
Journal of Econometrics xxx (xxxx) xxx

0
(

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Bayesian neural networks for macroeconomic analysis✩

Niko Hauzenberger a, Florian Huber b, Karin Klieber c, Massimiliano Marcellino d,∗

a University of Strathclyde, United Kingdom
b University of Salzburg, Austria
c Oesterreichische Nationalbank, Austria
d Bocconi University, IGIER, CEPR, Baffi-Carefin and BIDSA, Italy

A R T I C L E I N F O

JEL classification:
C11
C30
C45
C53
E3
E44

Keywords:
Bayesian neural networks
Model selection
Shrinkage priors
Macroeconomic forecasting

A B S T R A C T

Macroeconomic data is characterized by a limited number of observations (small 𝑇 ), many time
series (big 𝐾) but also by featuring temporal dependence. Neural networks, by contrast, are
designed for datasets with millions of observations and covariates. In this paper, we develop
Bayesian neural networks (BNNs) that are well-suited for handling datasets commonly used
for macroeconomic analysis in policy institutions. Our approach avoids extensive specification
searches through a novel mixture specification for the activation function that appropriately
selects the form of nonlinearities. Shrinkage priors are used to prune the network and force
irrelevant neurons to zero. To cope with heteroskedasticity, the BNN is augmented with a
stochastic volatility model for the error term. We illustrate how the model can be used in a
policy institution through simulations and by showing that BNNs produce more accurate point
and density forecasts compared to other machine learning methods.

1. Introduction

Policy making in central banks and other governmental institutions is often informed by economic models that are, for simplicity,
assumed to be linear or take relatively simple nonlinear forms. For instance, the Phillips curve is a key analytical framework for
the analysis and conduct of monetary policy. This relationship is often assumed to be linear and empirical specifications have been
shown to forecast poorly (see, e.g., Clark and McCracken, 2006). The weak out-of-sample predictive power is often attributed to
structural breaks in the coefficients or other forms of nonlinearities and researchers increasingly adopt nonlinear parametric models
to estimate Phillips curves (see, e.g., Benigno and Eggertsson, 2023).

The main obstacle to using such flexible models, particularly in policy institutions, is that they often require strong assumptions
on the nature of nonlinearities and this calls for substantial prior information. The question, however, is whether a particular form of
nonlinearity is really appropriate or whether it implies model mis-specification. Deciding on the appropriate form of nonlinearities
is thus crucial for accurate inference, and modern machine learning techniques can be applied to learn the functional form from
the data.
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In this paper, we develop Bayesian neural networks (BNNs) for macroeconomic policy analysis. NNs have the advantage of being
ble to approximate any form of nonlinear conditional mean relation arbitrarily well (Hornik et al., 1989) and — in a wide range
f different fields (see, e.g., Kourentzes, 2013; Wen et al., 2017; Salinas et al., 2020; Sezer et al., 2020) — have been shown to be
articularly useful for forecasting purposes. Moreover, they nest other popular methods in machine learning such as tree models (see
ang and Rockova, 2020). Their use in econometrics has been limited (some recent relevant examples include Farrell et al., 2021;

hronopoulos et al., 2024, 2023). This is due to several reasons, and we aim to address (at least) two of these through our model.
First, NNs are trained on vast datasets and often feature millions of free parameters. For instance, the MNIST dataset (LeCun

t al., 1998) includes 𝑇 = 60,000 observations and 𝐾 = 784 covariates. By contrast, macroeconomic datasets such as the
popular McCracken and Ng (2016) database feature a few hundred observations and almost as many possible time series. Hence,
specifying and estimating fully-fledged multi-layer NNs on such datasets is challenging, which makes their use for empirical analyses
and policy making problematic. For instance, applications require to specify the number of hidden layers, the number of neurons,
the form of the activation function, the algorithm, as well as associated nuisance parameters used for training the models.

To address these issues, we aim to minimize the possible range of competing choices by introducing stochastic model selection
techniques to decide both the type of (layer-specific) activation functions and the number of neurons per layer. The former is
achieved through a novel mixture model that averages over a set of pre-specified activation functions. The vast majority of NN
papers assume instead a single activation function per layer, and a common choice with good theoretical properties is the Rectified
Linear Unit (ReLU, see Polson and Ročková, 2018; Farrell et al., 2021). Yet, this choice might be restrictive, and our mixture
specification provides additional flexibility, without the need to carry out cross-validation or repeated estimation of the model.
Moreover, we select the number of neurons by using Bayesian shrinkage priors that force individual neurons aggressively to zero. In
particular, we follow Ghosh et al. (2019) and Bhadra et al. (2020) and use a horseshoe prior which does not depend on additional
tuning parameters. As a result, our proposed BNN only requires the researcher to decide on the number of hidden layers.

Second, to speed up computations, NNs are typically estimated using maximum a-posteriori (MAP), minimum mean squared
error (MMSE), or variational Bayes (VB) inference. However, uncertainty quantification with these techniques is difficult and
often relies on approximations. For instance, VB only approximates the joint posterior distribution of the model and neglects
any parameter uncertainty in the predictive distributions, resulting in underestimating the actual predictive variance. Moreover,
capturing departures from non-Gaussianity (such as heavy tails, multi-modality, or skewness) would also be challenging. To cope
with this, we opt for a fully Bayesian estimation approach that samples from the exact full conditional posterior distributions.1 In
our model, objects of interest, such as predictive distributions, can then be obtained through Monte Carlo integration. The resulting
predictive densities can be highly non-Gaussian and exhibit features such as heavy tails, multiple modes, or skewness.

After developing theoretical tools for the specification, estimation and forecasting for BNNs, we assess their empirical perfor-
mance, first with synthetic data, and then with actual US macro data. To generate synthetic data that closely resemble actual
macroeconomic dynamics, we use a data generating process (DGP) inspired by the nonlinear Phillips curve in Benigno and Eggertsson
(2023). It turns out that shallow models with flexible activation functions recover the mean function of inflation with more precision
than deep models.

Next, we show that our BNNs produce accurate short-term forecasts for key US economic variables (inflation, industrial
production, and employment). These are often better than those from standard models commonly used in econometrics (such as
dynamic models augmented with principal components and unobserved component models) and machine learning (such as the
LASSO, elastic net, (Bayesian) additive regression trees, and random forests). In addition, for all the variables we consider, deep
BNNs produce a much better in-sample fit than shallow BNNs, but differences in density forecast accuracy are very small, which
supports the use of the latter which are computationally simpler. Moreover, our mixture activation function yields generally only
modest gains, but it frees the researcher from the necessity to decide on one particular activation function and thus reduces the
number of inputs to the model. Furthermore, a recursive evaluation suggests that nonlinearities pay off during turbulent times, such
as the recession in the early 2000s, the global financial crisis (GFC), and the onset of the Covid-19 pandemic.

The remainder of the paper is structured as follows. Section 2 develops our BNN model for use with macroeconomic data.
Section 3 illustrates the model using synthetic data that resemble US inflation dynamics. Section 4 considers forecasting US economic
variables. The last section summarizes and concludes the paper. An Online Appendix provides additional technical details and
empirical findings.

2. Bayesian neural networks for macroeconomic data

This section develops our general BNN model. After discussing key model specification issues in Section 2.1, we consider
approximations in Section 2.2, choice of the activation function in Section 2.3, modeling the error variance in Section 2.4, suitable
Bayesian regularization priors in Section 2.5, and posterior computation in Section 2.6.

1 Exact conditional on the Markov chain Monte Carlo (MCMC) algorithm to have converged to the correct stationary distribution.
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2.1. A general nonparametric regression model

Our goal is to estimate an unknown and possibly nonlinear relationship between a macroeconomic time series 𝑦𝑡 ∈ R and 𝐾
covariates 𝒙𝑡 ∈ R𝐾 . In what follows, the covariates in 𝒙𝑡 can include lags of 𝑦𝑡 as well as other (lagged) macroeconomic and financial
indicators. In our setting, 𝐾 can be very large relative to the sample size 𝑇 and the relationship between 𝑦𝑡 and 𝒙𝑡 possibly highly
nonlinear.

