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Abstract

Advances in Deep Learning bring further investigation into credibility and robustness, especially for safety-
critical engineering applications such as the nuclear industry. The key challenges include the availability of
data set (often scarce and sparse) and insufficient consideration of the uncertainty in the data, model, and
prediction. This paper therefore presents a meta-learning based approach that is both uncertainty- and prior
knowledge-informed, aiming at trustful predictions of material properties for the nuclear reactor design. It
is suited for robust learning under limited data. Uncertainty has been accounted for where a distribution of
predictor functions are produced for extrapolation. Results suggest it achieves superior performance than
existing empirical methods in rupture life prediction, a case which is typically under a small data regime.
While demonstrated herein with rupture properties, this learning approach is transferable to solve similar
problems of data scarcity across the nuclear industry. It is of great importance to boosting the AI analytics
in the nuclear industry by proving the applicability and robustness while providing tools that can be trusted.

Keywords: meta learning, uncertainty quantification, creep rupture, nuclear design, material property

1. Introduction

Deep Learning introduces abundant innovative perspectives and data analytics in the physical engineering
domain (Chen et al., 2023a). In the mean time, these advances also bring further investigation into credibility
and robustness, especially for safety-critical engineering applications such as the nuclear industry. The key
challenges include the availability of sparse and noisy data set as well as insufficient consideration of the
uncertainty in the data, model, and prediction (Tolo et al., 2019). It has been found that AI analytics
are not widely implemented within the nuclear sector and that the sector is currently lagging behind in
the Industry 4.0 revolution compared to other industries such as automotive and manufacturing (Prinja,
2022). Trustful AI techniques can be expected to play a potential role in devising robust ways of design,
construction, operation, and decommission.

To ensure the safety and effective risk management of nuclear designs, characterisation of the material
properties play a significant role. Notably, the creep behavior of materials is of great concern when designing
and evaluating materials for use in high-stress or high-temperature environments. Conventionally, time-
temperature parameter (TTP) are statistically formulated using short-term data to predict the long-term
rupture life, such as Orr-Sherby-Dorn (OSD) and LarsonMiller (LM) parameters, see Sattar et al. (2022) for
a review. In recent years, the costly nature of experimental campaigns further lead to a number of machine
learning algorithms leveraged as surrogate models to predict the creep rupture life (Biswas et al., 2020; Chai
et al., 2023; Wang et al., 2022; Zhang et al., 2021). These models, especially neural networks, work on the
principle of the universal function approximation theorem to map the nonlinear relationship between key
factors in a high-dimensional space.

Essentially these models aim to predict a long-term creep rupture life based on extrapolation from the
empirical short-term creep rupture data obtained experimentally. But insufficient attention are paid to
address the uncertainty as often times the predictions are poorly constrained by the scarcity of data and
extrapolating beyond the data. The distribution of creep data in terms of various data ranges is often highly
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sparse and unbalanced (Zhou et al., 2024; Sattar et al., 2022). Transfer learning techniques (Zhou et al.,
2024) and data augmentation procedures (Lye et al., 2022) have been previously proposed and seen some
mitigating effects on the limited data conundrum. But the challenge of uncertainty estimation remains.
Particularly, in this analysis, we aim to adopt a meta-learning approach that provides a generalised solution
to small-sample problems while account for the uncertainty, based on explicitly learning data-driven priors
from previous experience. edo

2. A meta-learning perspective to cross-material insights

From a probabilistic perspective, in training a predictive model, supervised learning models aim to
conduct the optimisation based on the empirical loss (i.e. likelihood):

θ∗ = argmax
θ

[EB(
∑

x,y∈B
log pθ(y|x))] (1)

where B represents the batches of data pair (xi, yi) and θ∗ denotes the optimal model parameters.
However, despite abundant successes in data-rich domains such as computer vision (LeCun et al., 2015),
there remain challenges for supervised systems in the face of data scarcity, which is indeed a common issue
across many physical, environmental and engineering domains (Chen et al., 2023b). Generally, limited
amount of data has restricted machine learning models from effectively learning the true underlying data
generating process. Significant uncertainties may exist on the model configurations that have explained the
limited data and therefore the downstream extrapolation (Ghahramani, 2015; Chen et al., 2022).

