is critical for
design and operational planning.
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Abbreviations

AD Actuator disk
AL Actuator line
AS Actuator surface
ABL Atmospheric boundary layer
BEM Blade element momentum
BEM Boundary element method
BEMT Boundary element momentum theory
CFD Computational fluid dynamics
DOF Degree of freedom
DNS Direct numerical simulation
DFBI Dynamic fluid body interaction
Dyn Dynamic method
EV Eddy viscosity
EAL Elastic actuator line
EBM Equilibrium beam model
FEM Finite element method
FVM Finite volume method
FOWTs Floating offshore wind turbines
FVW Free vortex wake method
GDW Generalized dynamic wake method
HPC High-performance computing
HAWTs Horizontal axis wind turbines
IEC International electrotechnical commission
LES Large eddy simulation
LCOE Levelized costs of energy
ME Morison equation
MIMO Multi-input multi-output
NREL National renewable energy laboratory
NSE Navier–Stokes equations
O&M Operation and maintenance
PF Potential flow
QS Quasi-static method
RTHS Real-time hybrid simulations
RANS Reynolds-averaged Navier–Stokes
RST Reynolds stress turbulence
SST Shear stress transport
SPM Single-point mooring
SGS Subgrid-scale model
SDEs Stochastic differential equations
TLP Tension-leg platform
3D Three-dimensional
TSRs Tip–speed ratios
ULS Ultimate limit states
UALM Unsteady actuator line method
VAWTs Vertical axis wind turbines
VOF Volume of fluid
VLM Vortex lattice method
WECs Wave energy converters
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