We assume a general nonlinear regression given by:

𝑦𝑡 = 𝒙′𝑡𝜸 + 𝑓 (𝒙𝑡) + 𝜀𝑡, 𝜀𝑡 ∼  (0, 𝜎2𝑡 ), (1)

where 𝜸 is a vector of 𝐾 linear coefficients, 𝑓 ∶ R𝐾 → R is a function of unknown (nonlinear) form, and 𝜀𝑡 is a Gaussian shock
with zero mean and time-varying variance 𝜎2𝑡 . A typical assumption is that 𝑓 is 𝛼-Hölder smooth on [0, 1]𝐾 .2 The class of 𝛼-Hölder
smooth functions is defined by 𝛼

𝐾 = {𝑓 ∶ [0, 1]𝐾 → R; ‖𝑓‖𝛼 < ∞}, where ‖𝑓‖𝛼 denotes the Hölder norm (Polson and Ročková,
2018; Schmidt-Hieber, 2020). The parameter 𝛼 > 0 indicates the smoothness of the class of functions we aim to approximate.

The inclusion of a linear part in the model is meant to use the nonlinear component only to capture proper nonlinear relationships
between the target and the explanatory variables. Recent evidence suggests that linear models are competitive in terms of forecast
accuracy. It is mostly during turbulent times (such as recessions) that adding nonlinear components pays off (see, e.g., Clark et al.,
2023). We take this empirical fact into account through the linear piece which we expect to explain the vast majority of variation
over the estimation period.

Similarly, the presence of a time-varying error variance reduces the risks that nonlinearities in the conditional mean show up
simply to capture outliers or periods of high volatility. It also implies that our model adapts to situations not learned through the
conditional mean by increasing 𝜎2𝑡 , thus inflating uncertainty surrounding predictions to provide a proper assessment of the point
forecasts reliability, which matters particularly when the latter are used for policy making. The assumption of Gaussian shocks is not
restrictive when combined with stochastic volatility (SV), but it would be feasible to incorporate more flexible error distributions
based on scale-location mixtures of Gaussians (see, e.g., Escobar and West, 1995).

In macroeconomics, 𝑓 is often assumed to be known. For instance, if 𝑓 (𝒙𝑡) = 0 for all 𝑡 we end up with a constant parameter
regression model. Another commonly used model arises if 𝑓 (𝒙𝑡) = 𝒙′𝑡𝜸𝑡 with 𝜸𝑡 denoting 𝐾 time-varying parameters (TVPs). Other
specifications which can be seen as special cases of Eq. (1) are threshold and Markov switching models (see, e.g., Hamilton, 1989;
Tong, 1990; Teräsvirta, 1994), polynomial regression (see, e.g., McCrary, 2008; Lee and Lemieux, 2010) or models with interaction
effects (see, e.g., Ai and Norton, 2003; Imbens and Wooldridge, 2009; Greene, 2010).

This brief discussion shows that the choice of 𝑓 is one of the most important modeling decisions the researcher needs to take.
In this paper, we follow a different route and estimate 𝑓 . This can be achieved through nonparametric techniques such as Bayesian
additive regression trees (see, e.g., Chipman et al., 2010; Huber et al., 2023; Clark et al., 2023, 2024), random forests (see, e.g.,
Goulet Coulombe, 2024), Gaussian processes (see, e.g., Williams and Rasmussen, 2006; Crawford et al., 2019; Hauzenberger et al.,
2024), splines (see, e.g., Vasicek and Fong, 1982; Engle and Rangel, 2008), or wavelets (see, e.g., Ramsey and Lampart, 1998;
Gallegati, 2008).

2.2. Deep neural network approximation

In this paper, we aim to learn 𝑓 using a NN. In many areas outside economics, NNs have been used with some success (see
Lara-Benítez et al., 2021; Lim and Zohren, 2021, for surveys on time series forecasting with deep learning). The goal of this paper
is to design NNs that can be used in combination with macroeconomic data and its associated particularities. These relate to the
fact that the data is often persistent, features structural breaks and volatility clustering but also that the length of the time series is
short. Hence, researchers and practitioners alike cannot rely on theoretical results in the literature (see, e.g., Polson and Ročková,
2018; Schmidt-Hieber, 2020; Farrell et al., 2021) that mostly assume 𝑇 to be huge but also rule out autocorrelation in the data.
Hence, the large-scale NNs that are typically used are often not suited for macro datasets, and this motivates the main modeling
choices we take.

We use a deep NN to approximate the function 𝑓 . This approximating model consists of 𝐿 layers, with each layer featuring
𝑄𝓁 (𝓁 = 1,… , 𝐿) neurons. These neurons recursively produce outputs by taking nonlinear transformations of inputs (which, at the
first layer, are simply the covariates in 𝒙𝑡). The nonlinear transformations are defined by an activation function ℎ𝓁,𝑞 (𝑞 = 1,… , 𝑄𝓁).
In what follows, we let 𝒉𝓁 = (ℎ𝓁,1,… , ℎ𝓁,𝑄𝓁

)′ denote an activation function that can be layer and neuron-specific.3 In this case, our
approximation to 𝑓 can be written as:

𝑓 (𝒙𝑡) ≈ 𝑓𝐿(𝒙𝑡) = 𝑾 𝐿+1𝒉𝐿
(

𝑾 𝐿𝒉𝐿−1(⋯𝑾 2𝒉1(𝑾 1𝒙𝑡))
)

, (2)

2 The assumption that 𝒙𝑡 is restricted to the 𝐾-dimensional unit hypercube is not restrictive in practice since we can appropriately transform any covariate
to fulfill this.

3 In the discussion we do not add bias terms to simplify notation. In a neural network, the bias term can be defined as the constant that allows the activation
3

function to be shifted towards positive and negative values. In our empirical work, all networks include a bias term as well.



Journal of Econometrics xxx (xxxx) xxxN. Hauzenberger et al.

m
n

a

o
p
i
o
w
t

h
o

w

Table 1
Set of activation functions.

Activation function Equation Plot

(1) LeakyReLU ℎ(1)(𝑥) =
{

0.01𝑥 𝑥 < 0
𝑥 𝑥 ≥ 0

(2) Sigmoid ℎ(2)(𝑥) = 1
1+exp (−𝑥)

(3) Rectified Linear Unit (ReLU) ℎ(3)(𝑥) = max (0, 𝑥)

(4) Hyperbolic tangent (tanh) ℎ(4)(𝑥) = exp (𝑥)−exp (−𝑥)
exp (𝑥)+exp (−𝑥)

with 𝑾 𝓁 denoting a 𝑄𝓁 × 𝑄𝓁−1 matrix of network weights for 𝓁 = 2,… , 𝐿, while 𝑾 𝐿+1 is a 1 × 𝑄𝐿 vector and 𝑾 1 is a 𝑄1 × 𝐾
atrix. In the subsequent discussion, we set 𝑄𝓁 = 𝑄 for 𝓁 = 1,… , 𝐿. It is worth noting that if 𝐿 = 1, we end up with a shallow
eural network:

𝑓1(𝒙𝑡) = 𝑾 2𝒉1(𝑾 1𝒙𝑡).

Both shallow and deep neural networks serve as universal approximators. Deep NNs, as outlined in Mhaskar et al. (2017), can
chieve a certain level of approximation error with exponentially fewer parameters than shallow NNs. If the true function 𝑓 is

compositional, meaning that 𝑓 (𝒙𝑡) = ℎ𝐽 (ℎ𝐽−1(…ℎ1(𝒙𝑡))), a shallow neural network would require a very large number of neurons
to approximate it with an arbitrary approximation error 𝑐 > 0. For the macro series we are interested in, it is not clear whether the
true underlying structural model implies a compositional structure and, in addition, given that the informational content in typical
datasets is relatively low compared to the vast dimensional datasets used in other fields, we will treat the shallow NN as a serious
competitor in the analysis that follows.

Typically, researchers treat the weights as the only unknown parameters in the network and set 𝐿 and 𝒉𝑙 a priori and based
n best practice or cross-validation. The choice of the activation function could have important consequences for the empirical
erformance of the model (Karlik and Olgac, 2011; Agostinelli et al., 2014) and, in our general specification, the activation function
s not only layer- but also neuron-specific. Hence, the space of possible combinations of activation functions for a moderate number
f hidden layers becomes intractable. A practicable solution is to set ℎ𝓁,𝑞 = ℎ for all 𝓁 and 𝑞. In the literature, a standard choice
ith excellent theoretical properties is the Rectified Linear Unit activation function ReLU(𝑥) = max(0, 𝑥). However, as stated above,

heoretical results in, e.g., Polson and Ročková (2018) or Farrell et al. (2021) are based on situations where 𝑇 → ∞ and without
assuming dependence in the responses. For macroeconomic data that are often analyzed in actual policy contexts, these conditions
are not fulfilled and the small sample properties of the ReLU activation functions are not well understood. As a solution, one
contribution of this paper is to treat ℎ𝓁,𝑞 as a discrete hyperparameter which we estimate alongside the weights 𝑾 𝓁 and other
model parameters. We turn to this issue in the next sub-section.