Prior knowledge could be an important source of information to be employed to mitigate the impacts
of limited data and efficiently guide the training and inference (Beer et al., 2013). Notably, rather than
subjectively eliciting priors, meta-learning involves explicitly learning priors from previous experience that
lead to efficient downstream adaptation with small samples. The goal is to utilise the knowledge learned
from similar tasks and adapt to another one fastly with only a few observations available. A key focus is
the capability for fast adaptation on a new task with only limited number of data points.

A probabilistic interpretation of meta learning indicates its two step procedures where prior information
from a set of related tasks are firstly encapsulated in the meta parameters θ∗ = argmax p(θ∗|Dmt) (see
Eq. (2)), whereby a new task, often with a small number of data samples C, can be efficiently learnt to
infer the predictive distribution p(y|x, C) for all the target data points at one time. These two stages are
respectively referred to as meta-training and meta-testing.

θ∗ = argmax
θ

[
EDmt

[EB(
∑

x,y∈B
log pθ(y|x,C))]

]
(2)

where Dmt represents the meta-training set, which comprises of a set of datasets (i.e. tasks). C denotes
the context sets. While meta learning generally allows to incorporate data from related tasks, another
desired property is to characterise the uncertainty during training and inference. Specifically, conditional
neural process (CNP) represents a new meta-learning methodology that is able to produce a distribution of
predictor functions, p(yτ |xτ , C) given the context sets, where τ denotes the target locations of interests to
query at. From an architecture point of view, an encoder-decoder structure of deep neural network is built
to learn a mapping from a set of datasets to predictive stochastic processes, in a meta-learning manner.

r = e[hθ(C)] (3)

A global representation r of all the data in the context set, i.e. (xi, yi) ∈ C, are encoded via the
Encoder model hθ(xi, yi). Particularly, a permutation invariant operation e is adopted to produce an overall
summarisation.

ϕ = gθ(xτ , r) (4)
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where ϕt = (µt, σ
2
t ) denotes a Gaussian distribution for every query data point in the target set xτ . The

decoder model therefore gθ factorises the predictive distribution:

p(yτ |xτ , C) =

τ∏
t=1

N (yt;µt, σ
2
t ) (5)

It thus combines both the expressive power of multi-layer perceptron networks during training and the
uncertainty characterisation capacity of Gaussian Processes during inference.
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3. Numerical experiments on creep properties

A database of the material properties for 58 different steel types is obtained from the National Institute
for Materials Science (NIMS) based on a previous experimental campaign under the Material Properties
Predictor for Power Plant Steels (M4PS) project (Prinja, 2022). This includes 8005 experimental observa-
tions on the creep rupture properties in terms of stress, temperature, fracture time, etc. Fig. 1a shows a
distribution the number of observations with respect to various cast codes. There are 44 materials associated
with 281 cast codes and also 35 temperature levels involved in the experiments. It shows that most cast
codes are associated with less than 40 observations, and they will be much sparser if factored in the temper-
ature distributions. Particularly, there exists quite a few cast codes that only has less than 20 experimental
observations. As a concrete example, Fig. 1b displays the data for some randomly selected cast codes as an
illustration. Based on these samples, it is not hard to spot a plausible linear trend between the stress and
creep rupture time, both in logarithmic scale, when group by temperature.

In this analysis, we take on a meta-learning approach to quickly and robustly learn an uncertainty-aware
model to predict the creep rupture life of materials with different cast codes given only a very limited number
of experiments. It should be noted that our aim is for a generalised meta-model that applies to any arbitrary
cast code with limited observations, as opposed to only targeting specifically at a certain material or cast
code. It serves as a widely useful approach for robust learning of machine learning models given limited
data and express its uncertainty.

To demonstrate the performance of learning given data scarcity, the model has been specifically tested
on the a held-out set of 20 cast codes with the least number of observations, whose quantity of observations
range from 13 to 18. The testing configuration entails that, for a certain cast code, only several samples
(entitled as context points) are available to the model. The learned model will be further tested on separate
data points (referred to as target points). It would be extremely hard for traditional supervised learning
paradigms to learn effectively without overfitting given such small number of samples.