2.3. Convex combinations of activation functions

Instead of using a single activation function for the whole network, we construct a mixture specification that averages over
four commonly used activation functions: leakyReLU (1), sigmoid (2), ReLU (3), and hyperbolic tangent (tanh, 4). We let ℎ(𝑚) with
𝑚 ∈ {leakyReLU, sigmoid,ReLU, tanh} denote an activation function out of this set of different functions. Each specific choice ℎ(𝑚)

as different implications on the flexibility of the neural network to capture nonlinearities in the data. Table 1 provides a summary
f the functions used.

We assume that each activation function is given by:

ℎ𝓁,𝑞(𝑧𝓁𝑞,𝑡) =
4
∑

𝑚=1
𝜔(𝑚)
𝓁,𝑞ℎ

(𝑚)(𝑧𝓁𝑞,𝑡), (3)

ith 𝑧𝓁𝑞,𝑡 being the 𝑞th element in the recursively defined vector 𝒛𝓁,𝑡 = 𝑾 𝓁𝒉𝓁−1(𝒛𝓁−1,𝑡) and 𝒛1,𝑡 = 𝑾 1𝒙𝑡. The neuron and layer-
specific weights 𝜔(𝑚)

𝓁,𝑞 satisfy 𝜔(𝑚)
𝓁,𝑞 ≥ 0 and ∑

𝑚 𝜔(𝑚)
𝓁,𝑞 = 1. The main implication of this specification is that we do not need to decide on
4

one particular activation function but we average over a set of prominent activation functions. The weights reflect the relative
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importance of a specific activation function over other options. In principle, if a researcher has prior knowledge that a given
activation function should be nonlinear (either through observing features of the data or theoretical knowledge), one can use this
information through a suitable prior on the weights 𝜔(𝑚)

𝓁,𝑞 .
An alternative way of writing this mixture specification is through a discrete random variable 𝛿𝓁,𝑞 ∈ {1,… , 4}. The probability

that 𝛿𝓁,𝑞 = 𝑚 is then set equal to:

Prob(𝛿𝓁,𝑞 = 𝑚) = 𝜔(𝑚)
𝓁,𝑞 .

Using mixtures of activation functions increases the flexibility substantially without introducing a large number of additional
parameters. Our approach is related to evolutionary neural networks (Yao, 1999; Turner and Miller, 2014) that learn the network
structure adaptively but, as we will discuss below, allows for fully-fledged uncertainty quantification on the activation functions
and the weights.

Depending on the choice of the weights, we can get combined activation functions that share features of each of the four
individual activation functions. We illustrate the effect different activation functions have on the function estimates using a simple
univariate example. This example models the relationship between US year-on-year inflation (𝑦𝑡) and the year-on-year money growth
rate (𝑥𝑡) in a nonlinear manner. These two series are obtained from the FRED-MD database (McCracken and Ng, 2016). To account
for the leading effect of money growth on inflation, we specify 𝑥𝑡 as the 18th lag of money growth (see, e.g., Reichlin and Lenza,
2007; Amisano and Fagan, 2013). The corresponding nonparametric regression is given by:

𝑦𝑡 = 𝑓 (𝑥𝑡) + 𝜀𝑡, 𝜀𝑡 ∼  (0, 𝜎2). (4)

We compare the effect that different activation functions have on the mean estimate 𝑓 (𝑥𝑡) in Fig. 1 by considering two BNNs
estimated using the techniques outlined in the next sub-section. The first is a shallow one that sets 𝐿 = 1 and includes only a single
neuron. The red shaded areas represent the 5th and 95th percentiles of the posterior of 𝑓1(𝑥𝑡) while the red line is the posterior

edian. The second model is a deep BNN with 𝐿 = 3 and a single neuron for all 𝓁 as well. The corresponding posterior percentiles
re depicted in blue. In this figure, the (lagged) values of money growth are on the 𝑥-axis while the yearly change in inflation is
n the 𝑦-axis. Considering the linear specification (i.e., 𝑓 (𝑥𝑡) = 𝛽𝑥𝑡) suggests a positive relationship between money growth and
nflation. Nonlinear activation functions, both for the deep and shallow BNN, often yield estimates of mean relations that display
ubstantial nonlinearities. This finding holds for tanh, ReLU and leakyReLU. There are cases where the deep model produces more
onlinearities (such as for tanh) or where thresholds change (in the case of ReLU) but the shape is often similar and suggests that
or low levels of money growth, inflation displays only modest reactions. Notice that for leakyReLU, both the deep and shallow BNN
roduce similar mean relations, indicated by overlapping posterior credible intervals.

The differences between shallow and deep models increase if we consider our convex mixture activation function. In this case,
he shallow neural network produces a fit close to the linear model. Notice, however, that for large levels of money growth, the
ncertainty surrounding the functional estimates increases appreciably. By contrast, the deep BNN with flexible activation functions
roduces an estimate of the conditional mean that implies increasing levels of inflation for money growth between three and eight
ercent. For values larger than eight percent, the relationship flattens out and the model predicts no substantial fluctuations of
nflation.

This short, stylized example illustrates that the different activation functions give rise to different, albeit similar, estimated mean
elationships. Since in all our empirical work we set 𝑄 to a large value and use a large panel of covariates, the models we propose
re capable of extracting complex nonlinear features in a very flexible manner.

.4. Adding stochastic volatility

Neural networks often explicitly or implicitly assume that the error variance is constant. This assumption implies that the mean
unction explains a constant share of variation in 𝑦𝑡 over time. For macroeconomic data, this assumption is strong. In exceptional
eriods such as the GFC or the Covid-19 pandemic, not only mean relations can change but larger shocks than usual can hit the
conomy. Hence, we model the error variance in a time-varying manner using a standard SV model.

Our model assumes that 𝜈𝑡 = log 𝜎2𝑡 evolves according to an AR(1) process:

𝜈𝑡 = 𝜇𝜈 + 𝜌𝜈(𝜈𝑡−1 − 𝜇𝜈 ) + 𝜍𝑡, 𝜍𝑡 ∼  (0, 𝜉2𝜈 ), (5)

ith 𝜇𝜈 denoting the long-run level of the log-volatility, 𝜌𝜈 the persistence parameter, and 𝜉2𝜈 the state equation variance. This
model assumes that the error variance evolves rather smoothly over time and features its own shock. For later convenience, we let
𝝂 = (𝜈1,… , 𝜈𝑇 )′ denote the full history of the log-volatilities and 𝜷𝜈 = (𝜇𝜈 , 𝜌𝜈 , 𝜉2𝜈 )

′ the parameters of the log-volatility state equation.
It is worth stressing that we opt for a SV specification because it is flexible and has been shown to work well for macroeconomic

ata (Clark, 2011). Alternative approaches such as the Generalized Autoregressive Conditional Heteroskedastic model (GARCH,
ollerslev, 1986) are also feasible. In principle, it would also be possible to use a NN to estimate the volatility process as well (see,
.g., Goulet Coulombe et al., 2023; Nguyen et al., 2023).
5
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Fig. 1. Nonlinearities in the nexus between inflation and money growth. Note: This figure shows the nexus between inflation and money growth for the US
nd illustrates the functional forms of the activation functions specified in Table 1. The data for the consumer price index (i.e., CPIAUCSL) and money supply
i.e., M2SL) are taken from the FRED-MD database as described in McCracken and Ng (2016). We plot the following example: 𝑦𝑡 = 𝑓 (𝑥𝑡) + 𝜀𝑡, where 𝑦𝑡 is the
ear-on-year inflation and 𝑥𝑡 is the 18th lag of the year-on-year money supply growth (see Eq. (4)). 𝑓 refers to the activation functions specified in Table 1.
he top left panel refers to the linear regression model while bottom-right panel ‘convex combination’ refers to our main specification, where we let the data
ecide on the form of the activation function. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
his article.)

.5. Achieving shrinkage in deep neural networks

We opt for a Bayesian approach to estimating the NN. This involves specifying suitable priors on the parameters of the model.
he prior setup we use introduces regularization on the weights so that we can effectively use a large number of neurons per hidden

ayer but avoid overfitting issues by shrinking weights associated with irrelevant neurons to zero.
On the weights of the network we consider a shrinkage prior. Early contributions propose shrinkage and regularization priors

n regression models that imply nonlinear transformations of the covariates but linearity in the parameters (see, e.g., Tipping,
001). Titterington (2004) discusses shrinkage priors in NNs and comes up with a prior on the weights of the form:

𝑝(𝑾 𝓁|𝜙𝓁,𝑖𝑗 ) ∝ exp

{

−1
2
∑

𝑖

∑

𝑗
𝜙2
𝓁,𝑖𝑗𝑤𝓁,𝑖𝑗

}

,

with 𝜙𝓁,𝑖𝑗 denoting a shrinkage hyperparameter that controls the degree of shrinkage. Hence, large values of 𝜙𝓁,𝑖𝑗 implies that the
(𝑖, 𝑗)th element of 𝑾 𝓁 , 𝑤𝓁,𝑖𝑗 , should be strongly forced to zero. Empirically, we often face a situation where most 𝜙𝓁,𝑖𝑗s are large
and thus many elements in 𝑾 𝓁 are shrunk to zero, reducing the effective dimension of the state space considerably (Titterington,
2004).

To capture this, global local shrinkage (GL) priors (Polson and Scott, 2010) can be employed. These priors include a global
shrinkage component that applies to groups of parameters and local components that allow for deviations in case of strong global
shrinkage. A particular, hyperparameter-free, version of such a GL prior is the horseshoe prior (Carvalho et al., 2009). The horseshoe
6
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has been first applied to NNs in Ghosh et al. (2019) and Bhadra et al. (2020). This prior is used to flexibly prune NNs without
requiring prior information or introducing additional hyperparameters.

Let 𝒘𝓁,𝑖∙ denote the 𝑖th row of 𝑾 𝓁 (𝓁 = 1,… , 𝐿+1). Both on the linear coefficients in 𝜸 and 𝒘𝓁,𝑖∙ we use horseshoe priors (Carvalho
et al., 2010). The horseshoe implies the following prior hierarchy on each element of 𝒘𝓁,𝑖∙ = (𝑤𝓁,𝑖1,… , 𝑤𝓁,𝑖𝑄𝓁−1

)′:

𝑤𝓁,𝑖𝑗 ∼  (0, 𝜙𝓁,𝑖𝑗 ), 𝜙𝓁,𝑖𝑗 = 𝜆2𝓁,𝑖𝜑
2
𝓁,𝑖𝑗 , 𝜆𝓁,𝑖 ∼ +(0, 1), 𝜑𝓁,𝑖𝑗 ∼ +(0, 1),

with 𝜆2𝓁,𝑖 being a global (neuron-specific) shrinkage parameter which forces all elements in 𝒘𝓁,𝑖∙ towards the origin, 𝜑𝓁,𝑖𝑗 is a local
scaling parameter that allows for coefficient-specific deviations in light of strong global shrinkage (i.e., if 𝜆2𝓁,𝑖 ≈ 0). Hence, within
each layer we use the horseshoe to shrink the weights associated with irrelevant neurons to zero, effectively reducing the number
of neurons per layer in a flexible manner.

It is worth stressing that there is a close relationship between using a shrinkage prior on the weights and dropout, another
popular technique for NN regularization. Nalisnick et al. (2019) discuss the equivalence between shrinkage priors and dropout.

Next, we need to discuss the prior on the activation weights 𝜔(𝑚)
𝓁,𝑞 . In this case, we specify the prior probability that Prob(𝛿𝑞 = 𝑚) =

1∕4. This choice implies that each activation function is equally likely a priori. In principle, alternative choices would be possible so
that more weight is put on functions such as the ReLU where there exists strong evidence that this choice works well empirically.

Finally, the prior on the parameters driving the SV processes are set along the lines suggested in Kastner and Frühwirth-Schnatter
(2014). This amounts to eliciting a Gaussian prior on 𝜇𝜈 ∼  (0, 10), a Beta prior on (𝜌𝜈 + 1)∕2 ∼ (25, 1.5), and a Gamma prior
on 𝜉2𝜈 ∼ (1∕2, 1∕(2𝑠𝜈 )) where 𝑠𝜈 = 0.01. The prior on the unconditional mean is relatively uninformative whereas the prior on the
(transformed) persistence parameter pushes the latent process towards a random walk. The Gamma prior on 𝜉2𝜈 is equivalent to
a Normal prior on ±𝜉𝜈 with variance 𝑠𝜈 . The choice 𝑠𝜈 = 0.01 implies some shrinkage on the amount of heteroskedasticity in the
shocks.

2.6. Posterior simulation

In general, posterior inference in BNNs is extremely challenging. These challenges arise from the fact that typical input datasets
are huge dimensional in 𝑇 and 𝐾. In our case, given the limited length of the time series, estimating a BNN is possible and estimation
of such a model can be done within an hour on a standard desktop computer.

At a general level, we draw from the joint posterior distribution using a Markov chain Monte Carlo (MCMC) algorithm that
consists of several blocks. The most challenging block is related to the network weights for layers 𝓁 = 1,… , 𝐿. In this case, we use
state-of-the-art Hamiltonian Monte Carlo (HMC) techniques. The remaining blocks of our algorithm are standard and we provide
more details in Section A of the Online Appendix. Here, we only provide an overview of the algorithm. Our sampler cycles between
the following steps:

• Both the linear coefficients 𝜸 of dimension 𝐾 and the weights vector of the output layer 𝑾 𝐿+1 of dimension 𝑄𝐿, associated
with the neurons, are obtained jointly from a standard multivariate Gaussian posterior, see Eqs. (A.1) and (A.2) in the Online
Appendix.

• For shrinking the linear coefficients, we use the horseshoe prior (Carvalho et al., 2010) and update the corresponding
hyperparameters by sampling from inverse Gamma distributions using the auxiliary sampler proposed in Makalic and Schmidt
(2015), see Eqs. (A.3) to (A.6).

• Sampling from 𝑝(𝑾 𝓁|∙), for 𝓁 = 1,… , 𝐿, is achieved through an HMC step, see Eqs. (A.7) to (A.11).
• The shrinkage hyperparameters of the horseshoe prior on 𝑾 𝓁 are obtained from simple inverse Gamma posteriors, see Eqs.

(A.12) to (A.15).
• The function ℎ𝓁,𝑞 is simulated by first introducing an indicator 𝛿𝓁,𝑞 that takes integer values one to four to determine the

activation function chosen. This indicator is simulated from a multinomial distribution, see Eq. (A.16).
• Draws of 𝒗 and 𝜷𝑣 are simulated using the algorithm proposed in Kastner and Frühwirth-Schnatter (2014).

We iterate through our MCMC algorithm 20,000 times and discard the first 10,000 draws as burn-in.

3. Illustration using synthetic data

Before we deal with actual data, it is worthwhile to investigate the properties of the different BNNs in terms of how well they
recover the mean function. To do so, we need to come up with a data generating process (DGP) that closely resembles actual
macroeconomic dynamics. This is done by setting up a DGP that is inspired by the model in Benigno and Eggertsson (2023), which
assumes that inflation follows a nonlinear Phillips curve of the form:

𝜋𝑡 = 𝜇𝜋 + 𝜌𝜋𝜋𝑡−1 + {𝛽𝜋 + 𝛽𝜋𝑑𝐷𝑡(𝜗𝑡 ≥ 1)} log 𝜗𝑡 + 𝜌𝜐𝜐𝑡 + 𝜎𝜋𝜖𝜋,𝑡,

log 𝜗𝑡 = 𝜇𝜗 + 𝜌𝜗,1 log 𝜗𝑡−1 + 𝜌𝜗,2 log 𝜗𝑡−2 + 𝜎𝜗𝜖𝜗,𝑡,

𝜐𝑡 = 𝜎𝜐𝜖𝜐,𝑡,

𝜖𝑗,𝑡 ∼  (0, 1), for 𝑗 ∈ {𝜋, 𝜗, 𝜐},
7
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Fig. 2. A single realization from the Benigno and Eggertsson (2023) DGP. Note: The upper panel presents the measure of labor market tightness, 𝜗𝑡, while the
lower panel shows the resulting inflation series implied by the nonlinear Phillips curve (𝜋𝑡) for a single realization from the Benigno and Eggertsson (2023)
DGP. We indicate 𝜗𝑡 > 1 by the red shaded area. The dashed line indicates 𝜗𝑡 = 1 and the black solid line shows 𝜗𝑡 = 0.56. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)

here 𝜗𝑡 is a measure of labor market tightness and 𝐷𝑡 is a dummy variable taking value one if 𝜗𝑡 ≥ 1. We take most parameters from
the full-sample estimates of Table 1 in Benigno and Eggertsson (2023). This implies setting 𝜇𝜋 = 0.192, 𝜌𝜋 = 0.562, 𝛽𝜋 = 0.222, 𝛽𝜋𝑑 =
3.896, 𝜌𝜐 = 0.0469. 𝜎𝜋 is set equal to 0.1. For the second equation, which controls the dynamic evolution of the measure of labor
market tightness, we set the parameters to closely match the dynamics of actual labor market tightness as proposed in Michaillat
and Saez (2022) and used by Benigno and Eggertsson (2023). This requires to set 𝜇𝜗 = −0.693, 𝜌𝜗,1 = 1.3, 𝜌𝜗,2 = −0.3 and 𝜎𝜗 = 0.05.
The third equation reflects a series of supply shocks (𝜐𝑡) with 𝜎𝜐 = 1. From this DGP, we simulate 20 time series with length 𝑇 = 350.

This DGP is nonlinear and resembles a threshold model. In particular, as noted, if 𝜗𝑡 exceeds unity, then the slope of the labor
market tightness indicator switches. The variance of the shocks to log 𝜗𝑡 controls how often this happens in-sample. A realization
from the DGP is depicted in Fig. 2. In terms of time series dynamics, it matches actual US year-on-year inflation quite well. In
around 15 percent of the time, 𝜗𝑡 exceeds one, so nonlinearities kick in.

For this realization, we estimate BNNs that differ by the number of neurons per layer 𝑄𝓁 = 𝑄 ∈ {𝐾,… , 15}, number of layers
𝐿 ∈ {1, 2, 3}, and how we decide on the activation functions. The number of covariates is 𝐾 = 3 and consists of the first lag of 𝜋𝑡,
log 𝜗𝑡 and 𝜐𝑡. We consider a neuron-specific mixture activation function for the BNN with a single hidden layer and a layer-specific
(but not neuron-specific) mixture for cases 𝐿 > 1. Then, we consider a BNN that includes the same activation function across all
layers and neurons but we estimate it. And finally, we include a model with a ReLU activation function.

In what follows, we adopt the following labeling convention for the different models. The activation function is denoted by
𝚏𝚕𝚎𝚡 for a neuron or layer-specific mixture activation function, 𝚌𝚘𝚖𝚖𝚘𝚗 for a common mixture activation function across layers and
neurons, and 𝚁𝚎𝙻𝚄 for the ReLU activation function. NN-flex is the BNN that has activation functions that are neuron-specific
for the case 𝐿 = 1, while for 𝐿 > 1 we estimate a single activation function per layer. NN-ReLU is the BNN with ReLU activation
function while NN-common uses a common activation function for all layers and neurons.

Fig. 3 presents the average across 20 replications of in-sample relative root mean squared errors (RMSEs) from various BNNs
benchmarked against the simplest BNN considered (i.e., NN-common with a single hidden layer and three neurons). Results are
summarized in three heatmaps that illustrate the relationship between the number of neurons and layers for different specifications
of the activation functions. The left panel shows the results for NN-common. The middle panel includes the results for the BNN
that has neuron-/layer-specific activation functions (NN-flex) and the right panel includes NN-ReLU. This allows us to investigate
how increasing network complexity (in terms of width, i.e. the number of neurons, and depth, i.e. the number of layers) impacts
in-sample estimation accuracy.

From Fig. 3, we can draw three main conclusions. First, as opposed to other fields, estimation accuracy does not increase when
we move from one to two hidden layers. This holds for NN-common and NN-flex, whereas for NN-ReLU the performance remains
broadly unchanged. When we move from two to three layers, in all cases estimation accuracy further deteriorates. This indicates
that for a time series such as the one shown in Fig. 2, using shallow networks is sufficient and, in fact, recovers implied mean
relations with (slightly) more accuracy than if we include more layers.

Second, when we increase the number of neurons we find improvements in estimation accuracy for all models and most choices
of 𝑄. This, however, only holds for the first hidden layer when we consider NN-common and NN-ReLU. For NN-flex, it also holds
for two hidden layers. Notice that for NN-flex, we find that after including six neurons, performance gains vanish and for 𝑄 ≥ 6,
almost all models produce a similar in-sample fit.

Finally, the single best performing model in this exercise is the NN-flex, with one layer and 𝑄 ∈ {10, 11, 13}. Given that
in-sample RMSEs do not change appreciably when we include more neurons, using NN-flex with 𝑄 = 15 is a competitive choice
that reduces the risk of model mis-specification. Yet, it can increase the risk of overfitting, an issue that we consider in more details
8
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Fig. 3. Insample fit across layers and neurons. Note: This figure shows relative root mean squared errors (RMSEs) benchmarked against the simplest BNN
considered (i.e., NN-common with a single hidden layer and three neurons). Values below 1 show outperformance of the benchmark (in green) while inferior
specifications give values above 1 (indicated in red). We take averages over 20 random draws from our DGP. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

4. Macroeconomic forecasting using BNNs

In this section, we show that different BNN models produce accurate forecasts and we explain why they do so. In the next
sub-section we discuss the data, forecast design and competing models while in Section 4.2 we include the forecasting results, and
in Section 4.3 we zoom into the predictive model properties.

4.1. Data overview, competing models, and the forecast exercise design

We use the popular FRED-MD database proposed in McCracken and Ng (2016). To gain a comprehensive picture of the
importance of nonlinearities in large macro datasets, our forecasting exercise focuses on the consumer price (CPIAUCSL) inflation
rate as specified in Stock and Watson (1999), the month-on-month (m-o-m) growth rate of industrial production (INDPRO), and the
m-o-m growth rate of employment (CE16OV). The sample ranges from January 1960 to December 2020. We assume that these three
focus variables are an (unknown) function of the first lag of 𝐾 = 120 economic and financial variables. To get an understanding on
the relationship between model size and forecast performance, we also consider smaller models that only include as regressor the
first lag of the dependent variable and models that include the first eight principal components of the (lagged) variables.4 These
models can be interpreted as (possibly nonlinear extensions of the) diffusion index regressions in the spirit of Stock and Watson
(2002).

Our focus is on short-term forecasting. Hence, we compute the one-month-ahead predictive distributions for our hold-out sample,
which starts in January 2000 and ends in December 2020 (i.e., 252 monthly hold-out periods). These forecasts are obtained
recursively, meaning that we use the data through January 2000 as a training sample and then forecast one-month-ahead. After
obtaining the corresponding predictive densities, the sample is expanded by a single month. This procedure is repeated until the
end of the sample is reached.

We consider different versions of our BNN models. They differ in terms of the number of hidden layers and the choice of the
activation function. We consider a deep BNN with 𝐿 = 3 hidden layers. Within each layer, we set the number of neurons equal to
𝐾, and thus include a large number of neurons. Then, we also consider a shallow neural network that includes only a single hidden
layer. Within both types of BNNs we consider different versions of our mixture activation function. First, for shallow BNNs we set
them to be neuron-specific. For deep BNNs, we estimate the activation function for each layer but not across neurons. Moreover,
we consider a deep and a shallow BNN that only uses a single activation function across all layers and neurons that we estimate.
The final version is a deep and shallow BNN with ReLU activation function. We state the depth of the network (which can either be
shallow or deep) and then the specification for the activation function. For instance, deep-NN-flex is the deep neural network
with layer-specific activation functions while shallow-NN-ReLU is the shallow BNN with ReLU activation function.