3



The prior knowledge has been learnt during the meta-training stage where the data of a number of 261
cast codes are involved in the training and validation. A proportion of 20% of the training data are randomly
taken as the validation set where the hyperparameters of model are optimised. Meanwhile, the model is
compared with the baseline of Larson-Miller model with degrees of d = 1 and d = 2. The Larson-Miller
relations is one of the most common classic techniques in representing creep-rupture data. By characterising
a time-temperature parameter (i.e. PLM the Larson-Miller parameter), the Larson–Miller model (LM),
shown at Eq. (7) below, predicts the lifetime of material with respect to time and temperature using a
correlative approach based on the Arrhenius rate equation (Maruyama et al., 2018).

PLM = log(tr + CLM )Tr/1000 = hξ(log σ) (6)

where Tr denotes temperature in the unit of Rakine; tr denotes the stress-rupture time; and CLM is
a constant which is often assumed to takes the value of 20. hξ(log σ) denotes the hypothesis between the
Larson-Miller parameter and the stress in log scale, typically in the form of a linear function of polynomial
basis parameterised by ξ (Zhang et al., 2023).

hξ(log σ) = ξTϕ(log σ) (7)

where ϕj(x) = xj suggests a polynomial basis. It should be noted that Eq. (7) indicates a linear model
with respect to parameters, but it characterises a non-linear relationship with respect to the independent
variables. Particularly, it is evident that d = 1 corresponds to a linear relationship between stress and PLM .
In this regime, the TTP (i.e. PLM ) serves as a proxy where one can derive the rupture time at a further
step given temperature values. However, the trained conditional neural process model will directly yield the
predictive distributions of the rupture time.

Fig. 2 shows the generalisation performance of the trained model under varying temperature conditions.
Black crosses denote the context data samples while the red crosses denote the unseen samples for testing
purposes. The sparsity of data distributions with respect to temperature can be easily seen in these figures.
Often times there are very limited number of experiments available or even none for some temperature
setting (e.g. merely 2 observations for T=450 ℃ and no observations for temperature higher than T=650
℃ in this case).

Compared to the deterministic LM models, the trained conditional neural process model produces the
predictive uncertainty on its extrapolation. It is vital to characterise the epistemic uncertainty when ex-
trapolating to unseen data ranges. The underlying predictive model may not even be physically correct in
generalising to environments outside the scope of observations. For the high stress range (log(σ) > 2.5),
both LM models in all temperature scenarios are well included within the variance of the trained model,
showing a certain degree of agreement in extrapolating towards high stress conditions. The nonlinear d = 2
case shows relatively better agreements with the conditional mean of the proposed model. However, these
models differ considerably in the the low-stress range, which is of typical interests to engineers who are
finding the long-term creep behavior of materials. The proposed model manifests the lowest extrapolated
estimates among the three, while the d = 1 model gives the highest estimate due to its linear assumption.
We note that, given unseen data ranges the proposed model yields the extrapolation based on the learned
prior insights from many related tasks due to the mechanism of meta-training and may well be the most
reliable extrapolation.

A demonstration can be seen from Fig 3, where the proposed model is compared with a pretrained
neural network model and a Gaussian Process model, under varying number of context points. The context
set and target set are from an arbitrary cast code in the validation data set. It should be noted this
validation task have observations of multiple temperature conditions and the temperature is fixed herein
for plotting convenience. The conditional neural process model is designed to (I) learn prior knowledge
from the meta-learning stage; (II) yield a distribution of predictor functions to express confidence during
inference; Therefore, it can be seen as a combination of both worlds, integrating with both pre-training
and also the ability to leverage context points similar to a gaussian process (GP). It can be seen that an
increasing number of context points have no impact on a pretrained model which merely learns from the set
of meta-tasks. In this setting, these context points can practically been seen as targeting points. Despite
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Figure 2: Comparison of the trained model along with two baselines on an arbitrary cast code in the validation set. The green
line suggests the LM model with d = 1 while the yellow curve suggests the LM model with d = 2. The blue curve denotes the
conditional mean produced by the trained model and the blue shades denote the range of 2 standard deviation