We compare the different BNNs to other techniques commonly used in machine learning and applied macroeconometrics. A
natural benchmark is the linear regression model. We include several linear models that differ in how regularization is achieved.
First, we consider a regression model that features a horseshoe prior. Second, we use the unobserved components model with
stochastic volatility (UC-SV) of Stock and Watson (2007). Then, we include models that use LASSO (Tibshirani, 1996) and elastic net
regularization (Zou and Hastie, 2005), respectively. In addition, we use Bayesian additive regression trees (BART, see e.g. Chipman
et al. (2010) and Sub-section B.2 in the Online Appendix) and random forests (RF, Breiman, 2001). Last, we also consider a BNN
estimated through back-propagation (labeled BNN-BP). This BNN includes the ReLU activation function and a spike and slab prior
on the weights (see Sub-section B.1 in the Online Appendix for more details). Except for BNN-BP, RF and the elastic net, all models
feature SV.

4 To determine the number of factors, we follow Bai and Ng (2002, 2013) and use the IC criterion.
9
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Table 2
Forecast performance (January 2000 to December 2020).

Covariates Model

deep-NN- shallow-NN- BNN- BART Elastic LASSO Random UC-

common flex ReLU common flex ReLU BP net forest SV

Inflation

AR(1) −0.01 −0.02 −0.01 −0.02 −0.01 −0.02 −0.19 −0.22 −0.04 −0.04 −3.63
1.05 1.05 1.05 1.05 1.05 1.05 1.03 1.11 1.05 1.05 1.28

PCA 0.01 0.01 0.01 0.01 0.01 0.01 −0.11 −0.20 −0.30 −0.01 −0.22
1.00 1.00 1.00 1.01 1.00 1.00 1.04 1.07 1.06 1.00 1.06

Large 0.09** 0.09** 0.09** 0.09** 0.09** 0.08** −0.12 −0.03 −0.21 0.06** −0.01
0.94** 0.94** 0.93** 0.94** 0.94** 0.94** 1.03 0.97 1.00 0.95** 1.01

UC −0.04
1.04

Industrial production

AR(1) 0.08** 0.08** 0.08** 0.08** 0.08** 0.08** −0.81 −0.12 0.03 0.03 −2.02
0.91 0.91 0.90 0.91 0.91 0.91 0.92 0.89 0.91 0.91 0.95

PCA 0.06** 0.06** 0.06** 0.05** 0.05** 0.06** −0.46 −0.01 −2.55 0.00 −0.19
1.00 1.01 1.00 1.00 1.01 0.99** 0.94 0.89 1.20 1.00 0.83

Large 0.16** 0.16** 0.17** 0.17** 0.16** 0.16** −0.41 0.08 −1.75 0.09** −0.07
0.98 0.98 0.97 0.97* 0.97 0.97 0.93 0.88 0.99 1.01 0.86

UC 0.09**
0.90

Employment

AR(1) 0.26 0.24 0.26 0.26 0.27 0.27 −0.96 −0.67 0.08 0.08 −4.83
1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.14 1.02 1.02 1.18

PCA 0.27 0.34 0.30 0.29 0.32 0.30 −0.59 −0.19 −6.28 0.08 −3.35
0.99* 0.99* 1.00 0.99* 0.99 0.99* 1.01 1.03 1.00 1.01 0.99

Large 0.36* 0.41* 0.36* 0.36* 0.38* 0.36* −0.87 0.11 −5.56 0.18 −2.49
1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.04 0.98* 1.00 0.99*

UC 0.28
1.01

Note: The table shows average log predictive likelihoods (LPLs) and root mean squared forecast errors (RMSE, gray shaded rows) relative to the linear benchmark
(a diffusion index regression with SV and a horseshoe prior). In bold we mark the best performing model for each case. Asterisks indicate statistical significance
by means of the one-sided Diebold and Mariano (1995) test for each model relative to the benchmark at the 5% (**) and 10% (*) significance levels. Results
are averaged across the hold-out.

To compare models, we rely on log predictive likelihoods (LPLs) and root mean squared forecast errors (RMSEs). We predom-
inantly focus on LPLs given its close relationship to the marginal likelihood, a standard Bayesian measure of model fit (see, e.g.,
Geweke and Amisano, 2010) and the fact that researchers in policy institutions are often interested in predicting the whole density
of a target variable. Moreover, focusing on point forecast accuracy exclusively, implies that we ignore higher-order features of the
predictive distributions.

4.2. Out-of-sample predictive accuracy

4.2.1. Overall forecasting performance
To gain an overall picture of the forecasting performance, we show differences in average LPLs and ratios of RMSEs (gray

shaded rows), over the hold-out sample, between a particular model and the linear diffusion index regression model in Table 2.
Numbers above zero (smaller than one) point towards outperformance of a given model whereas numbers below zero (greater than
one) suggest that the benchmark linear model produces more accurate density predictions. One and two asterisks indicate that
the differences in forecast accuracy are significant according to the one-sided Diebold and Mariano (1995) test at the ten and five
percent significance level, respectively.

Starting with inflation forecasts, we observe differences across information sets. In general, using only the first lag of inflation
yields density forecasts that are very close to the ones of the linear benchmark model that leverages a larger information set. Within
the class of BNNs, there are only small differences across specifications. When we add the first eight principal components to the
lagged inflation (the row labeled PCA in the table) we find small but insignificant gains vis-á-vis the benchmark for the BNNs. The
other machine learning methods are often weaker than the different BNNs, with LASSO the best performing among them. This is
not surprising given that the PCA regression is estimated under a horseshoe prior, and both the horseshoe and LASSO are related,
in the sense that the LASSO can be interpreted as a Bayesian global–local shrinkage prior. Interestingly, we also find that BNNs
improve upon the UC-SV model.

If we include all variables in an unrestricted manner, results change somewhat. The different BNNs outperform the benchmark.
These improvements in density forecast performance are also often statistically significant at the five percent level. We find only
small differences among the BNNs, with deep and shallow models producing very similar density forecasts. When we compare
10
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different specifications for the activation functions, we find no discernible differences (except for a slightly weaker performance for
the shallow BNN with ReLU activation functions). In terms of the competing models, we find LASSO-based density predictions to
remain competitive, whereas those from the other models are inferior to the benchmark.

Focusing on point forecasts of inflation reveals that models that do well in terms of LPLs also perform well in terms of RMSEs.
imilarly to density forecasts, we find that point inflation forecasts arising from different NNs that leverage a large information set
re most precise, with statistically significant improvements relative to the benchmark reaching around seven percentage points.

Next, we consider density forecasts for industrial production (IP) growth. Starting again with the AR(1) information set, we find
hat all BNN-based models produce LPLs that are approximately the same, and outperform the benchmark in a significant manner.
he fact that predictive accuracy is very similar across BNNs is not surprising, since we only leverage information embodied in lagged
P growth. Most other models do not improve upon the benchmark model, except for the LASSO (and elastic net, which however
oes worse with a larger information set) and the UC-SV model. When we add more information, we find a similar pattern, with
lightly larger gains for the BNNs that are rather similar across specifications.

In terms of RMSEs, a slightly different pattern shows up. BNNs which include only the first lag of IP growth improve over the
enchmark. For larger information sets, these gains vanish and the neural networks are outperformed by other models such as
andom forests, BART, or the UC-SV. When viewed in combination with the density forecast performance, this finding indicates that
ains in terms of LPLs do not arise from better point predictions but rather from higher-order features of the predictive distributions.

Finally, we consider employment growth forecasts. In terms of LPLs, neural networks, across information sets, perform well and
mprove upon all competing machine learning specifications by appreciable margins. Interestingly, we find more variation with
espect to how we treat the activation function. In principle, if we use our mixture specification and make the activation function
ither layer or neuron-specific (in the case of the shallow learners), we almost always gain relative to the model that fixes the
ctivation functions to be of ReLU type. For point forecasts, we find almost no improvements relative to the linear benchmark. This
olds for most machine learning techniques in the set of benchmarks and provides evidence that, similarly to IP growth, gains in
PLs do not arise from superior point forecasts.

To sum up, different variants of the BNNs we propose outperform most other common machine learning models in terms of
uality of short-term density forecasts for key US economic indicators. The gains decline when we focus on point forecasts, but the
NN point forecasts are generally at least as good as those from common benchmarks. Differences between deep and shallow BNNs
re rather small, indicating that for practitioners interested in predicting output, inflation or employment, a shallow BNN that is
asier to handle is a good choice that delivers accurate density forecasts on average. In fact, the Diebold and Mariano (1995) tests
uggest that when NNs improve upon the benchmark, this is statistically significant for all of them. Moreover, while our mixture
ctivation function only translates into modest gains in terms of density forecasting performance, it is worth stressing that it frees
he researcher from the necessity to decide on one particular activation function and thus reduces the number of inputs to the model.

e should also stress that, in most cases, using more information in an unrestricted manner pays off. This finding is not specific to
ll models we consider but mostly to BNNs.

.2.2. Forecasting performance over time
The discussion in the previous section focused on how well the different models perform in terms of overall forecast accuracy

or the full hold-out period. To drill into performance differences over time, Fig. 4 shows average one-step-ahead LPLs and rolling
MSEs relative to the linear benchmark model over time. Given their strong performance, we focus on the models that feature the

arge dataset and include the best performing approach among the competitors.
At a general level, we find that modeling nonlinearities pays off for density forecast performance during turbulent times such as

he recession in the early 2000s, the GFC and during the pandemic. Only early in the GFC, the linear benchmark produces slightly
ore accurate density forecasts.5 But halfway through the GFC this pattern shifts and most nonlinear learners outperform linear
odels. In terms of point forecasts, this pattern is less pronounced. While we do find improvements in point forecast accuracy during

he GFC, predictive performance slightly deteriorates during the pandemic.
For density forecasts of IP and employment growth we find substantial gains of nonlinear models during recessionary episodes.

otice that for these two focus variables, we have added separate panels that show the performance throughout the pandemic.
ocusing on these we find heavy gains in early 2020. These improvements persist but flatten out afterwards. This pattern, however,
oes not carry over to point forecast accuracy. Comparing average LPLs with rolling RMSEs shows that the strong performance in
PLs seems to be driven by superior variance predictions whereas point forecasts are similar to the one of the linear benchmark
odel. Such large gains in forecast performance are not evident for inflation, which remained rather stable relative to industrial
roduction and employment growth in 2020 and did not exhibit these severe outliers.

This observation provides evidence that a high degree of model flexibility to capture severe outliers in real economic activity
ays off in terms of density forecast accuracy. The comparison between point and density forecasts shows that (particularly during
he pandemic) the improvements in LPLs are driven by increases in predictive variance (and thus a higher probability of observing
utlying observations) and not by better median predictions.

Consistent with the overall findings, deep and shallow models display a similar performance, making it difficult to find systematic
ifferences over time. Yet, ReLU-based models are consistently weaker than their counterparts with a mixture activation function

5 Notice that this does not hold for the LASSO. We conjecture that this is driven by the fact that the LASSO tends to overshrink significant signals.
11



Journal of Econometrics xxx (xxxx) xxxN. Hauzenberger et al.

r
o
d
l

f
a

2
m
a

4

r
t
c

a

(
a

Fig. 4. Average LPLs and RMSEs for BNNs and the best performing benchmark. Note: We plot the evolution of average log predictive likelihoods (LPLs) and
olling root mean squared forecast errors (RMSEs) against the linear diffusion index model for the one-step-ahead predictive densities. To avoid overrepresentation
f the initial root mean squared forecast errors at the beginning of the hold-out we start depicting the rolling RMSEs after the first 60 observations. The red
ashed lines denote the max./min. LPLs, while the gray shaded areas indicate the NBER recessions. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

or employment. It is also interesting that deep BNNs with ReLU activation functions are beaten by shallow BNNs with flexible
ctivation functions. This pattern holds for all three focus variables and seems to be consistent over time.6

Finally, to analyze specifically the role of the pandemic, we have also re-computed the forecasting results with data only through
019:M12, with details provided in the appendix. It turns out that NNs are still highly competitive and improve upon all competing
odels. The only substantial change relative to our baseline results in the previous subsection is that LPL differences for employment

re slightly less pronounced.

.2.3. The role of stochastic volatility
One of our additions to the standard NN toolkit is the introduction of SV. To investigate the empirical relevance of this, we now

e-do the forecast exercise but turn off SV for the BNNs. The results of this exercise are shown in Table 3. The table again shows
he LPLs and RMSEs relative to the linear diffusion index model with SV. Hence, differences between Tables 2 and 3 are directly
omparable.

Turning off SV hurts forecasting performance, in particular if the full predictive density is evaluated. In most cases, LPL differences
re lower than the ones observed in Table 2 by varying margins. This also holds for RMSE ratios which are either often similar or

6 Figure C.1 in the Online Appendix reports the fluctuation test statistic for density forecasts relative to the benchmark as proposed by Giacomini and Rossi
2010). It turns out that the gains with respect to the benchmark are present and statistically significant for all the BNN models, particularly so for inflation
12

nd industrial production, while they are only occasionally significant for LASSO.
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Table 3
Forecasting performance of the various NNs without SV in the shocks.

Covariates Model

deep-NN- shallow-NN-

common flex ReLU common flex ReLU

Inflation

AR(1) −0.26 −0.26 −0.26 −0.26 −0.26 −0.26
1.05 1.05 1.05 1.06 1.06 1.05

PCA −0.21 −0.13 −0.21 −0.21 −0.21 −0.20
1.02 1.02 1.03 1.02 1.04 1.02

Large −0.07 −0.04 −0.06 −0.07 −0.06 −0.07
0.99 0.98 0.98 0.99 0.98 0.99

Industrial production

AR(1) −0.88 −0.88 −0.84 −0.89 −0.99 −0.89
0.94 0.93 0.93 0.98 1.04 0.95

PCA −1.66 −0.07 −2.06 −1.92 −2.35 −1.38
1.26 1.28 1.33 1.33 1.40 1.24

Large −0.73 0.03 −0.37 −0.54 −0.58 −0.63
1.02 1.01 1.01 1.04 1.03 1.01

Employment

AR(1) −4.97 −4.72 −4.56 −4.60 −16.11 −5.26
1.07 1.07 1.06 1.06 1.75 1.12

PCA −6.56 −2.42 −5.10 −6.82 −9.87 −9.28
1.14 1.13 0.99 1.14 1.33 1.29

Large −5.93 0.28 −5.88 −5.29 −5.83 −6.05
1.03 1.02 1.03 1.03 1.03 1.03

Note: The table shows average log predictive likelihoods (LPLs) and root mean squared forecast errors (RMSE, gray shaded
rows) relative to the linear benchmark (a diffusion index regression with SV and a horseshoe prior). In bold we mark the best
performing model for each case. Asterisks indicate statistical significance by means of the one-sided Diebold and Mariano (1995)
test for each model relative to the benchmark at the 5% (**) and 10% (*) significance levels. Results are averaged across the
hold-out.

orse than the ones of the heteroskedastic NNs. In fact, for inflation, we find that the benchmark linear model with SV improves upon
eep-NN-flex and shallow-NN-flex with the large dataset. There are only small differences in terms of forecast accuracy

between the deep and shallow models. This is consistent with the findings based on the models that use SV.
For IP and employment growth, we find that deep-NN-flex is capable of improving upon the benchmark. These gains are

uted for IP and slightly more pronounced for employment. What is interesting, however, is that the choice of the activation function
eems to matter much more when we use homoskedastic BNNs. The layer-specific mixture activation function in the case of a deep
NN yields much more precise density forecasts than a ReLU-based BNN and a specification with a common mixture activation
unction. Notice, that for IP growth we observe that deep BNNs seem to cope much better with model mis-specification in terms of
he shock volatility processes than shallow models.

.3. Predictive model properties

To better understand the predictive performance of our different BNNs, we now consider two specifications and zoom into
pecific model features. The first is the deep BNN with layer-specific activation functions (deep-NN-flex) and the second one is

the shallow BNN with neuron-specific activation functions (shallow-NN-flex).

4.3.1. Which activation function?
A natural starting point is the specific form of the activation function if we use our mixture specification. To investigate which

activation function receives more model weight, we focus on how much weight each activation function attains under the posterior.
Recall that the mixture activation function mixes over four different activation functions (leakyReLU, sigmoid, ReLU, and tanh).
Table 4 shows the average of the posterior estimates of 𝜔(𝑚)

𝓁,𝑞 associated with each of the four activation functions over the hold-out

period. The rows show the different layers and, to simplify the table, we have averaged over the weights associated with the different
neurons in the case of shallow-NN-flex.

For the shallow model, we find that all activation functions receive almost equal weights across the three focus variables. Only
sigmoid and tanh obtain slightly more posterior weight. This feature is more pronounced for employment, but differences are quite
small.