not leveraging the context points which contains the most direct information pertaining to the task under
testing, this model can still produce a reasonable extrapolation in the low stress range due to the pretraining
on those related tasks. But it completely ignores the context information most relevant to the task under
investigation and produces incorrect results on stress level larger than 2. In comparison, a Gaussian process
have no such pretraining and instead produce the predictive distribution completely based on the context
points. It can be seen, from the third row of Fig. 3, that with very few context points, we can only yield the
non-informative prior gaussian process. With some additional number of data points, the GP adapt to the
context points and produce uncertainty bounds accordingly. Importantly, we can see the shift of low-stress
extrapolation of the mean prediction log tr from roughly 5 to 6 with just a few more observations. This
shows that GP is relatively more sensitive to the context points and will probably produce different results
given the observations. However, conditional neural process has both the knowledge of related tasks and
also the capacity to adapt on the basis of context points. As shown in the second row, it produces reasonable
low-stress extrapolation even with very few context points, serving as a informative starting point for further
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adaptation. Given more context points, it fine-tunes its predictions.
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Figure 3: Performance comparison of varying context points. top row represents the predictions from the a pretrained neural
network model; middle row predictions from the conditional neural process model; bottom row predictions from a Gaussian
Process model. From the first to the last column, more context points are available to the models

Collectively, Fig. 4 displays the prediction against the whole held-out test set which includes 60 observa-
tions across 20 cast codes with the least number of experiments. The number of experiments range from 13
to 18. Meanwhile, several metrics are proposed to showcase the generalisation performance. e denotes the
mean absolute error and li represents the log likelihood in the testing set, these two reflect the quality of
the model fit. On the other hand, P95, as an uncertainty measure, evaluates the ratio of the ground truth
to be captured by the predicted interval.

e =
1

n

n∑
n=1

|yi − ŷi| (8)
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Figure 4: The prediction performance of the conditional neural process model over the whole testing set. The horizontal bar
represents 2 times of standard deviations

li = log p(yτ |xτ ) (9)

P95 = ct/nt, with ct =

n∑
i=1

ci (10)

ci =

{
0, yi ∈ [yUi , yLi ]

1, yi /∈ [yUi
, yLi

]
(11)

where ct is defined by a vector of length nt (total number predictions), whose element ci indexes a
true value captured by the estimated credible interval. Considering the situation of prediction under very
limited data, Fig. 4 shows great performance with the R2 = 0.89 and P95 = 0.88, indicating 88% of the
predicted intervals including the ground truth. To comprehensively showcase the generalisation performance
and consider randomness, Table 1 tabulates the metrics across 20 random runs on the whole testing set.
Both li and P95 provide a basis for comparing with other probabilistic methods. It can be seen that, besides
being more informative than the LM baselines (with additional uncertainty measures), the proposed model
is also more accurate. Meanwhile, for the LM models, the accuracy is decreasing as with higher degrees of
the polynomial, which suggests the sign of overfitting when relating the stress and the TTP. Such overfitting
is expected due to the small number of observations.

Table 1: Performance metrics on the prediction of rupture time for the testing tasks with the least number of observations over
20 random runs

proposed model
Larson Miller relation

d=1 d=2 d=3

e 0.261 ± 0.026 0.354 ± 0.105 0.375 ± 0.183 0.449 ± 0.333
li -0.409 ± 0.125 - - -
P95 0.878 ± 0.040 - - -
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4. Conclusion

In this paper a meta-learning based approach is developed for robust creep rupture life prediction for
nuclear reactor design, which typically suffers from significant epistemic uncertainty due to extrapolation
and having very limited observation when building models. Insufficient attention are paid to uncertainty
characterisation despite some attempts of adopting machine learning techniques. The proposed approach
demonstrates superior generalisation performance than conventional baseline methods with higher accuracy
and provides the necessary confidence associated with such prediction. This superior performance is mostly
driven by its two vital capabilities: (I) extracting prior knowledge from related tasks and quickly adapt to
new tasks; (II) yielding uncertainty-aware extrapolation through a distribution of predictor functions.

The proposed technology allows considering the unavoidable variability associated with any experimen-
tal campaign required to characterise materials. The impact of this analysis will prove the transferable
applicability of probabilistic AI analytics in the nuclear industry by providing tools that can be trusted.
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