For deep-NN-flex more interesting patterns arise. In this case, we find more asymmetries in terms of activation functions
across variables and layers. For inflation, tanh receives slightly more posterior weight for the first two hidden layers. In the output
layer, this pattern shifts and leakyReLU and ReLU attain only little weight while sigmoid and tanh obtain over 90 percent of total
13
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Table 4
Posterior weights of activation functions.

Layer Inflation Industrial production Employment

leakyReLU ReLU sigmoid tanh leakyReLU ReLU sigmoid tanh leakyReLU ReLU sigmoid tanh

shallow-NN-flex

1 23.9 23.8 26.2 26.1 23.8 23.8 26.3 26.1 23.7 23.7 26.0 26.6

deep-NN-flex

1 24.6 24.0 23.4 28.0 24.9 23.8 23.1 28.2 21.2 19.9 19.4 39.5
2 24.2 24.1 23.6 28.1 24.1 23.9 24.9 27.1 25.8 21.2 21.0 32.0
3 3.5 3.4 44.3 48.8 3.6 3.6 45.2 47.6 3.6 3.6 38.3 54.5

Note: The table shows mean posterior estimates of 𝜔(𝑚)
𝓁,𝑞 for each layer averaged across the hold-out periods. For shallow-NN-flex, we average over the

weights of all neurons. All numbers are in percentages.

posterior weight. For IP, a similar pattern shows up. In the first two layers, we find posterior weights that are more symmetric while
in the output layer, sigmoid and tanh dominate and leakyReLU and ReLU only play a limited role.

For employment growth, the variable for which we find the strongest gains, the pattern is different. For layers one and two,
tanh receives the largest posterior weight with the remaining three activation functions having similar mean estimates of 𝜔(𝑚)

𝓁,𝑞 . For
the output layer, we again find that sigmoid becomes substantially more important, receiving a weight of around 38 percent while
tanh still dominates and receives over 54 percent of posterior weights.

This brief discussion shows that in the predictive exercise, our BNNs do not generate strong forecasts by relying on a single
activation function but by averaging over all four of them (in particular for the deep model and hidden layers below the output
layer). In the case of the deep BNN, the model places substantial posterior weight on sigmoid and tanh, a pattern that also shows
up for the shallow model but in a much more attenuated manner.

4.3.2. The relationship between in-sample fit and out-of-sample predictability
The results up to this point tell a story that flexible models help in extreme periods and are competitive in normal times.

These are much more pronounced for density forecasts while the improvements for point forecasts are more muted. To gain a
better understanding on how flexible NNs improve the estimation of the conditional mean and whether this yields superior density
forecasts, we investigate the relationship between in-sample fit and out-of-sample predictive capabilities. This exercise allows us to
answer the question whether NNs can extract information from 𝒙𝑡 that linear models cannot exploit and how this impacts predictive
accuracy.

To achieve this, we compute the amount of variation explained through the conditional mean piece (labeled R2) for shallow-
NN-flex and deep-NN-flex. These R2s are computed recursively and put in relation to the corresponding 𝑡-by-𝑡 LPL using a
simple scatter plot. The scatter plots are provided in Fig. 5. The horizontal line at zero implies that if a point is below zero, the
linear regression model produces superior density forecasts whereas in the opposite case, the BNN is forecasting better. Points to
the left of the vertical line (which stands at one) imply less explanatory power of the BNN whereas points to the right indicate that
the conditional mean part of the BNN explains more of the variation in the response as the linear model.

Two examples illustrate how the scatter plot can be interpreted. Points in the quadrant with R2 > 1 and LPL > 0 represent
situations where the BNN is extracting information from 𝒙𝑡 that leads to a higher in-sample fit and this information translates into
more accurate density forecasts. If R2 ≈ 1 but LPL > 0 both models explain a similar amount of in-sample variation but density
forecasting performance of the BNN is superior. In this case, these differences are likely driven by higher order moments of the
predictive distribution.

Starting with inflation (see panel (a) of the figure) reveals two interesting differences across shallow and deep learners. The
shallow neural network produces competitive forecasts based on an in-sample fit that is comparable to the linear diffusion index
regression whereas deep-NN-flex produces density forecasts of similar quality but does so with a much stronger in-sample fit
that is almost always higher than the one of the linear model, with relative R2 frequently exceeding 1.5.

For IP growth (depicted in panel (b)), we observe a similar pattern. Shallow models produce in-sample fits which are close to
the ones of the linear model. By contrast, the R2-LPL combinations for the deep BNNs are mostly located in the top right quadrant.
In both cases, however, BNNs produce IP forecasts in the pandemic (April 2020) which are much more precise than the ones of the
linear model and do so while explaining more of the in-sample fit. For deep-NN-flex we also find that density predictions for
output growth are much more precise during September 2008, the month of the collapse of Lehman Brothers.

The overall story that shallow BNNs produce accurate density forecasts with an in-sample fit that is close to the one of the linear
model while deep models do the same but with a much higher in-sample fit carries over to employment growth predictions in panel
(c). For shallow BNNs we find that around half of the points are above one in terms of relative R2 and for deep BNNs this share
is much higher. In both cases, nonlinear models heavily outperform the linear benchmark in April 2020 and, to a lesser degree, in
March 2020. In both periods, employment numbers exhibited historic declines due to the Covid-19 pandemic.

Table 5 summarizes these findings in a few numbers. The first row, labeled ‘Outperformance’ shows the number of times a
particular BNN improves upon the linear benchmark, the second row, labeled ‘Outperformance & higher R2’ gives the percentage of
14

times a model improves upon the linear model and does so with a higher in-sample R2. This table shows that shallow models have a
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Fig. 5. Relative R2 against relative LPL. Note: This figure shows relative R2 versus relative LPL of shallow-NN-flex and deep-NN-flex against the linear
odel for each of our three variables. We color observations which feature high in-sample fit and high predictive accuracy relative to the benchmark. (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

able 5
easures for the in-sample and out-of-sample outperformance of the BNN against the linear benchmark.

Inflation Industrial Production Employment

shallow-NN- deep-NN- shallow-NN- deep-NN- shallow-NN- deep-NN-
flex flex flex flex flex flex

Outperformance 54.0 48.8 54.0 46.4 55.6 53.6
Outperformance & higher R2 2.0 48.4 26.6 45.2 25.0 53.2

Note: The table shows two different measures describing the relationship between in-sample fit and out-of-sample predictability. The measure ‘‘Outperformance’’
ives the share of relative LPL being positive (i.e., corresponding to the datapoints in the upper quadrants of Fig. 5). The second measure ‘‘Outperformance

higher R2’’ gives the share of relative LPL being positive and a relative R2 above one (i.e., corresponding to the datapoints in the right-upper quadrants of
ig. 5). All numbers are in percentages.
15
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slightly higher share of outperformance than deep models. For shallow-NN-flex, this outperformance is often achieved with a
lower R2 than the benchmark (two percent for inflation; 27 percent for IP and 25 percent for employment). By contrast, deep BNNs
frequently outperform the benchmark with higher R2 measures. This pattern points towards benign overfitting, commonly found in
the literature (see, e.g., Bartlett et al., 2020), but it also suggests that, as far as density forecasting inflation, industrial production
and employment is considered, shallow BNNs can be preferred to deep BNNs, as differences in density forecasts are minor and the
computational costs are much smaller.

5. Conclusion

Neural networks are extremely popular in many different fields. In economics and econometrics, their usage is growing but
still comparatively limited. In this paper, we develop techniques to specify and estimate neural networks without requiring cross-
validation or much input from the researcher. The key ingredient is a flexible mixture specification on the activation function, which
frees the researcher from the necessity to pick a particular activation function. As an additional technical improvement, we allow
for heteroskedasticity in the shocks. From a computational point of view, we develop an efficient and scalable (Bayesian) estimation
algorithm.

We illustrate how these models can be used for informing policy decisions. In particular, we start by investigating the trade-off
between the number of neurons and the number of hidden layers using synthetic data from a realistic DGP that resembles actual US
inflation dynamics. We show that, as opposed to theoretical recommendations, a shallow neural network produces favorable MSE
ratios and is capable of improving upon deep BNNs. We then move on to use the models to produce density forecasts of key US
macroeconomic aggregates. In this exercise, we find that our BNNs improve upon models commonly used in machine learning, and
shallow BNNs perform as well as deep BNNs, while the latter produce much better fit.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105843.
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